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ABSTRACT 
Continued technology scaling presents new challenges for system-
level fault tolerance and power management. Decreasing device 
sizes increases the likelihood of both transient and permanent faults. 
Increasing device count, together with the end of Dennard scaling, 
makes power a critical design constraint. Techniques that seek to 
improve system reliability frequently use more power. Similarly, 
many techniques that reduce power hurt system reliability. Ideally 
system designers should seek out techniques that mutually benefit 
both fault tolerance and power management. 

In this paper, we develop a unified technique, called UniFI, for fault 
tolerance and idle power management in shared memory multi-core 
systems. UniFI leverages emerging non-volatile memory 
technologies to provide an energy-efficient lightweight 
checkpointing technique. In addition to tolerating a large class of 
faults, UniFI’s frequent checkpoints permit near-instant transition to 
a deep sleep mode to reduce idle power. UniFI incurs very low 
performance and energy overheads during fault-free execution—
less than 2%—while taking checkpoints every 0.1ms. For typical 
server workloads (such as DNS), UniFI reduces average power by 
82% by shutting off during idle periods.   

Categories and Subject Descriptors 
C.1 [Processor Architectures]: General 

Keywords 
Energy, Reliability, Checkpointing, Idle power management. 

1. INTRODUCTION 
Continuing advances in technology scaling promise significantly 
higher levels of system integration, but to effectively exploit this 
potential requires concomitant advances in fault tolerance and 
power management. Decreasing feature sizes pose new challenges 
to system reliability, due to increased rates of transient and 
permanent faults  [4]. Future multicore systems must also treat 
power as a first-class design constraint, and should seek not only to 
limit the maximum power dissipation but also to make power -
proportional to performance by managing idle power. The twin 
challenges of fault tolerance and power management motivate our 
work towards a unified technique that addresses both. 

Power has become a primary design constraint for multicore 
processors and systems, and is projected to become ever more 
important as technology continues to scale  [10]. Shrinking transistor 
dimensions results in the exponential growth of leakage power, 
while dynamic power no longer follows Dennard’s classical scaling 
trend  [36]. In addition, due to scaling conventional memory 
technologies encounter scaling difficulties and power issues. To 
answer these issues, emerging resistive memory technologies — 
such as Phase-Change Memory (PCM) and Spin-Torque Transfer 
Magneto-resistive RAM (STT-MRAM) – have been proposed [11-
23]. They promise to not only eliminate the major sources of 
leakage power, but to also make main memory and caches non-
volatile [14,20]. 

Server power is also a critical factor at data centers, where power 
consumption is growing rapidly  [35]. In most data centers, servers 
have relatively low utilization, but exhibit bursty behavior and are 
rarely idle for long. Conventional idle power management 
techniques, such as OS-directed ACPI power modes, are insufficient 
due to high transition overheads. What is needed are low-overhead 
idle power management techniques, which rapidly transition 
between idle and active power modes  [34]. On the other hand, 
power management techniques may degrade reliability if applied 
aggressively due to decreased noise margins and thermal cycling 
 [42]. 

Technology scaling and power management both impact system 
reliability. Shrinking semiconductor feature sizes results in a higher 
possibility of process and operating condition variations, and 
increases the susceptibility of system components to both transient 
and permanent faults. In a data center, power management may also 
interrupt server power due to power outages, power over-
subscription (e.g., power capping), or thermal emergencies  [11]. To 
recover from a wide range of failures, various checkpointing 
techniques have been proposed operating at different software or 
hardware layers [7,24,25,26,27]. However, conventional 
checkpointing techniques incur high performance and power 
overheads or require high disk bandwidth and capacity  [27].  

This paper proposes UniFI, a Unified Fault tolerance and Idle power 
management technique for shared-memory multicore systems. 
UniFI helps both system reliability and power by exploiting the 
synergy between backward error recovery and idle power 
management. It leverages resistive memory and provides a 
lightweight energy-efficient checkpointing mechanism to recover 
from a wide range of transient and permanent faults. Relying on its 
light-weight global checkpoint mechanism, UniFI allows almost 
instant transition of the system to a deep sleep mode during idle 
periods and at power emergencies. Unlike other power management 
mechanisms, UniFI’s checkpoint mechanism also helps tolerate any 
fault due to increased thermal cycling. 
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Table 1. Taxonomy of fault tolerance and power management techniques. 

System Reliability  

 Tends to hurt Neutral Tends to help 

Tends to hurt N/A N/A High-overhead global checkpointing  
[7],[24],[25], and redundancy [40] 
mechanisms 

Neutral N/A N/A Power-aware reliability techniques 
[41], Rebound [45] 

Sy
st

em
 P

ow
er

 

Tends to help Aggressive power management 
techniques [38][42] 

Razor [39], MS-ECC [47], Word-
disable and Bit-fix schemes [48], 
heterogeneous LLC [46] 

UniFI [New] 

 

We evaluate UniFI’s performance and energy overheads using full-
system simulation with SPEComp  [3], PARSEC and commercial 
workloads  [2] running on an 8-processor multicore system. For 
continuous fault-free execution, UniFI incurs very low performance 
and energy overheads, less than 1% on average and less than 2% for 
the worst performing workloads. For low-utilization server 
workloads, we use Meisner, et al.’s power model  [34] to show that 
UniFI significantly eliminates idle power. 

The main contributions of this paper are as follows: 

• To the best of our knowledge, UniFI is the first unified technique 
that addresses the synergies between fault-tolerance and idle power 
management. 

• UniFI proposes an efficient checkpointing technique—using a 
novel combination of lazy flushing, in-cache logging, and safe 
replacement—that incurs low performance and energy overheads in 
the common case of fault-free execution, allowing frequent 
checkpointing. 

• UniFI exploits the unique characteristics of resistive memories to 
efficiently recover from a wide range of permanent and transient 
faults and to provide efficient idle power management. 

In the rest of the paper, we study the synergies between fault 
tolerance and power management techniques in Section 2, describe 
the background in non-volatile memories in section 3, present UniFI 
and its mechanisms in Section 4, give evaluation methods in Section 
5, provide experimental results in Section 6, discuss related work in 
Section 7, and conclude the paper in Section 8. 

2. SYNERGY BETWEEN FAULT 
TOLERANCE AND POWER 
MANAGEMENT 
With continued transistor scaling, designers face new challenges in 
both system reliability and system power. Despite decades of fault-
tolerance research, most studies on reliability have paid little 
attention to power overheads  [27]. Similarly, recent power 
management techniques, which reduce average power and 
temperature, may degrade reliability due to decreased noise margins 
and thermal cycling  [42]. System designers should seek solutions 
that synergistically improve both system reliability and power.  

The taxonomy in Table 1 categorizes various fault tolerance and 
power management techniques based on their impacts on reliability 

and power. Different fault tolerance techniques can be categorized 
into Forward Error Recovery (FER), which uses redundant 
computation, and Backward Error Recovery (BER), which 
maintains checkpoints or logs. FER (e.g., ECC and triple-modular 
redundancy) tends to consume additional power  [40]; however some 
recent work uses dynamic adaptation to provide a target reliability 
level with minimum resources and power  [41]. Traditional BER 
techniques such as SafetyNet  [25] and ReVive  [24] incur significant 
power overhead for large on-chip log buffers  [25], flushing caches 
and writing logs to main memory  [24]. In a recent work, although 
Dong et al. use PCM for checkpointing  [7], their proposed technique 
has also high power and performance overheads, and so low 
checkpoint frequency. More recently, Rebound reduces both 
performance and power overhead by using coordinated local, rather 
than global, checkpoints  [45]. 

Aggressive power management techniques can hurt system 
reliability by increasing both transient and hard faults. For instance, 
aggressive idle power management techniques, such as PowerNap, 
can increase hard error rates due to thermal cycling  [42]. Active 
power management techniques, such as DVFS and drowsy cache 
 [49], can also hurt transient fault rates if being used 
aggressively [38]. Recent work has proposed using additional 
redundancy and/or selective reconfiguration to improve the 
reliability of caches in low-power operating modes [39,46,47,48]. 

UniFI seeks to help both system reliability and power by exploiting 
the synergy between backward error recovery and idle power 
management. It provides a light-weight global checkpoint 
mechanism, and unlike other aggressive idle power management 
techniques, it leverages its checkpoint mechanism to tolerate 
possible faults due to increased thermal cycling. 

3. BACKGROUND IN NON-VOLATILE 
MEMORY TECHNOLOGIES 
Since conventional memory technologies encounter scaling 
difficulties and power issues as semiconductor feature sizes shrink, 
the research community has proposed using resistive memory 
technologies, such as PCM, STT-MRAM, Resistive RAM (RRAM), 
and memristors, at different levels of the memory hierarchy [11-23]. 
While still relatively early in the technology development cycle, 
these technologies all promise scalability, non-volatility, high 
density, and energy-efficiency.  
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While UniFI is largely independent of which technologies 
ultimately dominate the market, it does assume that both main 
memory and the last level cache are non-volatile. To make our work 
concrete, we focus on PCM and STT-MRAM, which are two 
promising alternatives.  

As DRAM technology faces scalability and power issues, PCM has 
gained attention in the research community as a DRAM 
replacement for main memory [11-19]. In comparison with DRAM, 
PCM is scalable, denser, non-volatile, and has near zero leakage 
power. On the other hand, it has lower write endurance, higher 
latency and higher writing power. Different techniques have been 
proposed to make PCM competitive with DRAM 
[12,13,15,16,17,19].  

As vendors increase the number of cores per die, there is a 
commensurate demand for larger and low power on-chip caches. 
Conventional SRAM-based caches cannot meet both objectives due 
to their low density and high leakage power. Recent studies show 
that STT-MRAM is a good candidate for the next generation of 
large on-chip caches [20-22]. STT-MRAM is scalable, fast (similar 
to SRAM) and dense (similar to DRAM), and has near zero leakage 
power and very high write endurance. On the other hand, it takes 
longer than SRAM to write, which can be addressed by different 
techniques [20,21]. 

 
 

4. UNIFI: A UNIFIED TECHNIQUE FOR 
FAULT TOLERANCE AND IDLE POWER 
MANAGEMENT 
In this section, we first describe a general overview of UniFI. We 
then provide a detailed explanation of all UniFI mechanisms. 

4.1 UniFI Overview 
We propose UniFI, a unified mechanism that helps provide high 
availability and power proportionality. UniFI’s main goals are 
providing low-overhead checkpointing and recovery, rapid 
transition to/from low-power mode, and recovery from a wide range 
of faults. To achieve these goals, UniFI proposes different 

mechanisms, all described below. UniFI leverages emerging non-
volatile memory technologies to make both the last-level cache and 
main memory persistent across power outages. It provides a low-
overhead global checkpointing mechanism, and creates safe 
checkpoints (i.e., stored in non-volatile storage) periodically without 
ever quiescing the system. Using its checkpointing mechanism, it 
recovers from a wide range of faults, described in Section  4.5, 
including power outages. 

Figure 2 shows how different idle power management techniques 
eliminate idle power. To provide an efficient idle power 
management mechanism for server workloads with short idle 
periods, deep sleep mode and rapid transition between sleep and 
active modes are required. To eliminate idle power efficiently, 
UniFI provides very rapid transition (almost instant) of the system 
to/from a very deep sleep mode. UniFi’s system-level idle power 
management mechanism, described in Section  4.4, treats transitions 
to deep low-power states much like unintentional power outages. 
When an idle period is detected, it rapidly transitions the system to a 
very deep sleep mode with powered-off cores, caches, and main 
memory. In response to instantaneous load, it quickly transitions the 
system to the high-performance active state by recovering the 
system to the last safe checkpoint. Unlike other power management 
techniques (such as PowerNap), UniFI compensates for the possible 
higher error rates caused by its aggressive power management with 
its efficient checkpoint recovery mechanism. 

UniFI is largely independent of any specific fault detection 
mechanism [43]. It keeps multiple checkpoints, so it can support 
relatively long-latency, signature-based fault detection mechanisms. 
In addition, to keep I/O consistent, UniFI leverages existing 
techniques, e.g., ReViveIO  [44], that buffer input and output in non-
volatile buffers until they are known to be safe. As UniFI’s 
checkpointing interval is short (e.g., 0.1ms), buffering outputs has 
little impact on most application’s performance. 

4.2 UniFI System Model 
Figure 1 shows a general view of a shared-memory multi-core 
system with UniFI’s support. Cores have one or more levels of 
private, volatile caches, and share a non-volatile last-level cache and 
non-volatile main memory. 

Each core has volatile, private L1 instruction and (write-back) data 
caches implemented using conventional SRAM. They share non-
volatile STT-MRAM L2 cache and PCM main memory. To hide 
STT-MRAM high write latency, we use multiple banks and sub-
bank buffers in the L2 cache  [21].  

Sleep 
Power 

Idle 
Power 

Active 
Power 

Transition 
to Active 

Busy Busy Idl
e 

Transition 
to Sleep 

ACPI

PowerNap

UniFI

Time

Power 

Figure 1. A general view of a multicore system with UniFI’s support. 

Figure 2. Different idle power management techniques. 
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In addition, to make PCM main memory competitive with DRAM, 
we apply different techniques including: multiple narrow buffer 
rows in memory banks and word-level dirty bits in the caches, to 
mitigate PCM’s high write latencies and to improve its energy and 
endurance  [13]. 
 

4.3 UniFI Checkpointing Mechanisms 
Figure 3 (a) illustrates different phases of creating a checkpoint 
with UniFI. Checkpoints occur at a logical time (e.g., time t1 in 
Figure 3) defined as the edge of a checkpointing clock, which is a 
loosely synchronized clock received at different modules (e.g., 
caches and cores). A checkpoint can be used as a recovery point 
when it is safe in non-volatile memory, which is any time after all 
checkpoint state resides in stable storage (e.g., at time t3 in Figure 
3 (a)). UniFI ensures that there is always a safe checkpoint by 
keeping at least two checkpoints at a time. 

4.3.1 Checkpointing at Processors 
To establish a new persistent checkpoint, UniFI checkpoints 
processor registers first.  As there are a limited number of 
registers, performance overhead of register checkpointing is 
negligible. Therefore, processors checkpoint their registers 
explicitly, storing them into their private caches via their 
load/store units. Register checkpoints will be safe in stable 
storage (i.e., non-volatile L2 and main memory) once the L1 
caches are cleaned (described next). 

4.3.2 Lazy Cleaning of Volatile Private Cache 
To create a safe checkpoint, UniFI makes all updates preceding 
that checkpoint persistent before they are modified or lost. Figure 
4 illustrates UniFI’s checkpointing mechanism at caches. To keep 
checkpointing overhead low, UniFI handles it entirely within the 
hardware. It augments the L1 cache tags with a flash clear bit 
column (CP bit in Figure 4)  [31] indicating if the line has been 
cleaned in the current checkpointing interval. 

UniFI uses a lazy checkpointing mechanism at caches, and cleans 
L1 caches without stopping the running applications. It uses a 
simple state machine in the L1 cache controller to walk through 
the L1 cache and clean a cache line (i.e., copy it to the non-
volatile L2 cache) if it is dirty and not cleaned yet (e.g., Cache 
Line A in Figure 4). If there is an update request to such a line 
UniFI first makes it safe by copying it back to the non-volatile L2 
before processing the new request. Since update requests are not 
on the critical path, as shown in Section 6, its overhead is 
negligible. 

4.3.3 Logging Updates at the Shared Cache.  
Between two successive checkpoints, UniFI logs data updates to 
the L2 cache by storing their physical addresses and old data as 
log entries. UniFI keeps logs as part of the physical address space 
(e.g., in an address assigned at boot time). To provide low-
overhead checkpointing and fast recovery, UniFI caches logs in 
the L2 cache, in the same bank as the original cache line resides. 
By caching the logs, UniFI avoids extra costs of special log 
buffers [7] [25] and high energy and performance overheads of 
storing logs in the main memory  [24]. Also, since most of the logs 
reside in the cache, as shown in Section 6, recovery is fast and 
energy efficient. 

To reduce the possible overheads of caching logs (e.g., cache 
pollution), UniFI employs two techniques: logging only first 
updates in a checkpointing interval and compressing logs. During 
a checkpointing interval, UniFI only logs on the first update to a 
cache line using the CP bit added to the L2 cache (Figure 4). 
UniFI also compresses logs using Frequent Pattern Compression 
(FPC)  [1], which is a hardware-based low overhead compression 
technique. FPC achieves high compression ratio for most 
applications by compressing frequent patterns (e.g., consecutive 
0s and 1s) of data  [1]. By applying these techniques, and due to 
the fact that UniFI creates checkpoints frequently and keeps a 
limited number of them (e.g., two), its overhead due to polluting 
the cache is low. As shown in Section 6, each UniFI’s checkpoint 
is about 23 KB or 1.14% of the L2 cache on average. 

Since UniFI cleans L1 caches lazily, it keeps two active 
checkpoints (the previous and the current checkpoints). It logs 
updates generated by cleaning the L1 caches as part of the 
previous checkpoint, while logging others in the current 
checkpoint. 

4.3.4 Safe Data Replacements 
Although UniFI assumes non-volatile shared cache and main 
memory, there are usually volatile buffers in between, such as 
write-back buffers and buffers in the memory controller. To 
achieve recovery from instant power-off, UniFI ensures that data 
in these buffers are not lost using a safe replacement policy. In a 
directory-based coherence protocol with 1-phase write-back 
technique, which the cache controller sends the replaced address 
and data to the memory controller at the same time, or 3-phase 
write-back technique, which the cache controller waits for an 
acknowledgement from the memory controller before sending the 
data and unblocking the cache line, UniFI adds one more phase to 
ensure data is safe. It basically blocks the cache line until it

Figure 3. different phases of creating a checkpoint (a) and rollback recovery from different faults. 
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receives an unblock acknowledgment message from the memory 
controller indicating that it has issued the request to the persistent 
main memory (i.e., 2-phase or 4-phase write-back). In this way, 
even in the case of power-off, data can be found in the cache. 

4.3.5 Synchronization  
Since UniFI logs all updates at the L2 cache, unlike global 
checkpointing techniques such as SafetyNet  [25], it needs a 
simple synchronization technique. To create globally 
synchronized checkpoints, UniFI needs processors and cache 
controllers to receive a checkpointing clock at which they start 
creating a new checkpoint. Since the L2 cache controller handles 
all logs, a loosely synchronized clock (i.e., it could have skew) 
can be used at different modules. In addition, as UniFI lazily 
cleans the L1 caches, when L1 cache controllers complete 
cleaning the caches, they need to notify the L2 cache controller 
(e.g., by sending an ack) of the new safe checkpointing. 

4.3.6 Rollback Recovery  
When a fault is detected, UniFI recovers the system to a safe 
checkpoint preceding the fault. The system first diagnoses the 
error (e.g., using a service processor), reconfigures it in case of 
permanent failure, and reinitializes the hardware. These steps are 
beyond this paper’s scope. UniFI handles recovery entirely within 
the hardware. To recover a checkpoint, as shown in Figure 3 (b), 
processors first restore their register checkpoints in parallel, 
reading and unrolling them via their load/store units. The L2 
cache controller then reads and undoes the checkpoint logs in 
reverse order from the most recent checkpoint to the recovery 
point. 

UniFI provides rapid recovery using different techniques 
including: caching logs, parallel undo, and pipelined recovery. 
Since UniFI caches logs, it finds most of the logs in the L2 cache 
at the time of recovery. UniFI also keeps logs in the same bank as 
the original cache line resides, so it can unroll them in parallel. In 
addition, it pipelines reading logs, decompressing them, and 
restoring their data to the cache or processors in order to reduce 
recovery overhead. 

4.4 UniFI Idle Power Management 
Mechanisms 
UniFI leverages non-volatile memory technologies and its 
efficient checkpointing mechanism to provide both fast 
transitioning and very low power system-level sleep mode. Figure 
5 illustrates two mechanisms to eliminate idle power with UniFI. 

In the first mechanism, shown in Figure 5 (a), UniFI instantly 
transitions the system to the deep sleep mode in case of a power 
emergency or a detected idle period. Later, when there is a new 
job to process or the power failure is fixed, UniFI rapidly 
transitions the system to the active mode by recovering the system 
to the most recent safe checkpoint before the transition (CPi in 
Figure 5 (a)). It then finishes the previous job (i.e., redo the lost 
work), and starts the new job. This mechanism is mostly useful 
for emergencies, such as thermal emergencies and power outage, 
since it does not let the previous job commit (i.e., buffer its I/O 
outputs) until the system transitions back to the active mode and it 
creates another safe checkpoint. 

On the other hand, when there is no emergency (e.g., to eliminate 
a detected idle period), UniFI can let the previous job commit 
before transitioning to the sleep mode. In this mechanism, shown 
in Figure 5 (b), UniFI makes a new safe checkpoint just before 
switching to the sleep mode by checkpointing processors’ 
registers, flushing their L1 caches, and committing buffered I/O 
outputs. On a new job arrival, it activates the system by 
recovering to this safe point, which only includes restoring 
registers. In addition to system level power management, UniFI 
can provide fine-grained power management at core level by 
checkpointing registers of a core and flushing its L1 caches. That 
core or even another core (e.g., using server consolidation) can 
later continue running by reloading its register. 

4.5 UniFI Fault model 
UniFI is designed to recover from a wide class of faults. It 
recovers from multiple simultaneous transient or permanent faults 
at any part of the system as long as it can access a safe 
checkpoint. As UniFI keeps checkpoints in the non-volatile 
shared cache and main memory, it must assume they are error 
free. Fortunately, UniFI can leverage well-known techniques, 
ranging from conventional ECC to RAID-like memories  [24], to 
protect memory.  

UniFI tolerates various transient or permanent faults including 
those result in loss of all data in volatile caches (e.g., due to a 
glitch on reset signal), permanent failure of a core and its private 
cache. In addition to transient and permanent faults, one of our 
goals is recovering from instant power-off. Instant power-off may 
happen unintentionally due to power failures (e.g., power outage 
or thermal emergencies), or intentionally for idle power 
management. In all of these cases, UniFI recovers the system state 
to a consistent fault-free state preceding the fault or the sleep 
mode.

Figure 4. UniFI checkpointing mechanism. 
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5. EVALUATION SETUP 
In order to evaluate UniFI, we use two mechanisms: full system 
simulation and analytical modeling. To evaluate UniFI's fault 
tolerance mechanism, we have implemented UniFI in a full-
system simulator based on GEMS  [28]. We use CACTI  [30] and 
McPAT  [50] to model power at 32nm. We model a multi-core 
system with 8 cores, shared STT-MRAM L2 cache, and PCM 
main memory (Figure 1) modeled after the parameters in Table 2. 
We also consider overheads of FPC compression, which take 
0.41ns and consumes 0.112nJ for compressing/decompressing 64-
byte data  [6]. We use a similar system with same configurations 
but without UniFI's support as our baseline. We have also 
enhanced our simulator to model the energy and delay of STT-
MRAM and PCM with the parameters in Table 3. In this Table, 
the STT-MRAM cache cells are optimized for density and access 
energy, while its corresponding SRAM-based cache is designed 
for low leakage and high speed access  [21]. 

Table 2. Simulation Parameters 

Cores 
8 OOO cores, 4GHz frequency, 4-wide 
issue, 192 physical  registers 

L1 Caches 
Private, 32-KB iL1/dL1, 4-way associative, 
3-cycle access latency 

L2 Caches 
Shared, 4-MB, 8-way associative, 8 banks, 
8-cycle Read latency, 24-cycle Write 
latency, MESI Coherency 

Main Memory 4GB, 16 banks, 400MHz bus frequency 

Checkpointing 
Parameters 

2 checkpoints, 400K cycles (0.1ms) 
checkpointing interval 

We evaluate UniFI’s checkpointing mechanism with a large 
variety of applications from PARSEC with simlarge input sets 
(Blackscholes, Bodytrack, Canneal, Fluidanimate, Freqmine, 
Streamcluster, and Swaptions), SPEComp (Ammp, Applu, 
Equake, Fma3d, Gafort, Mgrid, Swim, and Wupwise), and 
commercial workloads (Apache, Oltp, Jbb, and Zeus). Since these 
benchmarks are multi-threaded, we use a work-related metric, run 
each workload for a fixed number of transactions/iterations (for 
approximately 100M instructions), and report the average of 15-
20 runs using randomized memory delays to address workload 
variability  [37]. We evaluate UniFI’s overheads with a very 
frequent checkpointing, creating a checkpointing every 0.1 ms 
(i.e. checkpoint frequency of 10KHz or 400K core cycles). We 
keep two checkpoints (one active, one safe). In this way UniFI 
can support long fault detection techniques with latency of up to 
800,000 cycles. 

To evaluate power savings of UniFI’s power management, we 
extend the power model presented in Meisner et al.  [34], which 
model power saving in a server using an M/G/1 queuing model. 
Their model calculate power savings of an idle power 
management technique based on workload parameters (e.g., the 
work-load's average busy time), and the power management 
mechanism’s parameters (e.g., transition latency between active 
and sleep modes, and sleep power). We use this model, which we 
skip its details here, and augment it with UniFI’s checkpointing 
power and performance overheads to find UniFI’s power savings 
in a typical blade. We also find UniFI’s impact on response time 
using the model presented in their paper  [34]. 

Table 3. STT-MRAM cache and PCM memory parameters 

L2 Cache Parameters 
4MB 
SRAM 

4MB  

STT-MRAM 

Rd/Wrt Latency (core cycle) 

Energy per Rd/Wrt  (pJ/64B) 

Leakage Power (mW) 

10/10 

1268/1268 

6578 

8/24 

798/952 

3343 

Memory Parameters DRAM PCM 

tCL/tRCD/tWTR/tWR/tRTP/
tRP/tCCD/tWL (mem cycle) 

5/5/3/6/3/5/
4/4 

5/22/3/6/3/60/4
/4 

Energy per Rd/Wrt (pJ/bit) 1.17/0.39 2.47/16.82 

Table 4 shows the power consumption of a typical blade  [34], 
which has two cores operating at 2.4 GHz and eight DRAM 
DIMMS. We use the RAILS power supply units (PSU)  [34], 
which significantly reduces energy costs of PSU when idle power 
management techniques are being used. We evaluate UniFI and 
compare it with PowerNap using different server workloads  [34]. 

6. EVALUATION 
In this section, we first evaluate our baseline system and study 
impacts of using non-volatile memories. We then evaluate 
UniFI’s checkpointing mechanism and idle power management. 

6.1 Evaluation: Baseline 
To study impacts of using non-volatile memories in the system, 
we evaluate four baseline configuration listed in Table 5 with the 
parameters in Table 2. The last two configurations employ sub-
bank buffers at the STT-MRAM L2 cache [21], buffer 
reorganization and partial writes at PCM main memory [13].

Figure 5. Two different mechanisms to eliminate idle power with UniFI. 
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Table 4. Component power consumption of a typical blade with/without power management techniques 

Blade Components Active Power Idle Power Sleep Power with PowerNap Sleep Power with UniFI 

CPU Chip 

DRAM DIMMs 

Other modules (PSU, SSD, etc.) 

80-150W 

3.5-5W 

110-262W 

12-20W 

1.8-2.5W 

210-230W 

6.8W 

1.6W 

2W 

0W 

0W 

2W 

Total 450W 270W 10.4W 2W 

 
Figure 6 and Figure 7 illustrate performance and energy of 
baseline configurations normalized to SRAM-DRAM baseline 
system. A baseline of STT-MRAM and PCM system without any 
extra technique (the second configuration) is on average 1.5x 
slower and requires 1.2x more energy than a SRAM-DRAM 
system. Applying different techniques in non-volatile memories 
reduce this delay and energy gap to 1.08x and 0.92x, and makes 
the baseline competitive with SRAM-DRAM system. To evaluate 
UniFI, we use this configuration as our baseline system. 

Table 5. Baseline Configurations 

SRAM-DRAM 4-MB SRAM L2$, DRAM memory 

STT-PCM w/o techs 4-MB STT-MRAM L2$, PCM 
memory 

STT-PCM w techs  

(our baseline) 

4-MB SRAM L2$, PCM memory, 
extra techniques applied 

STT-PCM w large cache 8-MB SRAM L2$, PCM memory, 
extra techniques applied 

In addition to these techniques, a large DRAM buffer can be used 
before PCM main memory to hide its high latencies and energy 
overheads  [16]. In the last configuration, we study using a larger 
STT-MRAM on-chip cache instead since STT-MRAM is 
scalable, energy efficient and non-volatile with similar density 

comparing to DRAM. This configuration further reduces the 
energy and delay gap to 0.95x and 0.88x. 

6.2 Evaluation: UniFI 
Figure 8 and Figure 9 show the breakdown of UniFI's 
performance and energy overheads over the baseline system 
during fault-free execution. UniFI incurs less than 2% (0.5% on 
average) performance and energy overheads for all the workloads 
(0.08% for PARSEC, 0.45% for SPEComp, and 1.46% for 
commercial workloads) while it creates checkpoints frequently 
(every 400K cycles or 0.1ms). UniFI also increases Energy-Delay 
product (ExD) up to 3.7% for OLTP, and 1.02% on average. The 
main sources of UniFI's overheads are caching logs in the L2 
cache and cleaning L1 caches. Compressing logs and lazy 
cleaning significantly reduce these overheads. Compressing logs 
reduces performance overhead of caching logs by up to 4.1% (for 
OLTP) and 0.64% on average for all the workloads. In addition, 
lazy cleaning improves performance by up to 2.1% and 0.3% on 
average. Similarly, these techniques reduce energy overhead by 
up to 4.5% and on average 1%. 

For workloads with large footprints in the L2 cache, such as 
commercial workloads and some of SPEComp (e.g., Swim) and 
PARSEC workloads (e.g., Canneal), UniFI’s overhead is mainly 
due to caching logs in the L2 cache, and so increasing cache miss 
ratio. For instance, UniFI increases miss ratio by 1.41% to 80

 

Figure 6. Performance of different baseline configurations. 

 

Figure 7. Energy of different baseline configurations. 
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MPKI (misses per kilo instructions) for Swim. This overhead is 
also a function of checkpoint size, which is fairly small for most 
of the workloads (23 KB or 1.14% of the L2 cache on average). 
For OLTP, UniFI creates checkpoints with average size of 117KB 
(5.7% of the L2 cache), which explains its high performance and 
energy overheads in comparison with other workloads. 

As UniFI lazily cleans the L1 caches in the background, its 
overhead due to cleaning caches is low (on average 0.1%). This 
overhead is related to the number of dirty lines copied back when 
establishing a checkpoint, and so is higher for those with more 
dirty lines (such as Zeus, Swim, and Fma3d). Since access to the 
main memory is not on the critical path, safe data replacements at 
the L2 cache has negligible effects. 

To estimate the overhead of recovery and unavailability of the 
system due to an error, we consider the worst case recovery 
scenario. For example, when an error occurs after establishing the 
first checkpoint and is detected at the end the second checkpoint 
interval (i.e., detection latency of about 800K cycles), UniFI 
unrolls both checkpoints. Since most the logs reside in the L2 
cache (on average 99.5% of logs stay in the cache), the overhead 
of unrolling a checkpoint is low. It takes less than 40K cycles 
(10us) to unroll one checkpoint on average. Considering 
approximately 0.2ms for lost work (2 checkpointing intervals), 
UniFI provides about 99.999999% availability if one of these 
faults occurs per day. 

In addition to evaluating UniFI’s checkpointing mechanism, we 
study how it saves power by eliminating idle power. Figure 10 
illustrates power saving (part (a)) and relative response time (part 
(b)) with UniFI and PowerNap in a typical blade with parameters 
in Table 4 for different server applications. UniFI’s transition 
time between sleep and active states, and checkpointing overhead 
are very low, however we conservatively assume 0.1ms transition 
time and 2% performance/energy overheads. As shown in Figure 

10, UniFI provides better power saving and response time than 
PowerNap for most applications because of its rapid transition to 
the deep sleep mode and leveraging non-volatile memories. Due 
to UniFI’s rapid transitions, its checkpointing overhead is mostly 
amortized for most of the workload except Cluster as it has longer 
service time and higher utilization. 

7. RELATED WORK 
UniFI improves the standard global checkpointing technique 
proposed in SafetyNet and ReVive  [24][25] to provide low-power 
checkpointing. UniFI provides frequent checkpointing with much 
less energy, performance and area overheads. In addition to 
leveraging non-volatile memory technologies, UniFI differs from 
ReVive by caching compressed logs in LLC (similar to regular 
data), and so significantly reducing power and memory bandwidth 
overheads of writing and recovering logs into/from the main 
memory. UniFI also eliminates the high overhead of flushing 
caches in ReVive by lazily cleaning dirty cache lines only in the 
private caches. In comparison with SafetyNet, UniFI eliminates 
the extra power and area costs of separate log buffers. Regarding 
to leveraging non-volatile memories, the technique proposed in 
[7] also leverages PCM, however unlike UniFI, they use special 
3D stacked PCM storage as checkpoint buffers. They also have a 
costly mechanism to create a checkpoint, which stalls the system 
periodically and copies DRAM content to the PCM buffers. 

UniFI also leverages its checkpointing mechanism to save power 
for server workloads comparably to PowerNap idle power 
management. Unlike PowerNap and other aggressive power 
management techniques, UniFI compensates the possible higher 
error rates due to aggressive power management with its low 
overhead checkpoint recovery mechanism. 

Figure 8. Breakdown of UniFI’s performance overhead over the baseline. 

Figure 9. Breakdown of UniFI’s energy overhead over the baseline. 
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8. CONCLUSIONS 
We propose UniFI, a unified technique that addresses two critical 
challenges of reliability and power management together. UniFI 
exploits resistive memory technologies, and proposes a light-weight 
energy-efficient checkpointing to recover from transient and 
permanent faults, and power failures. Exploiting UniFI's ability to 
recover from instant power-off, we use UniFI to eliminate idle 
power of servers with short idle periods. We demonstrate that it 
incurs less than 2% performance and energy overheads for a wide 
range of applications. We also show that for typical server 
workloads with short idle periods, UniFI can reduce average power 
by up to 82% by leveraging its low overhead checkpointing 
mechanism and non-volatile memories. 
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