
UniFI: Leveraging Non-Volatile Memories for a Unified Fault
Tolerance and Idle Power Management Technique

Somayeh Sardashti
Department of Computer Sciences
University of Wisconsin-Madison

somayeh@cs.wisc.edu

David A. Wood
Department of Computer Sciences
University of Wisconsin-Madison

david@cs.wisc.edu

ABSTRACT
Continued technology scaling presents new challenges for system-
level fault tolerance and power management. Decreasing device
sizes increases the likelihood of both transient and permanent faults.
Increasing device count, together with the end of Dennard scaling,
makes power a critical design constraint. Techniques that seek to
improve system reliability frequently use more power. Similarly,
many techniques that reduce power hurt system reliability. Ideally
system designers should seek out techniques that mutually benefit
both fault tolerance and power management.

In this paper, we develop a unified technique, called UniFI, for fault
tolerance and idle power management in shared memory multi-core
systems. UniFI leverages emerging non-volatile memory
technologies to provide an energy-efficient lightweight
checkpointing technique. In addition to tolerating a large class of
faults, UniFI’s frequent checkpoints permit near-instant transition to
a deep sleep mode to reduce idle power. UniFI incurs very low
performance and energy overheads during fault-free execution—
less than 2%—while taking checkpoints every 0.1ms. For typical
server workloads (such as DNS), UniFI reduces average power by
82% by shutting off during idle periods.

Categories and Subject Descriptors
C.1 [Processor Architectures]: General

Keywords
Energy, Reliability, Checkpointing, Idle power management.

1. INTRODUCTION
Continuing advances in technology scaling promise significantly
higher levels of system integration, but to effectively exploit this
potential requires concomitant advances in fault tolerance and
power management. Decreasing feature sizes pose new challenges
to system reliability, due to increased rates of transient and
permanent faults [4]. Future multicore systems must also treat
power as a first-class design constraint, and should seek not only to
limit the maximum power dissipation but also to make power -
proportional to performance by managing idle power. The twin
challenges of fault tolerance and power management motivate our
work towards a unified technique that addresses both.

Power has become a primary design constraint for multicore
processors and systems, and is projected to become ever more
important as technology continues to scale [10]. Shrinking transistor
dimensions results in the exponential growth of leakage power,
while dynamic power no longer follows Dennard’s classical scaling
trend [36]. In addition, due to scaling conventional memory
technologies encounter scaling difficulties and power issues. To
answer these issues, emerging resistive memory technologies —
such as Phase-Change Memory (PCM) and Spin-Torque Transfer
Magneto-resistive RAM (STT-MRAM) – have been proposed [11-
23]. They promise to not only eliminate the major sources of
leakage power, but to also make main memory and caches non-
volatile [14,20].

Server power is also a critical factor at data centers, where power
consumption is growing rapidly [35]. In most data centers, servers
have relatively low utilization, but exhibit bursty behavior and are
rarely idle for long. Conventional idle power management
techniques, such as OS-directed ACPI power modes, are insufficient
due to high transition overheads. What is needed are low-overhead
idle power management techniques, which rapidly transition
between idle and active power modes [34]. On the other hand,
power management techniques may degrade reliability if applied
aggressively due to decreased noise margins and thermal cycling
 [42].

Technology scaling and power management both impact system
reliability. Shrinking semiconductor feature sizes results in a higher
possibility of process and operating condition variations, and
increases the susceptibility of system components to both transient
and permanent faults. In a data center, power management may also
interrupt server power due to power outages, power over-
subscription (e.g., power capping), or thermal emergencies [11]. To
recover from a wide range of failures, various checkpointing
techniques have been proposed operating at different software or
hardware layers [7,24,25,26,27]. However, conventional
checkpointing techniques incur high performance and power
overheads or require high disk bandwidth and capacity [27].

This paper proposes UniFI, a Unified Fault tolerance and Idle power
management technique for shared-memory multicore systems.
UniFI helps both system reliability and power by exploiting the
synergy between backward error recovery and idle power
management. It leverages resistive memory and provides a
lightweight energy-efficient checkpointing mechanism to recover
from a wide range of transient and permanent faults. Relying on its
light-weight global checkpoint mechanism, UniFI allows almost
instant transition of the system to a deep sleep mode during idle
periods and at power emergencies. Unlike other power management
mechanisms, UniFI’s checkpoint mechanism also helps tolerate any
fault due to increased thermal cycling.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’12, June 25–29, 2012, San Servolo Island, Venice, Italy.
Copyright 2012 ACM 978-1-4503-1316-2/12/06...$10.00.

59

Table 1. Taxonomy of fault tolerance and power management techniques.

System Reliability

 Tends to hurt Neutral Tends to help

Tends to hurt N/A N/A High-overhead global checkpointing
[7],[24],[25], and redundancy [40]
mechanisms

Neutral N/A N/A Power-aware reliability techniques
[41], Rebound [45]

Sy
st

em
 P

ow
er

Tends to help Aggressive power management
techniques [38][42]

Razor [39], MS-ECC [47], Word-
disable and Bit-fix schemes [48],
heterogeneous LLC [46]

UniFI [New]

We evaluate UniFI’s performance and energy overheads using full-
system simulation with SPEComp [3], PARSEC and commercial
workloads [2] running on an 8-processor multicore system. For
continuous fault-free execution, UniFI incurs very low performance
and energy overheads, less than 1% on average and less than 2% for
the worst performing workloads. For low-utilization server
workloads, we use Meisner, et al.’s power model [34] to show that
UniFI significantly eliminates idle power.

The main contributions of this paper are as follows:

• To the best of our knowledge, UniFI is the first unified technique
that addresses the synergies between fault-tolerance and idle power
management.

• UniFI proposes an efficient checkpointing technique—using a
novel combination of lazy flushing, in-cache logging, and safe
replacement—that incurs low performance and energy overheads in
the common case of fault-free execution, allowing frequent
checkpointing.

• UniFI exploits the unique characteristics of resistive memories to
efficiently recover from a wide range of permanent and transient
faults and to provide efficient idle power management.

In the rest of the paper, we study the synergies between fault
tolerance and power management techniques in Section 2, describe
the background in non-volatile memories in section 3, present UniFI
and its mechanisms in Section 4, give evaluation methods in Section
5, provide experimental results in Section 6, discuss related work in
Section 7, and conclude the paper in Section 8.

2. SYNERGY BETWEEN FAULT
TOLERANCE AND POWER
MANAGEMENT
With continued transistor scaling, designers face new challenges in
both system reliability and system power. Despite decades of fault-
tolerance research, most studies on reliability have paid little
attention to power overheads [27]. Similarly, recent power
management techniques, which reduce average power and
temperature, may degrade reliability due to decreased noise margins
and thermal cycling [42]. System designers should seek solutions
that synergistically improve both system reliability and power.

The taxonomy in Table 1 categorizes various fault tolerance and
power management techniques based on their impacts on reliability

and power. Different fault tolerance techniques can be categorized
into Forward Error Recovery (FER), which uses redundant
computation, and Backward Error Recovery (BER), which
maintains checkpoints or logs. FER (e.g., ECC and triple-modular
redundancy) tends to consume additional power [40]; however some
recent work uses dynamic adaptation to provide a target reliability
level with minimum resources and power [41]. Traditional BER
techniques such as SafetyNet [25] and ReVive [24] incur significant
power overhead for large on-chip log buffers [25], flushing caches
and writing logs to main memory [24]. In a recent work, although
Dong et al. use PCM for checkpointing [7], their proposed technique
has also high power and performance overheads, and so low
checkpoint frequency. More recently, Rebound reduces both
performance and power overhead by using coordinated local, rather
than global, checkpoints [45].

Aggressive power management techniques can hurt system
reliability by increasing both transient and hard faults. For instance,
aggressive idle power management techniques, such as PowerNap,
can increase hard error rates due to thermal cycling [42]. Active
power management techniques, such as DVFS and drowsy cache
 [49], can also hurt transient fault rates if being used
aggressively [38]. Recent work has proposed using additional
redundancy and/or selective reconfiguration to improve the
reliability of caches in low-power operating modes [39,46,47,48].

UniFI seeks to help both system reliability and power by exploiting
the synergy between backward error recovery and idle power
management. It provides a light-weight global checkpoint
mechanism, and unlike other aggressive idle power management
techniques, it leverages its checkpoint mechanism to tolerate
possible faults due to increased thermal cycling.

3. BACKGROUND IN NON-VOLATILE
MEMORY TECHNOLOGIES
Since conventional memory technologies encounter scaling
difficulties and power issues as semiconductor feature sizes shrink,
the research community has proposed using resistive memory
technologies, such as PCM, STT-MRAM, Resistive RAM (RRAM),
and memristors, at different levels of the memory hierarchy [11-23].
While still relatively early in the technology development cycle,
these technologies all promise scalability, non-volatility, high
density, and energy-efficiency.

60

While UniFI is largely independent of which technologies
ultimately dominate the market, it does assume that both main
memory and the last level cache are non-volatile. To make our work
concrete, we focus on PCM and STT-MRAM, which are two
promising alternatives.

As DRAM technology faces scalability and power issues, PCM has
gained attention in the research community as a DRAM
replacement for main memory [11-19]. In comparison with DRAM,
PCM is scalable, denser, non-volatile, and has near zero leakage
power. On the other hand, it has lower write endurance, higher
latency and higher writing power. Different techniques have been
proposed to make PCM competitive with DRAM
[12,13,15,16,17,19].

As vendors increase the number of cores per die, there is a
commensurate demand for larger and low power on-chip caches.
Conventional SRAM-based caches cannot meet both objectives due
to their low density and high leakage power. Recent studies show
that STT-MRAM is a good candidate for the next generation of
large on-chip caches [20-22]. STT-MRAM is scalable, fast (similar
to SRAM) and dense (similar to DRAM), and has near zero leakage
power and very high write endurance. On the other hand, it takes
longer than SRAM to write, which can be addressed by different
techniques [20,21].

4. UNIFI: A UNIFIED TECHNIQUE FOR
FAULT TOLERANCE AND IDLE POWER
MANAGEMENT
In this section, we first describe a general overview of UniFI. We
then provide a detailed explanation of all UniFI mechanisms.

4.1 UniFI Overview
We propose UniFI, a unified mechanism that helps provide high
availability and power proportionality. UniFI’s main goals are
providing low-overhead checkpointing and recovery, rapid
transition to/from low-power mode, and recovery from a wide range
of faults. To achieve these goals, UniFI proposes different

mechanisms, all described below. UniFI leverages emerging non-
volatile memory technologies to make both the last-level cache and
main memory persistent across power outages. It provides a low-
overhead global checkpointing mechanism, and creates safe
checkpoints (i.e., stored in non-volatile storage) periodically without
ever quiescing the system. Using its checkpointing mechanism, it
recovers from a wide range of faults, described in Section 4.5,
including power outages.

Figure 2 shows how different idle power management techniques
eliminate idle power. To provide an efficient idle power
management mechanism for server workloads with short idle
periods, deep sleep mode and rapid transition between sleep and
active modes are required. To eliminate idle power efficiently,
UniFI provides very rapid transition (almost instant) of the system
to/from a very deep sleep mode. UniFi’s system-level idle power
management mechanism, described in Section 4.4, treats transitions
to deep low-power states much like unintentional power outages.
When an idle period is detected, it rapidly transitions the system to a
very deep sleep mode with powered-off cores, caches, and main
memory. In response to instantaneous load, it quickly transitions the
system to the high-performance active state by recovering the
system to the last safe checkpoint. Unlike other power management
techniques (such as PowerNap), UniFI compensates for the possible
higher error rates caused by its aggressive power management with
its efficient checkpoint recovery mechanism.

UniFI is largely independent of any specific fault detection
mechanism [43]. It keeps multiple checkpoints, so it can support
relatively long-latency, signature-based fault detection mechanisms.
In addition, to keep I/O consistent, UniFI leverages existing
techniques, e.g., ReViveIO [44], that buffer input and output in non-
volatile buffers until they are known to be safe. As UniFI’s
checkpointing interval is short (e.g., 0.1ms), buffering outputs has
little impact on most application’s performance.

4.2 UniFI System Model
Figure 1 shows a general view of a shared-memory multi-core
system with UniFI’s support. Cores have one or more levels of
private, volatile caches, and share a non-volatile last-level cache and
non-volatile main memory.

Each core has volatile, private L1 instruction and (write-back) data
caches implemented using conventional SRAM. They share non-
volatile STT-MRAM L2 cache and PCM main memory. To hide
STT-MRAM high write latency, we use multiple banks and sub-
bank buffers in the L2 cache [21].

Sleep
Power

Idle
Power

Active
Power

Transition
to Active

Busy Busy Idl
e

Transition
to Sleep

ACPI

PowerNap

UniFI

Time

Power

Figure 1. A general view of a multicore system with UniFI’s support.

Figure 2. Different idle power management techniques.

61

In addition, to make PCM main memory competitive with DRAM,
we apply different techniques including: multiple narrow buffer
rows in memory banks and word-level dirty bits in the caches, to
mitigate PCM’s high write latencies and to improve its energy and
endurance [13].

4.3 UniFI Checkpointing Mechanisms
Figure 3 (a) illustrates different phases of creating a checkpoint
with UniFI. Checkpoints occur at a logical time (e.g., time t1 in
Figure 3) defined as the edge of a checkpointing clock, which is a
loosely synchronized clock received at different modules (e.g.,
caches and cores). A checkpoint can be used as a recovery point
when it is safe in non-volatile memory, which is any time after all
checkpoint state resides in stable storage (e.g., at time t3 in Figure
3 (a)). UniFI ensures that there is always a safe checkpoint by
keeping at least two checkpoints at a time.

4.3.1 Checkpointing at Processors
To establish a new persistent checkpoint, UniFI checkpoints
processor registers first. As there are a limited number of
registers, performance overhead of register checkpointing is
negligible. Therefore, processors checkpoint their registers
explicitly, storing them into their private caches via their
load/store units. Register checkpoints will be safe in stable
storage (i.e., non-volatile L2 and main memory) once the L1
caches are cleaned (described next).

4.3.2 Lazy Cleaning of Volatile Private Cache
To create a safe checkpoint, UniFI makes all updates preceding
that checkpoint persistent before they are modified or lost. Figure
4 illustrates UniFI’s checkpointing mechanism at caches. To keep
checkpointing overhead low, UniFI handles it entirely within the
hardware. It augments the L1 cache tags with a flash clear bit
column (CP bit in Figure 4) [31] indicating if the line has been
cleaned in the current checkpointing interval.

UniFI uses a lazy checkpointing mechanism at caches, and cleans
L1 caches without stopping the running applications. It uses a
simple state machine in the L1 cache controller to walk through
the L1 cache and clean a cache line (i.e., copy it to the non-
volatile L2 cache) if it is dirty and not cleaned yet (e.g., Cache
Line A in Figure 4). If there is an update request to such a line
UniFI first makes it safe by copying it back to the non-volatile L2
before processing the new request. Since update requests are not
on the critical path, as shown in Section 6, its overhead is
negligible.

4.3.3 Logging Updates at the Shared Cache.
Between two successive checkpoints, UniFI logs data updates to
the L2 cache by storing their physical addresses and old data as
log entries. UniFI keeps logs as part of the physical address space
(e.g., in an address assigned at boot time). To provide low-
overhead checkpointing and fast recovery, UniFI caches logs in
the L2 cache, in the same bank as the original cache line resides.
By caching the logs, UniFI avoids extra costs of special log
buffers [7] [25] and high energy and performance overheads of
storing logs in the main memory [24]. Also, since most of the logs
reside in the cache, as shown in Section 6, recovery is fast and
energy efficient.

To reduce the possible overheads of caching logs (e.g., cache
pollution), UniFI employs two techniques: logging only first
updates in a checkpointing interval and compressing logs. During
a checkpointing interval, UniFI only logs on the first update to a
cache line using the CP bit added to the L2 cache (Figure 4).
UniFI also compresses logs using Frequent Pattern Compression
(FPC) [1], which is a hardware-based low overhead compression
technique. FPC achieves high compression ratio for most
applications by compressing frequent patterns (e.g., consecutive
0s and 1s) of data [1]. By applying these techniques, and due to
the fact that UniFI creates checkpoints frequently and keeps a
limited number of them (e.g., two), its overhead due to polluting
the cache is low. As shown in Section 6, each UniFI’s checkpoint
is about 23 KB or 1.14% of the L2 cache on average.

Since UniFI cleans L1 caches lazily, it keeps two active
checkpoints (the previous and the current checkpoints). It logs
updates generated by cleaning the L1 caches as part of the
previous checkpoint, while logging others in the current
checkpoint.

4.3.4 Safe Data Replacements
Although UniFI assumes non-volatile shared cache and main
memory, there are usually volatile buffers in between, such as
write-back buffers and buffers in the memory controller. To
achieve recovery from instant power-off, UniFI ensures that data
in these buffers are not lost using a safe replacement policy. In a
directory-based coherence protocol with 1-phase write-back
technique, which the cache controller sends the replaced address
and data to the memory controller at the same time, or 3-phase
write-back technique, which the cache controller waits for an
acknowledgement from the memory controller before sending the
data and unblocking the cache line, UniFI adds one more phase to
ensure data is safe. It basically blocks the cache line until it

Figure 3. different phases of creating a checkpoint (a) and rollback recovery from different faults.

62

receives an unblock acknowledgment message from the memory
controller indicating that it has issued the request to the persistent
main memory (i.e., 2-phase or 4-phase write-back). In this way,
even in the case of power-off, data can be found in the cache.

4.3.5 Synchronization
Since UniFI logs all updates at the L2 cache, unlike global
checkpointing techniques such as SafetyNet [25], it needs a
simple synchronization technique. To create globally
synchronized checkpoints, UniFI needs processors and cache
controllers to receive a checkpointing clock at which they start
creating a new checkpoint. Since the L2 cache controller handles
all logs, a loosely synchronized clock (i.e., it could have skew)
can be used at different modules. In addition, as UniFI lazily
cleans the L1 caches, when L1 cache controllers complete
cleaning the caches, they need to notify the L2 cache controller
(e.g., by sending an ack) of the new safe checkpointing.

4.3.6 Rollback Recovery
When a fault is detected, UniFI recovers the system to a safe
checkpoint preceding the fault. The system first diagnoses the
error (e.g., using a service processor), reconfigures it in case of
permanent failure, and reinitializes the hardware. These steps are
beyond this paper’s scope. UniFI handles recovery entirely within
the hardware. To recover a checkpoint, as shown in Figure 3 (b),
processors first restore their register checkpoints in parallel,
reading and unrolling them via their load/store units. The L2
cache controller then reads and undoes the checkpoint logs in
reverse order from the most recent checkpoint to the recovery
point.

UniFI provides rapid recovery using different techniques
including: caching logs, parallel undo, and pipelined recovery.
Since UniFI caches logs, it finds most of the logs in the L2 cache
at the time of recovery. UniFI also keeps logs in the same bank as
the original cache line resides, so it can unroll them in parallel. In
addition, it pipelines reading logs, decompressing them, and
restoring their data to the cache or processors in order to reduce
recovery overhead.

4.4 UniFI Idle Power Management
Mechanisms
UniFI leverages non-volatile memory technologies and its
efficient checkpointing mechanism to provide both fast
transitioning and very low power system-level sleep mode. Figure
5 illustrates two mechanisms to eliminate idle power with UniFI.

In the first mechanism, shown in Figure 5 (a), UniFI instantly
transitions the system to the deep sleep mode in case of a power
emergency or a detected idle period. Later, when there is a new
job to process or the power failure is fixed, UniFI rapidly
transitions the system to the active mode by recovering the system
to the most recent safe checkpoint before the transition (CPi in
Figure 5 (a)). It then finishes the previous job (i.e., redo the lost
work), and starts the new job. This mechanism is mostly useful
for emergencies, such as thermal emergencies and power outage,
since it does not let the previous job commit (i.e., buffer its I/O
outputs) until the system transitions back to the active mode and it
creates another safe checkpoint.

On the other hand, when there is no emergency (e.g., to eliminate
a detected idle period), UniFI can let the previous job commit
before transitioning to the sleep mode. In this mechanism, shown
in Figure 5 (b), UniFI makes a new safe checkpoint just before
switching to the sleep mode by checkpointing processors’
registers, flushing their L1 caches, and committing buffered I/O
outputs. On a new job arrival, it activates the system by
recovering to this safe point, which only includes restoring
registers. In addition to system level power management, UniFI
can provide fine-grained power management at core level by
checkpointing registers of a core and flushing its L1 caches. That
core or even another core (e.g., using server consolidation) can
later continue running by reloading its register.

4.5 UniFI Fault model
UniFI is designed to recover from a wide class of faults. It
recovers from multiple simultaneous transient or permanent faults
at any part of the system as long as it can access a safe
checkpoint. As UniFI keeps checkpoints in the non-volatile
shared cache and main memory, it must assume they are error
free. Fortunately, UniFI can leverage well-known techniques,
ranging from conventional ECC to RAID-like memories [24], to
protect memory.

UniFI tolerates various transient or permanent faults including
those result in loss of all data in volatile caches (e.g., due to a
glitch on reset signal), permanent failure of a core and its private
cache. In addition to transient and permanent faults, one of our
goals is recovering from instant power-off. Instant power-off may
happen unintentionally due to power failures (e.g., power outage
or thermal emergencies), or intentionally for idle power
management. In all of these cases, UniFI recovers the system state
to a consistent fault-free state preceding the fault or the sleep
mode.

Figure 4. UniFI checkpointing mechanism.

63

5. EVALUATION SETUP
In order to evaluate UniFI, we use two mechanisms: full system
simulation and analytical modeling. To evaluate UniFI's fault
tolerance mechanism, we have implemented UniFI in a full-
system simulator based on GEMS [28]. We use CACTI [30] and
McPAT [50] to model power at 32nm. We model a multi-core
system with 8 cores, shared STT-MRAM L2 cache, and PCM
main memory (Figure 1) modeled after the parameters in Table 2.
We also consider overheads of FPC compression, which take
0.41ns and consumes 0.112nJ for compressing/decompressing 64-
byte data [6]. We use a similar system with same configurations
but without UniFI's support as our baseline. We have also
enhanced our simulator to model the energy and delay of STT-
MRAM and PCM with the parameters in Table 3. In this Table,
the STT-MRAM cache cells are optimized for density and access
energy, while its corresponding SRAM-based cache is designed
for low leakage and high speed access [21].

Table 2. Simulation Parameters

Cores
8 OOO cores, 4GHz frequency, 4-wide
issue, 192 physical registers

L1 Caches
Private, 32-KB iL1/dL1, 4-way associative,
3-cycle access latency

L2 Caches
Shared, 4-MB, 8-way associative, 8 banks,
8-cycle Read latency, 24-cycle Write
latency, MESI Coherency

Main Memory 4GB, 16 banks, 400MHz bus frequency

Checkpointing
Parameters

2 checkpoints, 400K cycles (0.1ms)
checkpointing interval

We evaluate UniFI’s checkpointing mechanism with a large
variety of applications from PARSEC with simlarge input sets
(Blackscholes, Bodytrack, Canneal, Fluidanimate, Freqmine,
Streamcluster, and Swaptions), SPEComp (Ammp, Applu,
Equake, Fma3d, Gafort, Mgrid, Swim, and Wupwise), and
commercial workloads (Apache, Oltp, Jbb, and Zeus). Since these
benchmarks are multi-threaded, we use a work-related metric, run
each workload for a fixed number of transactions/iterations (for
approximately 100M instructions), and report the average of 15-
20 runs using randomized memory delays to address workload
variability [37]. We evaluate UniFI’s overheads with a very
frequent checkpointing, creating a checkpointing every 0.1 ms
(i.e. checkpoint frequency of 10KHz or 400K core cycles). We
keep two checkpoints (one active, one safe). In this way UniFI
can support long fault detection techniques with latency of up to
800,000 cycles.

To evaluate power savings of UniFI’s power management, we
extend the power model presented in Meisner et al. [34], which
model power saving in a server using an M/G/1 queuing model.
Their model calculate power savings of an idle power
management technique based on workload parameters (e.g., the
work-load's average busy time), and the power management
mechanism’s parameters (e.g., transition latency between active
and sleep modes, and sleep power). We use this model, which we
skip its details here, and augment it with UniFI’s checkpointing
power and performance overheads to find UniFI’s power savings
in a typical blade. We also find UniFI’s impact on response time
using the model presented in their paper [34].

Table 3. STT-MRAM cache and PCM memory parameters

L2 Cache Parameters
4MB
SRAM

4MB

STT-MRAM

Rd/Wrt Latency (core cycle)

Energy per Rd/Wrt (pJ/64B)

Leakage Power (mW)

10/10

1268/1268

6578

8/24

798/952

3343

Memory Parameters DRAM PCM

tCL/tRCD/tWTR/tWR/tRTP/
tRP/tCCD/tWL (mem cycle)

5/5/3/6/3/5/
4/4

5/22/3/6/3/60/4
/4

Energy per Rd/Wrt (pJ/bit) 1.17/0.39 2.47/16.82

Table 4 shows the power consumption of a typical blade [34],
which has two cores operating at 2.4 GHz and eight DRAM
DIMMS. We use the RAILS power supply units (PSU) [34],
which significantly reduces energy costs of PSU when idle power
management techniques are being used. We evaluate UniFI and
compare it with PowerNap using different server workloads [34].

6. EVALUATION
In this section, we first evaluate our baseline system and study
impacts of using non-volatile memories. We then evaluate
UniFI’s checkpointing mechanism and idle power management.

6.1 Evaluation: Baseline
To study impacts of using non-volatile memories in the system,
we evaluate four baseline configuration listed in Table 5 with the
parameters in Table 2. The last two configurations employ sub-
bank buffers at the STT-MRAM L2 cache [21], buffer
reorganization and partial writes at PCM main memory [13].

Figure 5. Two different mechanisms to eliminate idle power with UniFI.

64

Table 4. Component power consumption of a typical blade with/without power management techniques

Blade Components Active Power Idle Power Sleep Power with PowerNap Sleep Power with UniFI

CPU Chip

DRAM DIMMs

Other modules (PSU, SSD, etc.)

80-150W

3.5-5W

110-262W

12-20W

1.8-2.5W

210-230W

6.8W

1.6W

2W

0W

0W

2W

Total 450W 270W 10.4W 2W

Figure 6 and Figure 7 illustrate performance and energy of
baseline configurations normalized to SRAM-DRAM baseline
system. A baseline of STT-MRAM and PCM system without any
extra technique (the second configuration) is on average 1.5x
slower and requires 1.2x more energy than a SRAM-DRAM
system. Applying different techniques in non-volatile memories
reduce this delay and energy gap to 1.08x and 0.92x, and makes
the baseline competitive with SRAM-DRAM system. To evaluate
UniFI, we use this configuration as our baseline system.

Table 5. Baseline Configurations

SRAM-DRAM 4-MB SRAM L2$, DRAM memory

STT-PCM w/o techs 4-MB STT-MRAM L2$, PCM
memory

STT-PCM w techs

(our baseline)

4-MB SRAM L2$, PCM memory,
extra techniques applied

STT-PCM w large cache 8-MB SRAM L2$, PCM memory,
extra techniques applied

In addition to these techniques, a large DRAM buffer can be used
before PCM main memory to hide its high latencies and energy
overheads [16]. In the last configuration, we study using a larger
STT-MRAM on-chip cache instead since STT-MRAM is
scalable, energy efficient and non-volatile with similar density

comparing to DRAM. This configuration further reduces the
energy and delay gap to 0.95x and 0.88x.

6.2 Evaluation: UniFI
Figure 8 and Figure 9 show the breakdown of UniFI's
performance and energy overheads over the baseline system
during fault-free execution. UniFI incurs less than 2% (0.5% on
average) performance and energy overheads for all the workloads
(0.08% for PARSEC, 0.45% for SPEComp, and 1.46% for
commercial workloads) while it creates checkpoints frequently
(every 400K cycles or 0.1ms). UniFI also increases Energy-Delay
product (ExD) up to 3.7% for OLTP, and 1.02% on average. The
main sources of UniFI's overheads are caching logs in the L2
cache and cleaning L1 caches. Compressing logs and lazy
cleaning significantly reduce these overheads. Compressing logs
reduces performance overhead of caching logs by up to 4.1% (for
OLTP) and 0.64% on average for all the workloads. In addition,
lazy cleaning improves performance by up to 2.1% and 0.3% on
average. Similarly, these techniques reduce energy overhead by
up to 4.5% and on average 1%.

For workloads with large footprints in the L2 cache, such as
commercial workloads and some of SPEComp (e.g., Swim) and
PARSEC workloads (e.g., Canneal), UniFI’s overhead is mainly
due to caching logs in the L2 cache, and so increasing cache miss
ratio. For instance, UniFI increases miss ratio by 1.41% to 80

Figure 6. Performance of different baseline configurations.

Figure 7. Energy of different baseline configurations.

65

MPKI (misses per kilo instructions) for Swim. This overhead is
also a function of checkpoint size, which is fairly small for most
of the workloads (23 KB or 1.14% of the L2 cache on average).
For OLTP, UniFI creates checkpoints with average size of 117KB
(5.7% of the L2 cache), which explains its high performance and
energy overheads in comparison with other workloads.

As UniFI lazily cleans the L1 caches in the background, its
overhead due to cleaning caches is low (on average 0.1%). This
overhead is related to the number of dirty lines copied back when
establishing a checkpoint, and so is higher for those with more
dirty lines (such as Zeus, Swim, and Fma3d). Since access to the
main memory is not on the critical path, safe data replacements at
the L2 cache has negligible effects.

To estimate the overhead of recovery and unavailability of the
system due to an error, we consider the worst case recovery
scenario. For example, when an error occurs after establishing the
first checkpoint and is detected at the end the second checkpoint
interval (i.e., detection latency of about 800K cycles), UniFI
unrolls both checkpoints. Since most the logs reside in the L2
cache (on average 99.5% of logs stay in the cache), the overhead
of unrolling a checkpoint is low. It takes less than 40K cycles
(10us) to unroll one checkpoint on average. Considering
approximately 0.2ms for lost work (2 checkpointing intervals),
UniFI provides about 99.999999% availability if one of these
faults occurs per day.

In addition to evaluating UniFI’s checkpointing mechanism, we
study how it saves power by eliminating idle power. Figure 10
illustrates power saving (part (a)) and relative response time (part
(b)) with UniFI and PowerNap in a typical blade with parameters
in Table 4 for different server applications. UniFI’s transition
time between sleep and active states, and checkpointing overhead
are very low, however we conservatively assume 0.1ms transition
time and 2% performance/energy overheads. As shown in Figure

10, UniFI provides better power saving and response time than
PowerNap for most applications because of its rapid transition to
the deep sleep mode and leveraging non-volatile memories. Due
to UniFI’s rapid transitions, its checkpointing overhead is mostly
amortized for most of the workload except Cluster as it has longer
service time and higher utilization.

7. RELATED WORK
UniFI improves the standard global checkpointing technique
proposed in SafetyNet and ReVive [24][25] to provide low-power
checkpointing. UniFI provides frequent checkpointing with much
less energy, performance and area overheads. In addition to
leveraging non-volatile memory technologies, UniFI differs from
ReVive by caching compressed logs in LLC (similar to regular
data), and so significantly reducing power and memory bandwidth
overheads of writing and recovering logs into/from the main
memory. UniFI also eliminates the high overhead of flushing
caches in ReVive by lazily cleaning dirty cache lines only in the
private caches. In comparison with SafetyNet, UniFI eliminates
the extra power and area costs of separate log buffers. Regarding
to leveraging non-volatile memories, the technique proposed in
[7] also leverages PCM, however unlike UniFI, they use special
3D stacked PCM storage as checkpoint buffers. They also have a
costly mechanism to create a checkpoint, which stalls the system
periodically and copies DRAM content to the PCM buffers.

UniFI also leverages its checkpointing mechanism to save power
for server workloads comparably to PowerNap idle power
management. Unlike PowerNap and other aggressive power
management techniques, UniFI compensates the possible higher
error rates due to aggressive power management with its low
overhead checkpoint recovery mechanism.

Figure 8. Breakdown of UniFI’s performance overhead over the baseline.

Figure 9. Breakdown of UniFI’s energy overhead over the baseline.

66

8. CONCLUSIONS
We propose UniFI, a unified technique that addresses two critical
challenges of reliability and power management together. UniFI
exploits resistive memory technologies, and proposes a light-weight
energy-efficient checkpointing to recover from transient and
permanent faults, and power failures. Exploiting UniFI's ability to
recover from instant power-off, we use UniFI to eliminate idle
power of servers with short idle periods. We demonstrate that it
incurs less than 2% performance and energy overheads for a wide
range of applications. We also show that for typical server
workloads with short idle periods, UniFI can reduce average power
by up to 82% by leveraging its low overhead checkpointing
mechanism and non-volatile memories.

9. REFERENCES
[1] Alameldeen, A., and Wood, D. 2004. Adaptive Cache

Compression for High-Performance Processors. In Proc. of the
31st Annual Intnl. Symp. on Computer Architecture (June
2004).

[2] Alameldeen, A., Mauer, C., Xu, M., Harper, P., Martin, M.,
Sorin, D., Hill, M., and Wood, D. 2002. Evaluating Non-
deterministic Multi-threaded Commercial Workloads. In Proc.
of the 5th Workshop on Computer Architecture Evaluation
Using Commercial Workloads (Feb. 2002).

[3] Aslot, V., Domeika, M., Eigenmann, R., Gaertner, G., Jones,
W., and Parady, B. 2001. SPEComp: A New Benchmark Suite
for Measuring Parallel Computer Performance. In Workshop
on OpenMP Applications and Tools (July 2001).

[4] Borkar, S. 2005. Designing Reliable Systems from Unreliable
Components: the Challenges of Transistor Variability and
Degradation. IEEE Micro (November 2005).

[5] Borkar, S., Jouppi, N., and Stenstrom, P. 2007.
Microprocessors in the era of terascale integration. In Proc. of
the conference on Design, automation and test in Europe.

[6] Das, R., Mishra, A., Nicopoulos, C., Park, D., Narayanan, V.,
Iyer, R., Yousif, M., and Das, C. 2008. Performance and power
optimization through data compression in Network-on-Chip
architectures. In Proc. of the 14th IEEE Symp. on High-
Performance Computer Architectur.

[7] Dong, X., Muralimanohar, N., Jouppi, N., Kaufmann, R., and
Xie, Y. 2009. Leveraging 3D PCRAM technologies to reduce
checkpoint overhead for future exascale systems. In Proc. of
the Conference on High Performance Computing Networking,
Storage and Analysis.

[8] Fernandez-Pascual, R., Garcia, J., Acacio, M., and Duato, J.
2007. A Low Overhead Fault Tolerant Coherence Protocol for
CMP Architectures. In Proc. of the 13th IEEE Symp. on High-
Performance Computer Architecture (February 2007).

[9] Hagersten, E., and Koster, M. 1999. WildFire: A Scalable Path
for SMPs. In Proc. of the 5th IEEE Symp. on High-
Performance Computer Architecture (January 1999).

[10] International technology roadmap for semiconductors. Process
integration, devices, and structures, 2009.

[11] Condit, J., Nightingale, E., Frost, C., Ipek, E., Lee, B., Burger,
D., and Coetzee, D. 2009. Better I/O through byte-addressable,
persistent memory. In Proc. of the ACM SIGOPS 22nd
symposium on Operating systems principles.

[12] Ipek, E., Condit, J., Nightingale, E., Burger, D., and
Moscibroda, T. 2010. Dynamically replicated memory:
building reliable systems from nanoscale resistive memories.
In Proc. of the fifteenth edition of ASPLOS on Architectural
support for programming languages and operating systems.

[13] Lee, B., Ipek, E., Mutlu, O., and Burger, D. 2009. Architecting
phase change memory as a scalable dram alternative. In Proc.
of the 36th Annual Intnl. Symp. on Computer Architecture.

[14] Lee, B., Zhou, P., Yang, J., Zhang, Y., Zhao, B., Ipek, E.,
Mutlu, O., and Burger, D. 2010. Phase-Change Technology
and the Future of Main Memory. IEEE Micro.

[15] Qureshi, M., Karidis, J., Franceschini, M., Srinivasan, V.,
Lastras, L., and Abali, B. 2009. Enhancing lifetime and
security of PCM-based main memory with start-gap wear
leveling. In Proc. of Micro.

[16] Qureshi, M., Srinivasan, V., and Rivers, J. 2009. Scalable high
performance main memory system using phase-change
memory technology. In Proc. of the 36th Annual Intnl. Symp.
on Computer Architecture.

[17] Schechter, S., Loh, G., Straus, K., and Burger, D. 2010. Use
ECP, not ECC, for hard failures in resistive memories. In Proc.
of the 37th Annual Intnl. Symp. on Computer Architecture.

[18] Zhang, W., and Li, T. 2009. Characterizing and mitigating the
impact of process variations on phase change based memory
systems. In Proc. of Micro.

[19] Zhou, P., Zhao, B., Yang, J., and Zhang, Y. 2009. A durable
and energy efficient main memory using phase change
memory technology. In Proc. of the 36th Annual Intnl. Symp.
on Computer Architecture.

[20] Zhou, P., Zhao, B., Yang, J., and Zhang, Y. 2009. Energy
reduction for STT-RAM using early write termination. In

Figure 10. UniFI’s power savings and relative response time for server workloads Breakdown of UniFI’s

67

Proc. of the 2009 International Conference on Computer-
Aided Design.

[21] Guo, X., Ipek, E., and Soyata, T. 2010. Resistive computation:
avoiding the power wall with low-leakage, STT-MRAM based
computing. In Proc. of the 37th Annual Intnl. Symp. on
Computer Architecture.

[22] Zhu, J. 2008. Magnetoresistive Random AccessMemory: The
Path to Competitiveness and Scalability. In Proc. of the IEEE.

[23] Mohan, C., and Bhattacharya, S. 2010. Implications of Storage
Class Memories (SCM) on Software Architectures. In HPCA
2010 Workshop on the use of Emerging Storage and memory
Technologies (WEST).

[24] Prvulovic, M., Zhang, Z., and Torrellas. J. 2002. ReVive: Cost-
Effective Architectural Support for Rollback Recovery in
Shared-Memory Multiprocessors. In Proc. of the 29th Annual
Intnl. Symp. on Computer Architecture.

[25] Sorin, D., Martin, M., Hill, M., and Wood, D. 2002. SafetyNet:
Improving the Availability of Shared Memory Multiprocessors
with Global Checkpoint/Recovery. In Proc. of the 29th Annual
Intnl. Symp. on Computer Architecture (May 2002).

[26] Teodorescu, R., Nakano, J., and Torrellas, J. 2006. SWICH: A
Prototype for Efficient Cache-Level Checkpointing and
Rollback. IEEE Micro.

[27] Torrellas, J. 2009. Architectures for Extreme-Scale Computing.
Computer.

[28] Martin, M., Sorin, D., Beckmann, B., Marty, M., Xu, M.,
Alameldeen, A., Moore, K., Hill, M., and Wood, D. 2005.
Multifacet’s General Execution-driven Multiprocessor
Simulator (GEMS) Toolset. Computer Architecture News.

[29] Brooks, D., Tiwari, V., and Martonosi, M. 2000. Wattch: A
Framework for Architectural-Level Power Analysis and
Optimizations. In Proc. of the 27th Annual Intnl. Symp. on
Computer Architecture (June 2000).

[30] Shyamkumar, T., Muralimanohar, N., Ahn, J., and Jouppi, N.
2008. CACTI 5.1. Technical Report HPL-2008-20, Hewlett
Packard Labs.

[31] Lee, D., and Katz, R. 1991. Using Cache Mechanisms to
Exploit Nonrefreshing DRAM’s for On-Chip Memories. IEEE
Journal of Solid-State Circuits (April 1991).

[32] Xie, Y., Loh, G., Black, B., Bernstein, K. 2006. Design space
exploration for 3D architectures. ACM Journal on Emerging
Technologies in Computing Systems (JETC).

[33] Meixner, A., Bauer, M., and Sorin, D. 2007. Argus: Low-Cost,
Comprehensive Detection of Errors in Simple Cores. In Proc.
of Micro.

[34] Meisner, D., Gold, B., and Wenisch, T. 2009. PowerNap:
Eliminating Server Idle Power. In Proc. of the 14th
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS)
(Mar. 2009).

[35] Barroso, L., and Holzle, U. 2007. The case for energy-
proportional computing. IEEE Computer (Jan 2007).

[36] Dennard, R., Gaensslen, F., Rideout, V., Bassous, E., and
LeBlanc, A. 1974. Design of Ion-Implanted MOSFET's with
Very Small Physical Dimensions. IEEE Journal of Solid-State
Circuits (Oct. 1974).

[37] Alameldeenand A., Wood, D. 2003. Variability in architectural
simulations of multi-threaded workloads. In HPCA.

[38] Degalahal, V., Lin, L., Narayanan, V., Kandemir, M., and
Irwin, M. 2005. Soft errors issues in low-power caches. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems.

[39] Das, S., Pant, S., Rao, R., Pham, T., Ziesler, C., Blaauw, D.,
Austin, T., Flautner, K., and Mudge, T. 2004. Razor: A Low-
Power Pipeline Based on Circuit-Level Timing Speculation,
IEEE MICRO (Dec. 2004).

[40] Gomaa, M., Scarbrough, C., and Vijaykumar, T. 2003.
Transient-Fault Recovery for Chip Multiprocessors. In
Proceedings of ISCA-30 (June 2003).

[41] Miller, T., Surapaneni, N., Teodorescu, R., and Degroat, J.
2009. Flexible Redundancy in Robust Processor Architecture,
Workshop on Energy-Efficient Design (WEED), in conjunction
with ISCA (June 2009).

[42] Srinivasan, J., Adve, S., Pradip, B., Rivers, J. 2005. Lifetime
reliability: toward an architectural solution. IEEE Micro.

[43] Mukherjee, S. 2008. Architecture Design for Soft Errors.
Elsevier Inc.

[44] Nakano, J., Montesinos, P., Gharachorloo, K., and Torrellas, J.
2006. ReViveI/O: Efficient handling of I/O in highly-available
rollback-recovery servers. Intl. Symp. on High-Perf. Com,
Arch.

[45] Agarwal, R., Garg, P., and Torrellas, J. 2011. Rebound:
Scalable Checkpointing for Coherent Shared Memory, ISCA
(June 2011).

[46] Ghasemi, H., Draper, S., and Kim, N. 2011. Low-Voltage On-
Chip Cache Architecture using Heterogeneous Cell Sizes for
Multi-Core Processors. In HPCA.

[47] Chishti, Z., Alameldeen, A., Wilkerson, C., Wu, W., and Lu, S.
2009. Improving Cache Lifetime Reliability at Ultra-Low
Voltages, In Proc. of Micro (December 2009).

[48] Wilkerson, C., Gao, H., Alameldeen, A., Chishti, Z., Khellah,
M., and Lu, S. 2008. Trading Off Cache Capacity for
Reliability to Enable Low Voltage Operation, 35th Annual
International Symposium on Computer Architecture (June
2008).

[49] Flautner, K., Kim, N., Martin, S., Blaauw, D., and Mudge, T.
2002. Drowsy Caches: Simple Techniques for Reducing
Leakage Power. Proc. IEEE/ACM 29th Intl. Symposium on
Computer Architecture (May 2002).

[50] Li, S., Ahn, J., Strong, R., Brockman, J., Tullsen, D., Joupp, N.
2009. McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore and Manycore
Architectures. In Proc. of Micro.

68

