
MCRENGINE: A Scalable Checkpointing System
Using Data-Aware Aggregation and Compression

Tanzima Zerin Islam⇤, Kathryn Mohror†, Saurabh Bagchi⇤, Adam Moody†, Bronis R. de Supinski† and Rudolf Eigenmann⇤
⇤School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN

Email: {tislam,sbagchi,eigenman}@purdue.edu
†Lawrence Livermore National Laboratory (LLNL), Livermore, CA

Email: {kathryn,moody20,bronis}@llnl.gov

Abstract—High performance computing (HPC) systems use
checkpoint-restart to tolerate failures. Typically, applications
store their states in checkpoints on a parallel file system (PFS). As
applications scale up, checkpoint-restart incurs high overheads
due to contention for PFS resources. The high overheads force
large-scale applications to reduce checkpoint frequency, which
means more compute time is lost in the event of failure.

We alleviate this problem through a scalable checkpoint-
restart system, MCRENGINE. MCRENGINE aggregates check-
points from multiple application processes with knowledge of
the data semantics available through widely-used I/O libraries,
e.g., HDF5 and netCDF, and compresses them. Our novel scheme
improves compressibility of checkpoints up to 115% over simple
concatenation and compression. Our evaluation with large-scale
application checkpoints show that MCRENGINE reduces check-
pointing overhead by up to 87% and restart overhead by up to
62% over a baseline with no aggregation or compression.

I. INTRODUCTION

As software and hardware component counts in high per-
formance computing (HPC) systems scale up, the likelihood
grows of one failing while an application executes. For ex-
ample, the 100,000 node BlueGene/L system at Lawrence
Livermore National Laboratory (LLNL) experiences an L1
cache parity error every 8 hours [1] and a hard failure every
7-10 days. Exascale systems are projected to fail every 3-26
minutes [2], [3]. Many applications tolerate failures through
checkpoint-restart [4], [5], which periodically saves applica-
tion state in checkpoint files on stable storage, such as a
parallel file system (PFS). If a failure occurs, the application
is restarted from the latest checkpoint, thus reducing repeated
computation. To simplify checkpoint-restart implementations,
many applications have all processes take checkpoints simulta-
neously [6]. This strategy avoids the complexities of message
logging that uncoordinated checkpointing requires, as well as
its possibility of cascading rollback.

Checkpointing causes 75-80% of the I/O traffic on current
HPC systems [7], [8]. On future systems, checkpointing activ-
ities will dominate compute time and overwhelm file system
resources [5], [9]. Checkpointing to a PFS is expensive at
large scale: a checkpoint can take tens of minutes due to
network bandwidth and PFS resource contention [10], [11].
Further, HPC computational capabilities are increasing more
quickly than their I/O bandwidths. For example, BlueGene/L
at LLNL and BlueGene/P at Argonne National Laboratory
achieve less than 0.1 GB/s of I/O bandwidth per TeraFLOP

of computational capability [10]–[12]. This high overhead
leads to reduced checkpointing frequency, which implies more
computation is lost in the event of failure.

We face two key challenges to checkpointing scalability:
the number of checkpoint files written and their size. As
application process counts grow, the number of checkpoint
files usually increases proportionally. Large counts of file
writers degrades PFS performance and reliability due to con-
tention [12]–[14]. Thus, application programmers are explor-
ing techniques to combine checkpoints of multiple processes
at the cost of application complexity. Further, the size of each
file grows with process count under naive combining schemes;
in any event, the size of the checkpoint files usually grows as
processes compute larger sub-problems.

We address these challenges through MCRENGINE, a library
that aggregates multiple checkpoint files from different pro-
cesses and compresses them. Further, we extract application-
specific data semantics by analyzing the metadata contained
in the checkpoint files. This knowledge enables us to merge
the checkpoint fragments from the different processes intelli-
gently, increasing the compressibility of the aggregated check-
point, particularly when we apply data-specific compression
algorithms (e.g., targeted to floating point data). These benefits
also apply during restart, when all application processes must
read the checkpoint fragments from the PFS, often within a
short time window. We must keep this extra work small since
restart is always on the application’s critical path. We make
the following major contributions:
• The concept of data-aware checkpoint compression, which

significantly increases the compressibility of checkpoints;
• A thorough investigation of the application-specific impact

of different aggregation schemes on compression ratio;
• The design, development, and thorough evaluation of an

end-to-end checkpoint-restart system and its demonstration
with three real-world, complex, and diverse applications.

Our evaluation uses ALE3D, Cactus, and Enzo. ALE3D is
an arbitrary Lagrangian-Eulerian (ALE) multi-physics code.
Cactus [15], [16] solves Einstein’s Equations. Enzo is a
grid-based code that simulates cosmological structure forma-
tion [17]. Our significant results include: 1) data-aware com-
pression improves compression ratios between 27.72% and
115% on average over simple concatenation and compression;
2) MCRENGINE can reduce checkpointing intervals by up

SC12, November 10-16, 2012, Salt Lake City, Utah, USA
978-1-4673-0806-9/12/$31.00 c�2012 IEEE

to 87%; 3) MCRENGINE decreases restart overhead by 62%
compared to using uncompressed checkpoints; 4) data-aware
compression alone reduces the latency to write checkpoints to
the PFS up to 92% and to read checkpoints up to 71%.

The paper is organized as follows. Section II provides
background. Section III describes our solution and rationale.
Section IV details the structure of the implementation of
MCRENGINE. Section V presents our evaluation methodology.
Sections VI and VII present key results.

II. BACKGROUND

In this section, we discuss related background information
on different checkpoint types, how checkpoints are written and
the different file formats in which they are written.

A. Application-level vs System-level Checkpointing
HPC applications commonly take coordinated, application-

level checkpoints. Coordination implies that all application
processes agree when they will take the checkpoint, typically
periodically. Application-level checkpointing uses application
routines to save specific data structures in the checkpoint files.
In contrast, system-level checkpoints are system-initiated snap-
shots that include the entire system memory. Application-level
checkpointing provides several benefits. Application knowl-
edge of the state needed to restart can significantly reduce
checkpoint sizes. For example, for protein-folding applications
on IBM Blue Gene, the size of an application-level check-
point set is a few megabytes compared to terabytes for full
system-level checkpoints [18]. Application-level checkpoints
also increase portability.

B. Checkpoint Writing
Applications vary in how many processes write checkpoints.

If an MPI application uses N processes, then each process
writes its own state to a checkpoint file in the N!N pattern.
This strategy performs poorly at large scales due to contention
from the large number of writers. At the other extreme
(N! 1 checkpointing), a single process writes one large
checkpoint that contains data from all processes, which creates
a serialization bottleneck that also inhibits scaling. Thus,
N!M checkpointing, in which a set of M processes write
aggregated data for N processes (M<N), attempts to balance
metadata costs and contention with the bandwidth advantages
of multiple writers. However, N!M checkpointing increases
application complexity, a trend that further optimizations
continue. Thus, application developers need a strategy that
provides the benefits of N!M checkpointing while hiding
that complexity. MCRENGINE is such a strategy.

Applications also vary in how they distribute input data
across processes. One approach is segmented input distribution
(Figure 1a), in which data is naturally composed of segments
that exhibit similarity. One segment of the input data is
processed by one process. The second approach is strided
input distribution (Figure 1b), in which one segment of the
data is split into stripes and these stripes are distributed (or
“strided”) to different application processes.

P0! P1! P2! P3! P0! P1!

Ckpt_P0! Ckpt_P1! Ckpt_P2! Ckpt_P3!

P2! P3!

Ckpt_P0! Ckpt_P1! Ckpt_P2! Ckpt_P3!

Input! Input!

(a) Segmented Input Distribution! (b) Strided Input Distribution!

Fig. 1: Two Types of Input Data Distribution

Application!

Checkpointing Library (SCR/SILO)!
I/O Library (Adios/MPI-IO/POSIX)!

Data-Format API !

Struct ToyGrp{!
1. float Temperature[1024];!
2. short Pressure[20][30];!
};!

1. Name: “ToyGrp.Temperature” Type: Float Data: …!
// 1D array of 1024 floats!
2. Name: “ToyGrp.Pressure” Type: Short Data: … !
// 2D array of 20x30 shorts!

N
etCD

F!

H
D

F5!

Binary!

1.  netcdf ckpt{!
2.  dimensions:!
X = 1024; Y = 20; Z = 30;!
3.  variables:!
float var1(X);!
 !var1:long_name =
“ToyGrp.Temperature”;!
short var2(Y,Z);!

!var2:long_name =
“ToyGrp.Pressure”; !
}!

1.  HDF5 ckpt{!
2.  Group “/”{!
3.  Group “ToyGrp”{!
DATASET “Temperature”{!
DATATYPE H5T_IEEE_F32LE!
DATASPACE SIMPLE {(1024) / (1024)}!
}!
DATASET “Pressure” {!
DATATYPE H5T_STD_U8LE!
DATASPACE SIMPLE {(20,30) / {20,30}}!
}}}}!

(b) netCDF Representation!

(c) HDF5 Representation!

(a) ASCII/Binary Representation!

Fig. 2: Different Metadata Annotations of Checkpoint Data

C. Checkpoint File Format

Application-level checkpointing often builds on I/O li-
braries such as MPI-IO, POSIX, HDF5, netCDF, or Parallel-
netCDF [19], [20]. While some applications write checkpoints
in an application-specific format, using standard I/O libraries,
such as POSIX or MPI-IO, many large-scale applications use
standard self-describing I/O formats (e.g., HDF5 or netCDF).
While the initial time to deploy POSIX or MPI-IO solutions
can be low, it reduces portability due to issues such as endian-
ness and thus increases maintenance cost. Using a descriptive
data format to write structured checkpoints ensures portability
across users, tools (such as visualizers), and systems. Thus,
self-describing I/O formats are popular among large-scale
applications, such as HDF5 [19] with its long list of users.

As Figure 2 shows, data structures in application-level
checkpoints are described differently depending on the data
format. Also checkpoint files are often used for visualization.
Although the file format structure varies, the key point is
that application data is annotated with descriptive metadata.
The application (Figure 2a) or the data format library (Fig-
ure 2b and c) can provide the metadata.

MCRENGINE uses data from application-level, globally co-
ordinated checkpoints to implement an N ! M scheme.
To demonstrate our approach, we use HDF5 checkpoints.

Group ToyGrp{!
 float Temperature[1024];!
 short Pressure[20][30];!
 int Humidity;!
};!

Group ToyGrp{!
 float Temperature[50];!
 short Pressure[2][6];!
 double Unit;!
 int Humidity;!
};!

P0!

P1!

Var: “ToyGrp/Temperature”!
Type: F32LE, Array1[1024]!

Var: “ToyGrp/Pressure”!
Type: S8LE, Array2D [20][30]!

Var: “ToyGrp/Temperature”!
Type: F32LE, Array1D [50]!

Var: “ToyGrp/Pressure”!
Type: S8LE, Array2D [2][6]!

Inside a checkpoint: Variables
annotated with metadata!

Inside source code: Variables
represented as members of a
group in actual source code. A
group can be thought of the
construct “Struct” in C!

Generated hash key for matching!

Var: “ToyGrp/Unit”!
Type: F64LE, Atomic!

Var: “ToyGrp/Humidity”!
Type: I32LE, Atomic!

ToyGrp/Temperature_F32LE_Array1D!

ToyGrp/Pressure_S8LE_Array2D!

ToyGrp/Humidity_I32LE_Atomic!

ToyGrp/Temperature_F32LE_Array1D!

ToyGrp/Pressure_S8LE_Array2D!

ToyGrp/Unit_F64LE_Atomic!

Var: “ToyGrp/Humidity”!
Type I32LE, Atomic! ToyGrp/Humidity_I32LE_Atomic!

No match!

Fig. 3: Variable Matching

However, the design of MCRENGINE provides the flexibility to
use other data formats easily. Using the example in Figure 2,
data with the name Temperature has the same meaning across
all processes in an Single Program Multiple Data application
(we may require additional information for a Multiple Program
Multiple Data application to capture data relationships across
processes). We refer to an individual file that a single process
writes as a checkpoint and to a group of checkpoints that
multiple processes write concurrently as a checkpoint set.

III. DATA-AWARE CHECKPOINT AGGREGATION &
COMPRESSION

Most parallel scientific applications distribute simulation
data across multiple processes. These processes generally
coordinate globally to take a consistent checkpoint. During
an asynchronous checkpointing phase, once a process finishes
checkpointing, it resumes its computation. Currently, with
most checkpointing systems, the processes send their check-
points directly to the PFS, although checkpointing libraries
such as SCR [9] can store checkpoints locally instead.

In order to analyze the issues that will prevent scaling of
current checkpointing systems, we conducted an experiment
on a large Linux cluster. We present a complete discussion of
the experiment in Section VII-B. Our key findings are:
• The average performance of operations (read and write)

scales much better with fewer concurrent processes;
• Transfer overhead is lower with the same number of writers

when the data volume is less.
Thus, checkpointing systems should aggregate checkpoints
to reduce the number of concurrent processes. Compressing
checkpoints could provide additional benefits. We define data-
aware aggregation as aggregating across process checkpoints
such that data with similar meaning remain together in the
merged checkpoint. MCRENGINE uses data-aware compres-
sion, which dynamically selects from a set of compression
algorithms and applies the best one for each similar data
group. Data-aware aggregation and compression is the entire
process of interleaving semantically similar data and using a
dynamically selected compression algorithm.

All popular compression utilities use a finite window in
which they look to find similarities between two data items.
The window is kept reasonably small by default (e.g., 32KB
for gzip) to keep the memory utilization of the compression
utility low. By using data-aware aggregation, MCRENGINE
increases the likelihood that similar data appears in the same
window, which increases compression and decreases the num-
ber of concurrent files written to the PFS.

A. Identifying Similarity Across Checkpoints

Intuitively, finding similarity across checkpoints is simple.
Two variables with the same name and data type are likely
to have the same meaning. MCRENGINE uses metadata to
locate checkpoint data that represent the same variables.
MCRENGINE interprets two variables in different checkpoints
as similar if their names agree and their data representation is
identical (same data type).

Figure 3 provides a step-by-step example. Processes P0 and
P1 have groups of variables. To be general, the example shows
different structures for the same group in the two checkpoints
although in practice, two processes of the same application are
unlikely to have different structures for the same group.

In our similarity detection, variables can be of any standard
data type and can be of atomic or array class. We consider
variables with the same name, data type and class to be similar
even if they have different numbers of elements. Variable
names can match either exactly or according to a regular
expression; application developers can specify the regular
expression as a configuration parameter. We locate similarity
as follows:
• Match every element of a group separately;
• Annotate variables with their names, data types, array sizes,

and classes in the checkpoints;
• Convert variable metadata into hash keys of type:
Group-name/Variable-name_Datatype_Class.

For example, MCRENGINE generates
ToyGrp/Temperature_F32LE_Array1D as the hash
key for the variable Temperature in P0. While Figure 3
illustrates our terminology, real application checkpoints have
more complex structures.

B. Merging Schemes

We consider four schemes to aggregate checkpoints:
• Checkpoint Concatenation The simple Agnostic scheme

concatenates entire checkpoints before compressing them;
• Checkpoint Blocking Agnostic-Block interleaves fixed-size

data blocks instead of concatenating entire checkpoints;
• Variable Concatenation As Figure 4a shows (Cx.T denotes

the temperature array of the checkpoint of rank x and Cx.P
its pressure array), the Data-Aware or simply Aware scheme
concatenates individual variables before compressing them;

• Variable Blocking As Figure 4b shows, the Aware-Block
scheme interleaves variables in blocks of configurable sizes,
instead of simply concatenating them.

The Aware and Aware-block schemes aim to increase com-
pression ratios by grouping similar data.

C3.T% C3.P%

C2.T% C2.P%

C1.T% C1.P%

C1.T%

C1.P%

C2.T%

C2.P%

C3.T%

C3.P%

(a) Variable Concatenation

C3.T% C3.P%

C2.T% C2.P%

C1.T% C1.P%
C1.T%
[1*B]%

C1.P%
[1*B]%

C2.T%
[1*B]%

C2.P%
[1*B]%

C3.T%
[1*B]%

C3.P%
[1*B]%

C1.T%
[B+1*N]%

C2.T%
[B+1*N]%

C3.T%
[B+1*N]%

C1.P%
[B+1*N]%

C2.P%
[B+1*N]%

C3.P%
[B+1*N]%

(b) Variable Blocking

Fig. 4: Data-Aware Merging Schemes

IV. STRUCTURE OF MCRENGINE

Figures 5a and 5b present the system level interactions
among different modules of MCRENGINE during the check-
point and restart phases. In these figures, each large dotted
box represents a component and each small box represents
a module. A solid module indicates that it is on the critical
path; a dotted one indicates it avoids the critical path by
using a parallel thread. Finally, arrows represent different inter-
module communication: a dashed arrow indicates network
communication while a dotted one corresponds to a wake up
signal to a thread. MCRENGINE has two major components:
• Compute node component (CNC) offloads checkpoint pro-

cessing from the compute nodes by sending checkpoints
to the aggregator node component during checkpointing;
restores checkpoints to the local disk during restart.

• Aggregator node component (ANC) processes (e.g., con-
catenates and compresses) checkpoints; stores and retrieves
checkpoints from the PFS during restart.

We now discuss interactions between CNC and ANC modules
during the checkpointing and restart phases.

A. Checkpointing Phase
Table I summarizes the interactions between the CNC and

ANC components. CNCs responsible for application processes
in the same group (according to their rank) send data to
the same ANC. Each CNC notifies the assigned ANC that
a checkpoint is ready and transfers the data to it. The ANC
concatenates and merges checkpoints based on the scheme in
use and writes to the PFS. The message queue is a memory
buffer in which each element points to a data block in memory.
These lightweight modules require little CPU and memory
resources. The CNC uses the Inotify blocking wait to reduce
interference with the application.

We design MCRENGINE such that its aggregators fetch
variables as needed in order to avoid requiring excessive
aggregator disk space. By pulling data as needed, the ANC
can limit the variables per process present at any time. We
also exploit the inherent parallelism of accessing three kinds of

TABLE I: Module Interactions During a Checkpointing Phase
ID COMMUNICATION DESCRIPTION

1 Inotify Library notifies the Controller of checkpoint creation
2 Controller initiates checkpoint reading through CNC interfaces
3 CNC Ckpt Library reads the checkpoints, written in application-specific

formats, into memory (3a); returns header and data to the Controller (3b)
4 Controller passes reference to header/data buffer to Network Transceiver
5 Network Transceiver sends information about variables to Header Receiver
6 Header Receiver sends group name, variable name, data type, and class

information to Similarity Classifier, which inserts them into a hash table,
chaining variables with the same hash key in process rank order (6a);
Header Receiver invokes Fetch & Merge Handler after all checkpoint
headers of a group are classified (6b)

7 Fetch & Merge Handler signals Compressor to compress variables, if
available (7a); traverses hash table to send data requests to Network
Transceiver and fetches data for a pool of variables (7b); merges similar
variables and enqueues them in a message queue (7c)

8 Compressor signals the Post-Processor thread to start buffering processed
data, if available (8a); reads from the message queue; compresses merged
variables according to data types (current implementation uses FPC [21],
fpzip [22] and LZ [23] to compress doubles, floats, and other data types,
respectively) and writes back to the message queue (8b)

9 Post-Processor flushes accumulated data to local disk (9a); applies Parallel-
Gzip [24] after all variables across processes in the same group are merged
and compressed; sends the final data to PFS (9b)

TABLE II: Module Interactions During a Restart Phase
ID COMMUNICATION DESCRIPTION

1 Pre-Processor reads processed checkpoint and metadata file from PFS
(1a); applies Parallel-unzip and writes to the local disk (1b); invokes
Decompressor on merged-compressed variables

2 Decompressor applies appropriate decompression algorithm to each vari-
able; enqueues decompressed merged variables in the message queue (2a);
signals Splitter threads to split variables, if available (2b)

3 Splitter reads and separates variables from message queue them (3a); uses
a separate thread per process to send data to the Network Transceivers (3b)

4 Network Transceiver invokes the Controller module with received data
5 Controller invokes interfaces to write variables to checkpoint file
6 CNC writes variables to checkpoint file in application-specific format

resources (CPU, disk, and network) by using separate threads
to transfer data between the CNC and ANC modules, to
compress it and to write it to disk. Thus, when the ANC
Fetch & Merge module starts a network transfer (fetch
operation), it schedules the Compressor thread to use the
CPU and the Post-Processor thread to finish disk I/O.
Our results show that the network transfer time largely offsets
the overheads of compression and local disk accesses.

The CNC also produces a metadata file that stores informa-
tion about the last checkpoint set. The restart phase uses the
information about the last set of checkpoints stored. An empty
file indicates a new application run.

B. Restart Phase

As Figure 5b shows, during restart, the Controller

module sends a request to the Pre-Processor module of
the corresponding ANC to read a checkpoint file from the PFS.
The Pre-Processor module then reads the checkpoint
from the PFS, decompresses and separates the variables, and
sends them to the Controller. Each Splitter thread
communicates in parallel with a separate Controller,
which must generate the original checkpoints for the appli-
cation processes. Table II summarizes the communications
between CNC and ANC modules during this phase.

The design of MCRENGINE does not require node-local
persistent storage on compute or aggregator nodes. This design

User !
Application!

Local
Disk!

INotifier
Library!

Controller!
Header

Receiver!
Similarity
Classifier!

Network
Transceiver!

Fetch & Merge
Handler!

Message Queue !

Compressor!

Compute Node Component (CNC)! Aggregator Node Component (ANC)!

 Compression
Libraries!PFS!

 6b!

3a!

4! 5! 6a!

7b!

8b!

7c!

9b!

Post-Processor!

Local
Disk!

9a!

 CNC Ckpt Library!

1! 2!
3b!

7a!

8a!

(a) MCRENGINE Checkpoint Phase Interactions

Local
Disk!

Controller!

 CNC Ckpt Library!

Network
Transceiver!

Compute Node Component (CNC)!
Message Queue !

Decompressor!

 Decompression
Libraries!

Aggregator Node Component (ANC)!

Splitter!
Splitter!

Pre-Processor!

Local
Disk!

1a!
1b!

1c!

2a!

3a!3b!4!

5!

6!

User !
Application!

PFS!

2b!

Network
comm.!

Preempt
signal! Thread! Module!

One way
comm.!

Both way
comm.!

(b) MCRENGINE Restart Phase Interactions

Fig. 5: System-Level Interactions

feature allows MCRENGINE to work on current large-scale
systems (e.g., BG/L). On diskless nodes, the CNC uses in-
memory buffering before streaming them to the ANC next
stop without any intermediate storage (checkpoint stream-
ing). However, upcoming technologies such as SSDs will
replace the in-memory buffer. Our future work will implement
variable streaming, in which we buffer and stream large
variables individually. That work will address issues such as
synchronizing similar variable writes.

V. EVALUATION METHODOLOGY

This section describes our methodology for evaluating
MCRENGINE with the schemes introduced in Section III-B.
We evaluate MCRENGINE with checkpoints from four compu-
tational simulations of three real-world applications. Our eval-
uation criteria are the amount of compression, and checkpoint-
restart end-to-end overhead.

A. Applications

We evaluate MCRENGINE on ALE3D, Cactus, and Enzo
(with two distinct inputs: Cosmology and Implosion). The
simulations produce checkpoints with varying characteristics.
Table III summarizes our ALE3D checkpoint set and a
checkpoint set from the midpoint of the Cactus and Enzo
simulations. The write pattern indicates how the checkpoints
are written. The number of checkpoints indicates how many
individual checkpoints are in each set. For ALE3D, 1024 com-
putation processes were run to generate 32 checkpoints. For
the other applications, the number of checkpoints generated
equals the number of computation processes. The total size
is the sum of the individual checkpoint sizes. The individual
size row shows the range and average size of the individual
checkpoints. We report the total number of variables across a
checkpoint set and the range and average of variable counts
in the individual checkpoints. We also provide percentage
breakdowns of variable data types.

ALE3D is a multiphysics numerical simulation that uses
arbitrary Lagrangian-Eulerian (ALE) techniques. We do not
have access to the ALE3D source code so we do not have
information on its input distribution.

Cactus [15], [16] is a framework that numerically solves
Einstein’s equations [25]. It uses adaptive mesh refinement
(AMR). During initialization, it divides input data among
N processes (top-level roots). Each process then recursively
divides its pieces among sub-grids. Each top-level root collects
computation from sub-grid elements and writes a checkpoint.
So, this application writes N checkpoints, while the number
of sub-processes that perform actual computation is larger.

Enzo, an AMR, grid-based hybrid code (hydro + N-
Body), simulates cosmological structure formation [17]. It
uses the particle-mesh technique to solve dark matter N-
body dynamics. Cosmology is a 3D Eulerian block-structured
AMR simulation [26]. Implosion is a 2D converging shock
problem in which a shock wave interacts with reflecting walls,
undergoing a double Mach reflection [27]. While we generate
both from the same code base, the nature of the execution and,
thus, the checkpoints are significantly different.

B. Evaluation of Compression Schemes

Two metrics measure how well data-aware compression
techniques reduce data size. Compression ratio is the ratio of
the size of the (checkpoint’s) uncompressed data to the size of
the compressed data, including metadata. A compression ratio
of 2 indicates that the uncompressed file is 2⇥ larger than the
compressed file. In Equation 1, us(ckpt) is the uncompressed
checkpoint size. For a scheme X , cs

x

(ckpt) is its compressed
checkpoint size and cr(X) is its compression ratio.

cr(X) =
us(ckpt)

cs
x

(ckpt)
(1)

Relative improvement compares the effectiveness of compres-
sion schemes as the compression ratio of schemes A and B:

relative improvement =
cr(A)� cr(B)

cr(B)
⇥ 100% (2)

Finally, we evaluate the performance of the different schemes,
which we measure in terms of the time to complete the
checkpointing and restart phases.

TABLE III: Checkpoint Characteristics
ALE3D CACTUS COSMOLOGY IMPLOSION

Write Pattern N!M N!N N!N N!N
Number of Checkpoints 32 32 128 64
Total Size (GB) 4.8 2.41 1.1 0.013
Individual Size: [Range] Average (MB) [154.1, 154.5] 154.2 [58, 90] 77.15 [4.7, 13.4] 8.4 [0.07, 4] 0.2
Total Variables 56820 284800 33562 9996
Variable Count: [Range] Average [1760, 1835] 1776 [8900, 8900] 8900 [76, 1090] 262 [28, 832] 156
Double Precision Floats (%) 88.8 33.94 24.3 0
Single Precision Floats (%) 2e-5 0 67.2 74.1
Other Data Types (%) 11.2 66.06 8.5 25.9

VI. DATA-AWARE COMPRESSION EFFECTIVENESS

We now evaluate the effectiveness of our novel data-aware
compression techniques. In particular, we explore:
• The benefit of multiple compression passes;
• The change in compression ratio with varying group size;
• The impact of interleaving granularity on compression ratio;
• The change in compression ratio as a simulation progresses.
We ran our experiments on LLNL’s Sierra system [28], which
is a 261.3 TFLOP/s Linux cluster running the CHAOS 4.4
operating system with an InfiniBand QDR interconnect. It
has 1,944 nodes, each with 12 2.8 GHz cores and 24 GB
of memory. Sierra is connected to a 1.3 PB Lustre file system
with a maximum aggregate bandwidth of 30 GB/s.

To determine parameters that provide a high compression
ratio with low time overhead we evaluated the compression
libraries that we used. For each library, we choose settings for
each algorithm that realize most of the possible compression
without incurring significant overhead. Throughout the exper-
iments, we set the compression levels of Parallel-Gzip to 6
(the default value), of FPC to 2, of fpzip to 1-dimensional,
and of QuickLZ to 1 (the minimum value).

For this evaluation, we group application processes accord-
ing to their rank order. For example, processes 1 to 32 and
33 to 64 are aggregated for a GROUP SIZE of 32. We run
one application process per core on each compute node, and
use all cores on each aggregator node for our experiments.
Each aggregator process on a core handles checkpoints from
GROUP SIZE computation processes. We use Equation 3
to determine the aggregator node count:

of Agg-Node =
cp

ac⇥GROUP SIZE
(3)

where cp is the number of computation processes and ac is
the number of cores on each aggregator node.

A. Benefit of Multiple Passes of Compression

We first study the impact of multiple compression passes.
We experiment with one and two compression passes, to which
we refer as single (SC) and double (DC) compression. SC
applies one pass, either with Gzip or data-aware compression.
DC always applies Gzip in the second pass. Figure 6 shows
the results for Agnostic, Aware, and Aware-Block. We do not
show Agnostic-Block in Figure 6 because it performs similarly
to Agnostic for DC. DC never benefits the data-agnostic
schemes. Alternatively, DC improves the compression ratio of
the data-aware schemes considerably because the compression

0!
0.5!

1!
1.5!

2!
2.5!

3!
3.5!

4!

Aw
ar

e-
B

lo
ck

-S
C
!

Aw
ar

e-
B

lo
ck

-D
C
!

Aw
ar

e-
SC
!

Aw
ar

e-
D

C
!

A
gn

os
tic

-S
C
!

A
gn

os
tic

-D
C
!

Aw
ar

e-
B

lo
ck

-S
C
!

Aw
ar

e-
B

lo
ck

-D
C
!

Aw
ar

e-
SC
!

Aw
ar

e-
D

C
!

A
gn

os
tic

-S
C
!

A
gn

os
tic

-D
C
!

Aw
ar

e-
B

lo
ck

-S
C
!

Aw
ar

e-
B

lo
ck

-D
C
!

Aw
ar

e-
SC
!

Aw
ar

e-
D

C
!

A
gn

os
tic

-S
C
!

A
gn

os
tic

-D
C
!

Aw
ar

e-
B

lo
ck

-S
C
!

Aw
ar

e-
B

lo
ck

-D
C
!

Aw
ar

e-
SC
!

Aw
ar

e-
D

C
!

A
gn

os
tic

-S
C
!

A
gn

os
tic

-D
C
!

ALE3D! Cactus! Cosmology! Implosion!

C
om

pr
es

si
on

 R
at

io
!

Fig. 6: Double Compression Versus Single Compression

libraries that we use in the first pass convert the data to a
more compressible format, which the second pass exploits.
For example, FPC applies an XOR operation to a predicted
value and the actual value. It encodes the resulting number of
zeros, an integer, into the output, which can inflate the size of
the output but enables Gzip to compress the transformed data
better. In our remaining results, we use double compression
for Aware and Aware-Block; single compression for Agnostic.

B. Change in Compression Ratio with Varying Group Size

In this section, we evaluate the impact of group size on the
compression ratios of the different schemes. We make several
observations from Figure 7 (Aware and Aware-Block overlap
in b, c, and d). Overall, we find that Aware obtains significant
compression for all four simulations. It reduces the total data
to about half or even to one-third of the amount compared
with the uncompressed checkpoint. Additionally, we see that
data-aware compression achieves higher compression ratios
than data-agnostic compression. The most dramatic case is
for Cactus in Figure 7b for which the gain is 115% by Aware
compared to Agnostic. We also find that changing group size
impacts the simulation that benefits most from the Aware-
Block scheme (ALE3D) more than those that benefit most
from the Aware schemes (Cactus, Cosmology, Implosion). For
ALE3D, the Aware-Block scheme achieves an 8% improve-
ment in compression ratio from group size 2 to 32.

We also observe that the best compression scheme varies
across applications. For ALE3D, Aware-Block is the best,
while Aware is the best for Cactus. Both data-aware schemes

2.5!

3.5!

4.5!

1! 2! 4! 8! 16! 32!C
om

pr
es

sio
n

R
at

io
!

Group Size!

Aware-Block! Aware!
Agnostic-Block! Agnostic!

(a) ALE3D - Block Size 8192B

0.5!

1.5!

2.5!

1! 2! 4! 8! 16! 32!

C
om

pr
es

sio
n

R
at

io
!

Group Size!

Aware-Block! Aware!
Agnostic-Block! Agnostic!

(b) Cactus - Block Size 1024B

1!

1.5!

2!

1! 2! 4! 8! 16! 32! 64! 128!

C
om

pr
es

sio
n

R
at

io
!

Group Size!

Aware-Block! Aware!
Agnostic-Block! Agnostic!

(c) Cosmology - Block Size 4096B

1.7!

2.7!

3.7!

1! 2! 4! 8! 16! 32! 64!

C
om

pr
es

sio
n

R
at

io
!

Group Size!

Aware-Block! Aware!
Agnostic-Block! Agnostic!

(d) Implosion - Block Size 4096B

Fig. 7: Compression Ratio Versus Group Size (Agnostic and
Agnostic-Block Overlap in b; Aware and Aware-Block in
c and d)

perform well for Cosmology and Implosion. The segmented
data distribution and collection in Cactus, Cosmology and
Implosion apparently emulates blocking for these simulations.
To determine which scheme to apply to a given application,
one could try all schemes offline on a sample checkpoint set
and then configure MCRENGINE to use the best option.

Our results for Aware-Block and Agnostic-Block use the best
block size from our tests for each simulation. While Agnostic-
block could emulate data-aware compression if variable lay-
outs are similar across checkpoints, our results for Cactus,
Cosmology and Implosion disprove this theory. Further, while
Agnostic-Block achieves similar compression ratios to Aware
for ALE3D, blocking the interleaved variables, as with Aware-
Block, provides significant additional benefit.

C. Impact of Interleaving Granularity on Compression Ratio

We now discuss the impact of varying block size on the
compression ratios that the blocking schemes achieve. In this
experiment, we only use checkpoints from ALE3D, since we
observed in Figure 7, that only its checkpoints benefit from
merging in blocks. Figure 8 shows that the compression ratio
increases steadily with Agnostic-Block, while with Aware-
Block it is fairly steady with a small initial increase.

D. Change in Compression Ratio as Simulation Progresses

To evaluate how the compression schemes fare as the simu-
lation progresses through time, we plot the compression ratio
for a series of consecutive checkpoint sets in Figure 9, which
shows the results for the Cactus, Cosmology, and Implosion
simulations. Cactus wrote 21 checkpoint sets, each 5 minutes
apart. The Cosmology simulation wrote 12 checkpoint sets
each 5 minutes apart. The Implosion simulation wrote 8 check-
point sets, each 0.05 seconds apart. In all three simulations,

2.8!
3!

3.2!
3.4!
3.6!
3.8!

4!

1024! 2048! 4096! 8192! 16384!

C
om

pr
es

si
on

 R
at

io
!

Block Size (Byte)!

Aware-Block! Agnostic-Block!

Fig. 8: ALE3D Compression Ratio (Group Size = 32)

we label the checkpoints as “DD00XX”, where “XX” records
the simulation time step.

We make three observations from Figure 9. First, the Aware
and Aware-Block schemes yield higher compression ratios than
Agnostic or Agnostic-Block. For example, the relative improve-
ment in compression ratio of Cactus in Figure 9a is about 98%.
Second, for both Enzo simulations, the compression ratio of
the first checkpoint set is higher than for subsequent ones. The
maximum compression ratio for Cosmology drops around 20%
(from 2.15 to 1.78) after the first time step. For Implosion, it
drops about 50% (from 5.4 to 3.6). These drops occur because
Enzo initializes data structures with the same default values so
the data is highly compressible across processes while Cactus
does not always initialize data structures with default values.
Third, the compression ratio quickly levels out as simulations
progress. For Cosmology, the compression ratio only has a
slight downward slope after the initial drop. Similarly, for
Implosion, the compression ratio drops, levels out, and then
begins to edge higher as the Implosion simulation runs. We
expect the compression ratios to behave in this manner for
applications that converge to a result.

E. Summary of Data-Aware Compression Effectiveness

We summarize our evaluation of Aware and Aware-Block
compared to Agnostic in Table IV, which shows the largest
and smallest relative improvements, which occur with the
group size specified in parentheses. While the group size
that provides the greatest benefit varies, data-awareness al-
ways results in higher compression ratios. We observe that
applications with higher interprocess checkpoint similarity
gain more compression by interleaving variables in blocks
(Aware-Block), while applications with higher intraprocess
checkpoint similarity gain more by concatenating variables
before compressing (Aware).

VII. MCRENGINE PERFORMANCE

This section evaluates MCRENGINE overall performance.
For checkpointing, MCRENGINE merges and compresses
checkpoints and then transfers them to the PFS. For restart,
it reads checkpoints from the PFS and then decompresses
and splits them into their original format. We demonstrate the
efficiency of MCRENGINE for the two largest checkpoint sets,
ALE3D and Cactus. For each application, we use a group size

0.8!
1!

1.2!
1.4!
1.6!
1.8!

2!
2.2!

D
D

00
00
!

D
D

00
01
!

D
D

00
02
!

D
D

00
03
!

D
D

00
04
!

D
D

00
05
!

D
D

00
06
!

D
D

00
07
!

D
D

00
08
!

D
D

00
09
!

D
D

00
10
!

D
D

00
11
!

D
D

00
12
!

D
D

00
13
!

D
D

00
14
!

D
D

00
15
!

D
D

00
16
!

D
D

00
17
!

D
D

00
18
!

D
D

00
19
!

C
om

pr
es

si
on

 R
at

io
!

Time Step!

Aware-Block! Aware!
Agnostic-Block! Agnostic!

(a) Cactus: Block Size 1024B, Group Size 32

1.3!

1.5!

1.7!

1.9!

2.1!

2.3!

DD00
00
!

DD00
01
!

DD00
02
!

DD00
03
!

DD00
04
!

DD00
05
!

DD00
06
!

DD00
07
!

DD00
08
!

DD00
09
!

DD00
10
!

DD00
11
!

C
om

pr
es

si
on

 R
at

io
!

Time Step!

Aware-Block! Aware!
Agnostic-Block! Agnostic!

(b) Cosmology: Block Size 4096B, Group Size 64

1.0!

2.0!

3.0!

4.0!

5.0!

6.0!

D
D

00
01
!

D
D

00
02
!

D
D

00
03
!

D
D

00
04
!

D
D

00
05
!

D
D

00
06
!

D
D

00
07
!

C
om

pr
es

si
on

 R
at

io
!

Time step!

Aware-Block! Aware!
Agnostic-Block! Agnostic!

(c) Implosion: Block Size 1024B, Group Size 64

Fig. 9: Compression Ratio Over Time (Agnostic and Agnostic-Block Overlap in a and c; Aware and Aware-Block in b and c)

TABLE IV: Relative Improvement over Agnostic

APPLICATION MEASURE AWARE-BLOCK AWARE

ALE3D
Best 27.72% (32) 12.7% (32)
Worst 6.6% (1) 6.6% (1)

Cactus
Best 11.85% (32) 115% (1)
Worst 10.69% (2) 98% (32)

Cosmology
Best 20.59% (1) 21.14% (32)
Worst 20.13% (32) 20.59% (1)

Implosion
Best 38.43% (32) 38.83% (32)
Worst 36.26% (1) 36.26% (1)

TABLE V: Checkpoint/Restart System Configurations

NAME DESCRIPTION

NoC+NoAgg No compression, no aggregation
C+NoAgg Individual compression, no aggregation
NoC+Agg No compression, aggregation
Agnostic+Agg MCRENGINE aggregation, data-agnostic compression
Aware+Agg MCRENGINE aggregation, data-aware compression

of 32, and the data-aware merging scheme from Table IV that
provides the best compression ratio (Aware-Block for ALE3D
and Aware for Cactus). Table V describes the different merging
and compression schemes that we compare in this section.

The first compression pass yields little benefit for small
but compressible variables so we omit them from it. In our
framework, the minimum size is configurable; our experiments
omit variables < 100B. Easily compressed data types include
integers and characters. This choice reduces compression
ratios by less than 1%, and improves performance.

We measure the times to transfer checkpoints to the parallel
file system using IOR [14], [29], a benchmark that character-
izes HPC I/O performance. We use the average respective file
sizes for each of the compressed or uncompressed checkpoints.

A. Data-aware and Data-Agnostic I/O Performance
We compare the performance of data-aware and data-

agnostic compression in terms of time to transfer checkpoints
to the PFS. The objective is to study the benefit of having
data-aware compression on I/O performance. Data-aware com-
pression results in smaller files and thus requires less time to
write the checkpoints to the PFS. The merged and compressed
checkpoint sizes per writer for ALE3D were 1.3 GB and 1.5
GB for data-aware and data-agnostic compression respectively.
For Cactus, the sizes per writer were 1.2 GB and 2.4 GB.

We show the results for Cactus in Figure 10. In the
figure, because the group size is 32, the number of writers

0!

50!

100!

150!

200!

250!

300!

350!

400!

12
8!

25
6!

51
2!
10
24
!
20
48
!
40
96
!
81
92
!

15
42
4!

16
38
4!

20
48
0!

24
57
6!

28
67
2!

Av
er

ag
e

To
ta

l T
im

e
 (s

ec
)!

of Processes (N)!

Agnostic+Agg-Write! Aware+Agg-Write!
Agnostic+Agg-Read! Aware+Agg-Read!

Fig. 10: I/O Performance with Different Compression Schemes

is N/32, where N is the number of processes in the job.
MCRENGINE with data-aware compression reduces the data
transfer overhead compared to data-agnostic compression for
both reading and writing checkpoints.

B. Benefit of Checkpoint Aggregation
This experiment shows the PFS I/O performance impact of

aggregation as we scale up the application. Figure 11 shows
the average measurements and 95% confidence intervals for
the time to write to the PFS using IOR for the Cactus check-
points. For the schemes that aggregate, the number of writers
is N/32 and the data transferred per reader/writer is 1.2 GB;
for the schemes that do not aggregate, the number of writers
is N and the data transferred is 87 MB per reader/writer. We
find that aggregating the checkpoints in MCRENGINE results
in better I/O scalability and reduces performance variability
compared to non-aggregated I/O, particularly for read (i.e.,
restart) operations. Although unclear due to the overhead in-
crease with C+NoAgg-read, Figure 11 shows that aggregation
improves write performance up to 26%.

C. Checkpoint and Restart Overheads
We now compare processing and transfer overhead using

the MCRENGINE checkpoint and restart schemes. Figures 12
and 13 show the best case average of the measured values of
IOR for an application run with 15,408 processes, collected
over several days at different times. The numbers beside each
step correspond to the steps in Table I and II.

0!

200!

400!

600!

800!

1000!

1200!

1400!

12
8!

25
6!

51
2!

10
24
!

20
48
!

40
96
!

81
92
!

Av
er

ag
e

To
ta

l T
im

e
(s

ec
)!

of Processes (N)!

C+NoAgg-write! Agnostic+Agg-write!
C+NoAgg-read! Agnostic+Agg-read!

Fig. 11: Benefit of Aggregation for I/O Performance

0!

50!

100!

150!

200!

250!

300!

350!

N
oC
+N
oA
gg
!

C
+N
oA
gg
!

N
oC
+A
gg
!

A
gn
os
tic
+A
gg
!

Aw
ar
e+
A
gg
!

N
oC
+N
oA
gg
!

C
+N
oA
gg
!

N
oC
+A
gg
!

A
gn
os
tic
+A
gg
!

Aw
ar
e+
A
gg
!

ALE3D! Cactus!

Av
er

ag
e

C
he

ck
po

in
t S

to
ri

ng
 O

ve
rh

ea
d

(s
ec

)!

Local_read(3a)! Collect_header(5)! Classify_similarity(6a)!

Fetch(7b)! Merge(7c)! Variable_compress!

Local_write(9a)! Parallel_Gzip! PFS_write(9b)!

Fig. 12: End-to-End Checkpointing Overhead

We make several observations for checkpointing. First, data-
aware compression takes more computation time than data-
agnostic and the schemes that only use Gzip or do not
compress. However, the checkpoint phase does not occur in
the appliation’s critical path so that overhead does not affect
performance. Second, fetch time for Cactus is higher than
ALE3D because it has 5⇥ more variables. Third, the smaller
file sizes that result from data-aware compression mean that
MCRENGINE uses far less network resources when transferring
these checkpoints. Data-aware compression reduces the I/O
time by 92% and 86% over data-agnostic (Agnostic+Agg vs
Aware+Agg) for ALE3D and Cactus. Finally, MCRENGINE
reduces checkpointing overhead by up to 87% over cases with-
out aggregation (NoC+NoAgg vs Aware+Agg for ALE3D),
and up to 32% for cases without compression (NoC+Agg vs
Aware+Agg for Cactus). This reduction allows applications to
checkpoint more frequently, which improves fault-tolerance.

Figure 13 shows the restart overhead results. Since restarts
are on the application’s critical path, lower overhead implies
better end-to-end performance. We again make several ob-
servations. Data-aware compression reduces restart overhead
by more than 62% compared to the current state of the
practice (NoC+NoAgg vs, Aware+Agg) for ALE3D. It reduces
overhead by more than 80% compared to only compressing in-

0!

100!

200!

300!

400!

500!

600!

N
oC
+N
oA
gg
!

C
+N
oA
gg
!

N
oC
+A
gg
!

A
gn
os
tic
+A
gg
!

Aw
ar
e+
A
gg
!

N
oC
+N
oA
gg
!

C
+N
oA
gg
!

N
oC
+A
gg
!

A
gn
os
tic
+A
gg
!

Aw
ar
e+
A
gg
!

ALE3D! Cactus!

Av
er

ag
e

R
es

ta
rt

 O
ve

rh
ea

d
(s

ec
)!

PFS_read(1a)! Parallel_Gunzip! Local_read(1b)!

Variable_decompress! Send_to_CNC(3)! Local_write(6)!

Fig. 13: End-to-End Restart Overhead

dividual checkpoints (C+NoAgg vs Aware+Agg). Second, net-
work transfer time dominates restart overhead for cases with-
out aggregation, compared to CPU time for the MCRENGINE
data-aware scheme. Converting a network-bound problem to a
CPU-bound problem improves scalability. Finally, data-aware
compression significantly reduces network load by reading less
data from the PFS compared with the data-agnostic case. The
network I/O time for data-aware compression is 43% and 71%
less than that of data-agnostic (Agnostic+Agg vs Aware+Agg)
compression for ALE3D and Cactus.

D. Discussion
We observe writing to the PFS incurs the largest portion

of the total overhead. Thus, our selection of the scheme that
provides the highest compression ratio results in the least write
time, which makes our scheme selection independent of sys-
tem characteristics for large checkpoint files. However, system
specifications such as I/O, network, and CPU characteristics,
will affect the scheme’s performance with smaller checkpoint
files when computation overhead dominates network overhead.
In that case, another selection metric could be the ratio
between compression and operation time overhead.

MCRENGINE could be made adaptive by evaluating
schemes periodically and selecting the best one for that check-
point set. Also, MCRENGINE currently selects the compression
algorithm for each data type based on published results. An
adaptive MCRENGINE could sample their compression ratios
to select these algorithms dynamically.

We used checkpoints from a variety of runs – both large
and small. The ALE3D checkpoint set (the largest set), in
particular, is from a production run and shows that the benefits
of MCRENGINE increase with checkpoint size. The smaller
checkpoints (from Cosmology and Implosion) show less ben-
efit. Currently, we use input sets provided by the community.
Configuring these applications to run longer and to take larger
checkpoints requires application-specific knowledge.

VIII. RELATED WORK

Other researchers have investigated reducing the size of
checkpoints by writing less data in the checkpoints or by com-

pressing the checkpoint files. Incremental checkpointing re-
duces the size of checkpoints by writing changes in application
data between full checkpoints [30]–[33]. These approaches are
orthogonal to our work, as incremental checkpoints can be
compressed for further savings [34].

Plank and Li compressed checkpoints to fit them in main
memory [35], using a variation of Algorithm 1 [36]. They
reported compression factors of 10 to 96 percent. They
found that compression was beneficial with large and highly
compressible checkpoints and when the compression factor
exceeded the ratio of the disk write speed to compression
speed. Li and Fuchs did not find any advantage in compressing
checkpoints with an LZW algorithm on a uniprocessor system
despite observing good compression factors since compres-
sion time exceeded uncompressed write time [37]. Islam et.
al. [38] found that compression and decompression overheads
dominated checkpointing and restart times but the decreased
network transfer time of the smaller files outweighed the
higher overheads, especially with increasing checkpoint size.
Ansel et. al. [39] also found that the time to compress
checkpoints resulted in longer checkpoint times when writing
to node-local disks although the disparity in restart times was
smaller. These approaches all use data-agnostic compression
while we investigate data-aware techniques. To the best of our
knowledge, we are the first to investigate a data-aware com-
pression approach and cross-process merge and compression
for parallel applications with many processes.

Bautista-Gomez et. al. [40] developed a topology-aware re-
liable checkpointing library that provides reliability in cluster
environments, which is different from the scalability challenge
that we address. Wu et. al. [41] developed a compression
scheme for bitmaps and demonstrated that it reduces bitmap
index sizes and database query response time.

Several researchers have explored reducing the cost of
checkpointing and writing to the file system. To reduce the
number of writes to the file system, and ultimately to reduce
checkpoint writing cost, Ouyang et. al. [42] cache writes of
small and medium sizes within a node in order to aggregate
them. Bautista-Gomez et. al. [43] avoid the I/O bottleneck
of disk-based checkpointing and the issues of classic diskless
checkpointing. These approaches are complementary to ours.
They reduce the cost of writing data while our work reduces
the amount of data written.

IX. CONCLUSION

We presented MCRENGINE, a novel scheme to compress
checkpoints across processes. MCRENGINE exploits semantic
information in checkpoints to put similar data, i.e., with the
same data type and name, close together to improve com-
pression. We implemented several different schemes to inter-
leave data from multiple checkpoints and found that different
schemes provide the best results for different applications.

We evaluated MCRENGINE and the different interleaving
schemes through four real-world computational simulations in
terms of the compression ratio and overhead. We found that
the amount of compression gained from each scheme varied

depending upon how the data was laid out across multiple
processes. For some applications, similar data occur in the
checkpoint from a single process, while for others, the similar
data are striped in blocks and distributed across multiple
processes. Thus, the best approach varies. Our compression
schemes are as much as 115% better in reducing checkpoint
size than simply applying Gzip compression to concatenated
checkpoints. As expected, MCRENGINE spends more com-
putational time than simply applying compression; however,
transferring less data overall with fewer concurrent writers
reduced the overhead of writing to the parallel file system.
MCRENGINE converts network load to computational load; a
fact that is crucial for making MCRENGINE scale well with in-
creasing application size. Since the parallel file system is often
the bottleneck, this method reduces checkpointing overhead by
up to 87%. Further, smaller files reduce restart times by up to
62%, a benefit that is particularly important since they occur
on the application’s critical path. In conclusion, by reducing
the time to store and retrieve checkpoints, MCRENGINE makes
checkpointing-based fault-tolerance in large systems practical.

X. ACKNOWLEDGEMENT

LLNL-CONF-554251: This article has been authored by
Lawrence Livermore National Security, LLC under Contract
No. DE-AC52-07NA27344 with the U.S. Department of En-
ergy. Accordingly, the U.S. Government retains and the pub-
lisher, by accepting the article for publication, acknowledges
that the U.S. Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the
published form of this article or allow others to do so, for
U.S. Government purposes.

This work was also supported, in part, by the National
Science Foundation under grant No. 0833115-CCF.

REFERENCES

[1] J. N. Glosli, D. F. Richards, K. J. Caspersen, R. E. Rudd, J. Gunnels,
and F. Streitz, “Extending Stability Beyond CPU Millennium: a Micron-
Scale Atomistic Simulation of Kelvin-Helmholtz Instability,” in Proceed-
ings of the 2007 ACM/IEEE Conference on Supercomputing. ACM,
2007, p. 58.

[2] B. Schroeder and G. A. Gibson, “Understanding Failures in Petascale
Computers,” in Journal of Physics: Conference Series, vol. 78. IOP
Publishing, 2007, p. 012022.

[3] S. Amarasinghe, D. Campbell, W. Carlson, A. Chien, W. Dally, E. Elno-
hazy, M. Hall, R. Harrison, W. Harrod, and K. Hill, “ExaScale Software
Study: Software Challenges in Extreme Scale Systems,” DARPA IPTO,
Air Force Research Labs, Tech. Rep, 2009.

[4] E. N. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson, “A Survey
of Rollback-Recovery Protocols in Message-Passing Systems,” ACM
Computing Surveys (CSUR), vol. 34, no. 3, pp. 375–408, 2002.

[5] E. N. Elnozahy and J. S. Plank, “Checkpointing for Peta-Scale Systems:
A Look into the Future of Practical Rollback-Recovery,” IEEE Trans-
actions on Dependable and Secure Computing, vol. 1, no. 2, pp. 97 –
108, April-June 2004.

[6] P. Lemarinier, A. Bouteiller, G. Krawezik, and F. Cappello, “Coordinated
Checkpoint Versus Message Log for Fault Tolerant MPI,” International
Journal of High Performance Computing and Networking, vol. 2, no. 2,
pp. 146–155, 2004.

[7] F. Petrini, “Scaling to Thousands of Processors with Buffer Coschedul-
ing,” in Scaling to New Height Workshop, Pittsburgh, PA, 2002.

[8] “The ASC Sequoia Draft Statement of Work,”
https://asc.llnl.gov/sequoia/rfp/02 SequoiaSOW V06.doc, 2008.

[9] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “Design,
Modeling, and Evaluation of a Scalable Multi-level Checkpointing
System,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC’10,
November 2010, pp. 1 –11.

[10] K. Iskra, J. W. Romein, K. Yoshii, and P. Beckman, “ZOID: I/O-
Forwarding Infrastructure for Petascale Architectures,” in Proceedings
of the 13th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. ACM, 2008, pp. 153–162.

[11] R. Ross, J. Moreira, K. Cupps, and W. Pfeiffer, “Parallel I/O on the IBM
Blue Gene/L System,” Blue Gene/L Consortium Quarterly Newsletter,
Tech. Rep., First Quarter, 2006.

[12] R. Hedges, B. Loewe, T. McLarty, and C. Morrone, “Parallel File
System Testing for the Lunatic Fringe: The Care and Feeding of
Restless I/O Power Users,” in Proceedings of the 22nd IEEE/13th NASA
Goddard Conference on Mass Storage Systems and Technologies. IEEE
Computer Society, 2005, pp. 3–17.

[13] T. H. Cormen and D. Kotz, “Integrating Theory and Practice in Parallel
File Systems,” in Proceedings of the 1993 DAGS/PC Symposium, vol. 7,
1993.

[14] H. Shan and J. Shalf, “Using IOR to Analyze the I/O Performance of
XT3,” in Proceedings of the 49th Cray User Group (CUG) Conference,
2007.

[15] T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke, E. Seidel,
and J. Shalf, “The Cactus Framework and Toolkit: Design and
Applications,” in Vector and Parallel Processing – VECPAR’2002, 5th
International Conference, Lecture Notes in Computer Science. Berlin:
Springer, 2003. [Online]. Available: http://edoc.mpg.de/3341

[16] G. Allen, W. Benger, T. Dramlitsch, T. Goodale, H. C. Hege, G. Lan-
fermann, A. Merzky, T. Radke, E. Seidel, and J. Shalf, “Cactus Tools
for Grid Applications,” Cluster Computing, vol. 4, no. 3, pp. 179–188,
2001.

[17] B. O’Shea, G. Bryan, J. Bordner, M. Norman, T. Abel, R. Harkness,
and A. Kritsuk, “Introducing Enzo, an AMR Cosmology Application,”
Adaptive Mesh Refinement – Theory and Applications, pp. 341–349,
2005.

[18] G. Bronevetsky, K. Pingali, and P. Stodghill, “Experimental Evaluation
of Application-Level Checkpointing for OpenMP Programs,” in Pro-
ceedings of the 20th Annual International Conference on Supercomput-
ing, 2006, pp. 2–13.

[19] “Who Uses HDF?” http://www.hdfgroup.org/users.html.
[20] “The NetCDF Users Guide,” http://www.unidata.ucar.edu/software/

netcdf/docs/netcdf.pdf.
[21] M. Burtscher and P. Ratanaworabhan, “FPC: A High-speed Compres-

sor for Double-Precision Floating-Point Data,” IEEE Transactions on
Computers, pp. 18–31, 2008.

[22] P. Lindstrom and M. Isenburg, “Fast and Efficient Compression of
Floating-Point Data,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 12, no. 5, pp. 1245–1250, 2006.

[23] L. Reinhold, “QuickLZ,” 2009.
[24] “A Parallel Implementation of GZIP for Modern Multi-processor, Multi-

core Machines,” http://zlib.net/pigz/.
[25] E. Seidel and W. Suen, “Numerical Relativity as a Tool for Computa-

tional Astrophysics,” Journal of Computational and Applied Mathemat-
ics, vol. 109, no. 1-2, pp. 493–525, 1999.

[26] J. Li, W. Liao, A. Choudhary, and V. Taylor, “I/O Analysis and Opti-
mization for an AMR Cosmology Application,” in Cluster Computing,
2002. Proceedings. 2002 IEEE International Conference on. IEEE,
2002, pp. 119–126.

[27] R. Liska and B. Wendroff, “Comparison of Several Difference Schemes

on 1D and 2D Test Problems for the Euler Equations,” SIAM Journal
of Scientific Computing, vol. 25, no. 3, pp. 995–1017, 2003.

[28] “Capability Cluster Sierra at LLNL,” https://computing.llnl.gov/?set=
resources&page=OCF resources#sierra.

[29] H. Shan, K. Antypas, and J. Shalf, “Characterizing and Predicting the
I/O Performance of HPC Applications Using a Parameterized Synthetic
Benchmark,” in Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, 2008, p. 42.

[30] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira, “Adaptive Incre-
mental Checkpointing for Massively Parallel Systems,” in Proceedings
of the 18th Annual International Conference on Supercomputing (ICS),
2004, pp. 277–286.

[31] S. I. Feldman and C. B. Brown, “IGOR: A System for Program
Debugging via Reversible Execution,” in Proceedings of the 1988

ACM SIGPLAN and SIGOPS Workshop on Parallel and Distributed
Debugging (PADD), 1988, pp. 112–123.

[32] N. Naksinehaboon, Y. Liu, C. B. Leangsuksun, R. Nassar, M. Paun,
and S. L. Scott, “Reliability-Aware Approach: An Incremental Check-
point/Restart Model in HPC Environments,” in Proceedings of the 2008
Eighth IEEE International Symposium on Cluster Computing and the
Grid (CCGRID), 2008, pp. 783–788.

[33] K. Ferreira, R. Riesen, R. Brighwell, P. Bridges, and D. Arnold, “lib-
hashckpt: Hash-Based Incremental Checkpointing Using GPUs,” Recent
Advances in the Message Passing Interface, pp. 272–281, 2011.

[34] J. S. Plank, J. Xu, and R. H. B. Netzer, “Compressed Differences: An Al-
gorithm for Fast Incremental Checkpointing,” University of Tennessee,
Tech. Rep. CS-95-302, August 1995.

[35] J. S. Plank and K. Li, “ickp: A Consistent Checkpointer for Multi-
computers,” IEEE Parallel & Distributed Technology, vol. 2, no. 2, pp.
62–67, 1994.

[36] M. Burrows, C. Jerian, B. Lampson, and T. Mann, “On-line Data
Compression in a Log-Structured File System,” ACM SIGPLAN Notices,
vol. 27, pp. 2–9, September 1992.

[37] C. Li and W. Fuchs, “CATCH - Compiler-Assisted Techniques for
Checkpointing,” in 20th International Symposium on Fault-Tolerant
Computing, June 1990, pp. 74–81.

[38] T. Z. Islam, S. Bagchi, and R. Eigenmann, “FALCON: A System
for Reliable Checkpoint Recovery in Shared Grid Environments,” in
Proceedings of the Conference on High Performance Computing Net-
working, Storage and Analysis. ACM, 2009, pp. 1–12.

[39] J. Ansel, K. Arya, and G. Cooperman, “DMTCP: Transparent Check-
pointing for Cluster Computations and the Desktop,” in 23rd IEEE
International Parallel and Distributed Processing Symposium, Rome,
Italy, May 2009.

[40] L. A. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
N. Maruyama, and S. Matsuoka, “FTI: High Performance Fault Tol-
erance Interface for Hybrid Systems,” in International Conference for
High Performance Computing, Networking, Storage and Analysis (SC).
IEEE, 2011, pp. 1–12.

[41] K. Wu, E. J. Otoo, and A. Shoshani, “Optimizing Bitmap Indices
with Efficient Compression,” ACM Transactions on Database Systems
(TODS), vol. 31, no. 1, pp. 1–38, 2006.

[42] X. Ouyang, K. Gopalakrishnan, and D. K. Panda, “Accelerating Check-
point Operation by Node-Level Write Aggregation on Multicore Sys-
tems,” in International Conference on Parallel Processing. IEEE, 2009,
pp. 34–41.

[43] L. A. Bautista-Gomez, N. Maruyama, F. Cappello, and S. Matsuoka,
“Distributed Diskless Checkpoint for Large Scale Systems,” in 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Com-
puting. IEEE, 2010, pp. 63–72.

