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Abstract—Hypervisors are widely used in cloud environments
and their impact on application performance has been a topic
of significant research and practical interest. We conducted
experimental measurements of several benchmarks using Hadoop
MapReduce to evaluate and compare the performance impact
of three popular hypervisors: a commercial hypervisor, Xen,
and KVM. We found that differences in the workload type
(CPU or I/O intensive), workload size and VM placement
yielded significant performance differences among the hypervi-
sors. In our study, we used the three hypervisors to run several
MapReduce benchmarks, such as Word Count, TestDSFIO, and
TeraSort and further validated our observed hypothesis using
microbenchmarks. In our observation for CPU-bound bench-
mark, the performance difference between the three hypervisors
was negligible; however, significant performance variations were
seen for I/O-bound benchmarks. Moreover, adding more virtual
machines on the same physical host degraded the performance
on all three hypervisors, yet we observed different degradation
trends amongst them. Concretely, the commercial hypervisor is
46% faster at TestDFSIO Write than KVM, but 49% slower in
the TeraSort benchmark. In addition, increasing the workload
size for TeraSort yielded completion times for CVM that were
two times that of Xen and KVM. The performance differences
shown between the hypervisors suggests that further analysis
and consideration of hypervisors are needed in the future when
deploying applications to cloud environments.

I. INTRODUCTION

The recent growth in cloud environments has accelerated the

advancement of virtualization through hypervisors; however,

with so many different virtualization technologies, it is difficult

to ascertain how different hypervisors impact application per-

formance and whether the same performance can be achieved

for each hypervisor. Many different hypervisors (both open-

source and commercial) exist today, each with their own

advantages and disadvantages. This introduces a large number

of new and challenging research questions. Some past work

has focused on virtualization overhead of a single hypervisor

on a particular application or microbenchmark [4]–[6]. Other

work [11], [12], [15] has been aimed to provide a quantitative

performance comparison between different hypervisors using

microbenchmarks.

In this paper we try to provide an in-depth performance

analysis of two commonly used open-source hypervisors (i.e.,

Xen and KVM) and a commercial hypervisor (referred to as

CVM). Through our experiments, we aim to distinguish perfor-

mance similarities and differences among the three hypervisors

when running Hadoop MapReduce benchmarks. MapReduce

has become an integral component of data-intensive applica-

tions in the cloud and many companies are running MapRe-

duce applications in virtualized environments. Also, since the

recent trend has been to colocate virtual machines to lower

costs and increase utilization, in our experiments, we run a

Hadoop cluster with all nodes residing in one physical host.

To analyze our experiments, we run system monitoring tools

in each virtual machine and at the host level to capture system

performance. We also validate our Hadoop benchmark results

with microbenchmarks from Filebench.

Through our large scale experiments, we observed that for

some CPU-bound MapReduce benchmarks (such as Word

Count), the performance between the three hypervisors was

negligible with the highest percent difference being 15%;

however, we found that for I/O-bound benchmarks, there were

significant performance variations among the three hypervi-

sors. For example, the commercial hypervisor is 46% faster at

the data generation benchmark TestDFSIO Write than KVM,

but 49% slower in the disk and CPU intensive TeraSort.

These macro-benchmark results were verified using I/O mi-

crobenchmark results collected using FileBench. In addition,

we found that that the three hypervisors showed different and

interesting trends when adding more virtual machines to the

same physical host and also adding additional workload size

to the benchmarks.

In this paper, we do not deal with the speedup of Hadoop

MapReduce or Hadoop benchmarks. Instead, the contribution

of this paper is to provide some useful cases to help decide

when to use which hypervisor for a particular workload.

Generally, this study shows that virtualization technologies

are a relatively immature technology and significantly more

experimental analysis will be necessary in order for them to

become truly suitable for mission-critical applications. Also,

it is important to understand the characteristics about an

application (e.g. is it CPU intensive or I/O intensive) in order

to better determine the right virtualization platform to use.

The remainder of this paper is structured as follows.

Section II provides an overview of the experimental setup,

the different hypervisors used, and the benchmarks used in

our experiments. In Section III we study the hypervisor’s

performance under different MapReduce benchmarks, and

Section IV contains the results when scaling out VMs in a
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single physical host and changing VM placement. Related

work is summarized in Section V, and Section VI concludes

the paper.

II. BACKGROUND

In this section, we briefly discuss our experimental approach.

In Section II-A, we give an overview of our system. Sec-

tion II-B has a brief description of each hypervisor used in our

experiments, and in Section II-C, we provide a brief overview

of the benchmarks run in this paper.

A. Overview of Experiments

Table I provides an overview of physical and virtual config-

urations we use for our experiments. We have selected the

exact same virtual machine configurations across all three

hypervisors (e.g., OS, Memory, disk). In terms of hypervisor

configuration, we have setup each hypervisor and virtual

machine using best practice guides. We use the Elba toolkit

[1], [7], [8] to automatically generate and run the experiment

as well as collect the results. During the runtime of each

benchmark, with the exception of the CVM host, we run the

system monitoring tool collectl [2] to collect system statistics

in both the physical machine and each of the guest VMs with

one second granularity. A proprietary monitoring tool was run

on the CVM host with two second granularity.

TABLE I: Hardware and VM Configuration.

Physical Machine
Processor 2 X Intel(R) Xeon(R) @ 2.27GHz (Quad)
Memory 16GB
Cache 2 X 8MB
Operating System Debian Linux/Fedora 16

Virtual Machine
Virtual CPUs 1
Memory 2GB
Disk Space 50GB
Operating System Fedora 16

B. Hypervisors

We use three different hypervisors in our experiment: a com-

mercial hypervisor, Xen, and KVM. There are many different

commercial virtualization technologies each of which aim to

provide similar or better performance and features as open-

source hypervisors; however, most of them have licensing and

copyright issues which prevent publications of performance

and comparison data. Thus, in our study, we selected one of the

commonly used commercial hypervisor (hereafter CVM). Xen

is an open-source virtual machine monitor which is structured

with the Xen hypervisor as the lowest and most privileged

layer. Above this layer are one or more guest operating

systems, which the hypervisor schedules across the physical

CPUs. Xen can work both in para-virtualized or HVM mode;

in the first, the guest operating system must be modified to be

executed. Through paravirtualization, Xen can achieve very

high performance. The HVM mode offers new instructions

to support direct calls by a para-virtualized guest/driver into

the hypervisor, typically used for I/O or other so-called hyper

calls. KVM (also known as Linux KVM) is a full virtualization

solution for Linux on x86 hardware containing virtualization

extensions (Intel VT or AMD-V). It consists of a loadable

kernel module, kvm.ko, which provides the core virtualization

infrastructure, and a processor specific module, kvm-intel.ko

or kvm-amd.ko. KVM requires a modified version of qemu, a

well-known virtualization software.

C. Benchmarks

We run an unmodified Hadoop implementation of the MapRe-

duce framework. Our Hadoop cluster comprises of 4 nodes

that all reside in the same physical machine. Each node has

one virtual core pinned to a different physical core, allotted

2 GB of memory, 50 GB of disk space, and is set to run

at most 2 map tasks or 2 reduce tasks. We run 3 different

Hadoop benchmarks found in version 1.0.2 including TestDF-

SIO Write/Read, and TeraSort and 3 benchmarks within the

HiBench suite, namely, Word Count, K-Means Clustering, and

Hivebench. TestDFSIO is a read and write benchmark that

stresses the Hadoop Distributed File System (HDFS). It is

mainly used to test the I/O speed of the cluster. TeraSort

is used to sort a specified size of 100-byte records. The

TeraSort benchmark is CPU, network, and I/O intensive and

is usually considered a representative benchmark for real

MapReduce workloads. In the TestDFSIO Write benchmark,

the dataset that was generated was 10 GB with a replication

factor of 3. Each of these benchmarks was run ten times

and the average was used as the result of the experiments.

The I/O-microbenchmark, Filebench, was also used to validate

some of our macrobenchmark results. Filebench was run on

a single VM with the same configuration as the Hadoop

node. During Filebench experiments, only the VM running

the microbenchmark was turned on, with all other VMs in the

physical host turned off.

III. EXPERIMENTAL RESULTS

We ran six different Hadoop MapReduce benchmarks in

our experiments. Three of the benchmarks (TestDFSIO

Write/Read and TeraSort) can be found in the latest Hadoop

distributions. The last three benchmarks (Word Count, K-

Means Clustering and Hivebench) were run from the HiBench

benchmark suite [3]. We characterize these six benchmarks

into three categories: CPU-bound, I/O-bound and both CPU

and I/O-Bound benchmarks. CPU-bound benchmarks use a

significant amount of CPU and the performance is limited due

to a lack of CPU power. Similarly, I/O-bound benchmarks use

a significant amount of disk (also significant CPU but only

in terms of I/O Wait). CPU and I/O-Bound benchmarks use

a significant amount of CPU and I/O, with the CPU being

utilized both for computation and waiting for I/O.

A. CPU-Bound Benchmarks

We ran several CPU-bound benchmarks within the HiBench

benchmarking suite including Word Count, K-Means Clus-
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(a) CPU-Bound Benchmark Completion Times.
The performance difference is small.
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(c) Word Count Average Disk Utilization at VM
Level. The disk utilization for the VM is low.

Fig. 1: CPU-Bound Benchmark Results and Word Count Statistics. The performance difference for these benchmarks as seen in Figure 1(a)
is negligible between the different hypervisors. A representative benchmark, Wordcount, shows high CPU utilization and low disk utilization
during the job as seen in Figure 1(b) and 1(c).

tering, and Hivebench. As previously mentioned, the CPU-

benchmarks are characterized by a high CPU percentage

throughout the experiment with most of the CPU coming from

the user component. We found in all CPU-bound benchmarks

that the performance impact when using different hypervi-

sors was negligible. Figure 1(a) shows the completion times

for the four mentioned CPU-bound benchmarks. As shown,

the performance difference between the hypervisors for each

benchmark is not very significant with the highest percentage

difference being 15.7% for Hive Aggregate between the com-

mercial hypervisor and Xen. Figure 1(b) shows the average

CPU utilization during Word Count at the VM level. The

benchmark shows very high saturation of the CPU for each hy-

pervisor. Figure 1(c) shows the average disk utilization during

Word Count also at the VM level. The disk is being utilized

at an average of less than 40% for each hypervisor, but this

utilization is not high compared to the I/O-bound benchmarks

in the next section. The CPU and disk utilization statistics

for the K-Means Clustering and Hivebench experiments are

similar to Word Count and are omitted.

B. I/O-Bound Benchmarks

We ran TestDFSIO Write on a 4 node Hadoop cluster for

each hypervisor and varied the write size to HDFS from

5GB to 25GB with 5GB increments. Figure 2(a) shows the

disk write throughput for the hypervisors recorded at the host

level. CVM has the fastest write throughput for all experiment

sizes at an average of 69.0 MB/s while KVM has the slowest

write throughput for all sizes at an average of 42.0 MB/s (a

percent difference of 48.6%). These results directly correlate

to the completion times for the experiment as shown in

Figure 2(b). The average percent difference for TestDFSIO

Write to generate the data for CVM and KVM is 24.2%.

The difference in write throughput and completion times

between the three hypervisors is significant. We found that

the performance variation is due to the efficiency of request

merging when processing a large number of write requests to

disk. Figure 2(c) shows the number of write requests merged

per second at the VM level. I/O request merging increases disk

efficiency by combining requests servicing similar disk regions

into one request. When I/O requests are merged at the VM

level, it means there will be less privileged calls to the kernel.

We see in this figure that CVM is able to merge a greater

number of write requests to the disk than the other hypervisors.

We ran a disk write benchmark within Filebench to validate

the TestDFSIO Write results and are shown in Figure 3. We

see a similar trend in the microbenchmark that we saw for

the host level write throughput in Figure 2(b), but the CVM

throughput for the microbenchmark is much higher than Xen

and KVM.

We ran two I/O-bound benchmarks from Hadoop, namely

TestDFSIO Write and TestDFSIO Read. The TestDFSIO

benchmarks are used to test the health of the Hadoop Dis-

tributed File System by measuring total file system throughput.

The I/O-bound benchmarks are characterized by high disk

utilization and low CPU utilization (for the user component).

Figure 4(a) shows the read throughput at the host level for

I/O-bound benchmark TestDFSIO Read. We ran TestDFSIO

Read with the same setup as with TestDFSIO Write using

a 4 node Hadoop cluster for each hypervisor and varied the

experiment size from 5GB to 25GB with 5GB increments.

For the read-intensive benchmark TestDFSIO Read, we see

a reverse in the trend as in the TestDFSIO Write scenario.

KVM reads data at an average throughput of 23.2 MB/s for

the four data sizes while CVM is only able to read at an

average throughput of 6.8 MB/s (a 109% difference). This

read throughput confirms the completion times seen for the

TestDFSIO Read benchmark shown in Figure 4(b). We looked

into the VM level system statistics to diagnose CVM’s poor

read performance. Figure 5(a) and Figure 5(b) shows the

average CPU Used % and CPU Disk Wait % at the VM level,

respectively. Overall, the CPU usage for the VMs is quite

high and most of the CPU being used is for I/O; however,

if we look at the physical core utilizations for these VCPUs

at the host level as seen in Figure 5(c)), we see that only

KVM is heavily utilizing the physical CPUs. CVM’s physical

CPU usage is near 0% for all four cores yet the VMs report
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CVM is the fastest with an average throughput of
69.0 MB/s and KVM is the slowest with an average
of 42.0 MB/s.

 0

 5

 10

 15

 20

 5  10  15  20  25

C
om

pl
et

io
n 

T
im

e 
[m

in
]

Data Size [GB]

CVM
Xen

KVM

(b) TestDFSIO Write Completion Times. The com-
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(c) Write Requests Merged Per Second at VM
Level. CVM is able to merge more write requests
and thus make less system calls to the hypervisor.

Fig. 2: TestDFSIO Write Results and Disk Statistics. Figure 2(a) shows the write throughput at the host level for each experiment size. The
write throughput remains relatively constant for each hypervisor which yields a linear trend in completion times as the write size increases
as shown in Figure 2(b). CVM performs the best and KVM performs the worst when writing to HDFS and this performance difference is
due to more efficient write request merging in CVM compared to Xen and KVM as seen in Figure 2(c).
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Fig. 3: Filebench Write Microbenchmark. The write microbenchmark
results support the disk write throughput trend seen in TestDFSIO
Write.

heavy utilization of its VCPUs. We believe the disparity here

is due to a disk bottleneck and inefficiencies of the CVM

dealing with numerous read requests going to the hypervisor.

We suspect that a system call in the commercial hypervisor is

locking the system and blocking subsequent privileged calls

to the hypervisor from the VMs. This is an ongoing work

that we will address in future papers. We also ran a disk read

microbenchmark within Filebench to validate the TestDFSIO

Read results and are shown in Figure 4(c). We see that the

read microbenchmark results also has a matching trend with

the TestDFSIO Read disk read throughputs in Figure 4(a).

C. CPU and I/O-Bound Benchmarks

TeraSort is both a CPU and disk intensive benchmark. Each

worker has to read data from disk, perform the sort (where

intermediate data gets written back to the disk), sends it to the

reducer node where the reducer again performs an aggregate

sort and writes the final result back to disk. We ran TeraSort

with the same previous setup as in TestDFSIO Read/Write

with 4 slave nodes with a sort size ranging from 5GB to

25GB in 5GB increments. The completion times for TeraSort

are shown in Figure 6(a). We found that for a combination of

heavy read and write-intensive I/O and CPU used for sorting,

Xen performed the best and was able to sort the data the

quickest. CVM had the worst performance for all sort sizes

while KVM’s performance was slightly worse than Xen’s

performance.
Figure 6(c) shows the completion times for each phase of

the TeraSort job. During the map phase, each node reads data

from disk and sorts it. We see that Xen and KVM complete

this phase the fastest and CVM the slowest which is similar

to the results found in the TestDFSIO read benchmark (KVM

was fastest and CVM was slowest); however, for TestDFSIO

Read, KVM was faster than Xen, but in this map phase Xen

is faster than KVM. We believe this difference is due to the

added CPU needed to compute the sort on the data; whereas

Xen can use dom0 to offload some of the disk read which

frees up CPU for the VMs in Xen to perform the sort, the

KVM VMs must use its own CPU to read and perform the

sort. In the next shuffle and sort phase, we see that Xen was

again the fastest followed by KVM and then CVM. Generally

in the shuffle phase, data is moved around the different nodes

and sorted again which consumes both network and CPU. In

our setup, all the nodes reside on the same physical machine

so the network activity needed to do the shuffle is actually

disk activity inside the physical machine. We can see here

that again Xen is able to perform this phase the fastest due

to dom0 support. KVM performs this step faster than CVM

because it can read from disk faster. During the reduce phase,

we see that Xen and CVM actually take around the same time

to complete this phase (Xen is a little faster than CVM) while

KVM takes the longest time. These results also parallel to the

TestDFSIO Write results. During the reduce phase, all the data

is in the reducer VM and the reducer VM performs one final

sort and writes the data back to disk. Although CVM was able

to write faster than Xen in the TestDFSIO Write benchmark

and Filebench microbenchmark, here Xen is a little faster than

CVM. The distinction here is that dom0 is able to free up CPU

so that the reducer VM can use more CPU to perform the sort.
In TestDFSIO Write, Xen was found to be slower than
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the fastest completion time at all data sizes for
TestDFSIO.

T
hr

ou
gh

pu
t [

M
B

/s
]

 0

 20

 40

 60

 80

 100

 120

 140

CVM Xen KVM

(c) Filebench Read Microbenchmark. The mi-
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Fig. 4: TestDFSIO Read Results and Microbenchmark Measurement. Figure 4(a) shows that the read throughput for each hypervisor is
relatively constant. CVM’s throughput is less than 33% of KVM’s throughput and this difference can be seen in the completion times in
Figure 4(b). The Filebench read microbenchmark results in Figure 4(c) mirror the trend seen in the TestDFSIO Read benchmark.
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(c) Pinned CPU at Host Level

Fig. 5: TestDFSIO Read CPU data from VM and Host. To diagnose the poor read performance of CVM, we look at the average CPU
utilizations at the VM level as seen in Figure 5(a). The VMs for each hypervisor are using a significant amount of CPU and Figure 5(b)
reveals that the majority of this CPU is spent waiting for I/O; however, at the hypervisor level, the actual CPU for CVM shows very low
utilization while Xen and KVM exhibit moderate CPU utilization as seen in Figure 5(c). Our hypothesis is that there is I/O-read scheduling
contention within the CVM hypervisor which prevents it from performing well.

CVM. From our experiments, we see that Xen’s dom0 uses

a considerable amount of CPU to help process I/O requests.

Figure 7 shows the CPU utilizations for the unpinned cores

at the host level. The unpinned cores are the four cores

remaining in the physical machine that are not tied to a virtual

machine. The CVM and KVM hypervisors are not utilizing

the unpinned cores, but for Xen hypervisor, dom0 is using a

significant amount of CPU from the unpinned cores. We found

that over 90% of this CPU in each core for Xen was in the

I/O Wait component, which means Xen was using unpinned

cores to process I/O. This CPU usage by dom0 makes the

throughput of each VM in Xen for the read/write-intensive

TeraSort workload much faster.

IV. INCREASING PROCESSING PARALLELISM AND VM

PLACEMENT

We found several interesting phenomenon when we ran our

benchmarks. More specifically, each hypervisor exhibited dif-

ferent behavior when we tried to increase the processing

parallelism in the Hadoop cluster by co-locating more virtual

machines within the same physical host. For read and write

benchmarks, increasing parallelism degrades performance. For

both CPU and I/O-intensive workloads, increasing parallelism

may lead to improved performance, but increasing parallelism

too much may also degrade performance. Also, when we

changed the VM colocation strategy by adding a new physical

machine, we found that it is better to spread the VMs in the

cluster to as many different physical machines as possible.

A. Increasing Processing Parallelism Through Colocation

When VMs are added to the same physical host in I/O-

intensive benchmarks, the performance of these benchmarks

degrades significantly. Figure 8(a) and Figure 8(b) shows the

completion times for a 10GB TestDFSIO Write and TestDF-

SIO Read experiment when increasing the number of virtual

machines from 1 to 4 on the same physical host. Each VM has

the same specifications as the others used in the experiments

in this paper. We see that for the two I/O-bound benchmarks,

each hypervisor achieves the fastest completion time for the

data write and data read with only one VM in the cluster. In

fact, the performance of each hypervisor degrades significantly

when increasing the number of VMs from 1 to 2, with CVM

degrading much worse than the other two. For example, when

increasing the number of VMs from 1 to 2, CVM’s completion

time for TestDFSIO Write nearly doubles, and its completion

time for TestDFSIO Read increases six times. Interestingly,
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Fig. 7: TeraSort Unpinned CPU Utilization. Xen uses a considerable
amount of CPU from its unpinned cores. A majority of this CPU is
spent processing disk operations.

when increasing from 3 to 4 VMs in TestDFSIO Write, each

hypervisor’s throughput remains the same.

For TeraSort, we see a different trend. Figure 8(c) shows

the completion time for a 10GB TeraSort when increasing the

number of virtual machines from 1 to 4 on the same physical

host. The performance when increasing the number of virtual

machines from one to two actually improves performance for

each hypervisor. This improvement occurs because when there

is only one VM in the cluster for TeraSort, the bottleneck is

on CPU resources to perform the sort, not an I/O bottleneck.

When a second slave node is added, the extra computing power

shifts the CPU bottleneck to disk. When you increase the

number of VMs to three, you see that the I/O contention starts

to take over for CVM and KVM, with CVM’s completion time

dramatically increasing. Xen, through the help of dom0, is able

to maintain the same performance and does not suffer from

the same I/O contention. Furthermore, when the number of

VMs for CVM and KVM increase to four, the performance

improves again. The reason for this improvement may seem

strange but can be explained in Figure 9. The figure shows the

average and total read and write throughput for CVM when

increasing the number of VMs from 2 to 4. In Figure 9(a),

the average read and write throughput decreases for each VM

as the number of VM increases; however, the total read and

write throughput as shown in Figure 9(b) shows a different

trend. The total read and write throughput decreases from 2 to

3 VMs, but actually increases once the fourth VM is added.

This occurs because the extra throughput from the fourth VM

actually is greater than the throughput degradation lost adding

the fourth VM.

B. Changing VM Placement
To alleviate some of the disk contention issues encountered

by CVM for I/O-bound benchmarks, we propose to separate

out VMs into multiple physical hosts as possible. Figure 10(a)

shows the completion times for TestDFSIO Write and Read

on two different node placement configurations. The first

placement has two VMs co-located on a single physical host

while the second placement has two VMs, but each VM being

on a separate physical host. We see that when we choose not to

co-locate the performance improves for write and significantly

improves for the read case. In Figure 10(b), we have the

same experiment but with four VMs. The first scenario has

all four VMs on the same physical host, while the second

scenario has two VMs each on two physical hosts. Similarly,

we see that performance improves for both read and write

with the read case being much better. Although these results

don’t suggest co-locating virtual machines when running I/O-

intensive benchmarks, the better solution is to find ways to

minimize the disk contention for these types of benchmarks

within each hypervisor or for the actual application.

V. RELATED WORK

The increasing popularity of virtualization and cloud com-

puting has spawned very interesting research on private and
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(a) TestDSFIO Write 10GB Completion Times for
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(b) TestDSFIO Read 10GB Completion Times for
1-4 VMs. As processing parallelism increases, the
performance degrades.
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(c) TeraSort 10GB Completion Times for 1-4 VMs.
The addition of the second VM increases perfor-
mance by alleviating a CPU bottleneck.

Fig. 8: Effects of Adding VMs on the same Physical Host on TestDFSIO Write/Read and TeraSort. For TestDFSIO Write and Read as shown
in Figure 8(a) and 8(c), as more VMs are added to the same physical host, the completion time for the experiment increases. For TeraSort
in Figure 8(c), when increasing beyond 2 VMs, I/O scheduling contention makes the completion times increase for CVM and KVM, but
Xen deals with the I/O contention quite well and the completion times do not increase as the number of VMs increases.
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(b) Total Read and Write Throughput increases from 3 to 4 VMs

Fig. 9: The Average and Total Read and Write Throughput Using the Commercial Hypervisor. Increasing the number of VMs decreases the
average read and write throughput per VM, however the total throughput increases from 3 to 4 VMs due to the extra throughput from the
fourth VMs being greater than the degradation.

public clouds. Barham et al. [9] benchmarked Xen against

VMware Workstation and User-Mode Linux. They show that

Xen outperforms them on a range of micro-benchmarks and

system-wide tests. Clark et al. [10] repeated this performance

analysis of Xen in [9] and confirmed the high performance

of Xen claimed in [9]. Also they compared Xen on x86 with

IBM zServer and found that the former has better performance

than the latter. Interestingly, in our study we observed complex

results, where different hypervisor show different performance

characteristics for varying workloads.

VMware [11] provides a quantitative and qualitative com-

parison of VMwareESX Server 3.0.1 and open-source Xen

3.0.3. In CPU tests, such as SPECcpu2000 and Passmark, the

Xen hypervisor’s overhead is twice as much as VMwareESX

Server’s overhead. Xen hypervisor performs extremely poorly

in the Netperf tests having only 3-6 percent of the native

performance while VMware ESX Server delivers near native

performance. Xen argues that it is not fair to compare a

commercial product with a code base in [11], so they perform

an evaluation of the performance and scalability of VMware

ESX Server versus XenSource’s XenEnterprise [12], both of

which are commercial products. Using the same benchmark

as in [11], XenEnterprise performs as well as ESX in most

benchmark tests. XenEnterprise even outperforms in a couple

of areas such as compile time, Netperf and Passmark memory

operations. Also, XenEnterprise scales well to utilize multiple

CPUs to allow a wide variety of workloads to be run.

In an another study, Padala et al. [13] concentrate on com-

paring Xen’s and OpenVZ’s performance when used for con-

solidating multi-tiered applications. Their experimental results

show that Xen incurs higher overhead than OpenVZ does and

average response time can increase by over 400% in Xen and

only 100% in OpenVZ as the number of application instances

increases. This can be explained due to Xen having higher

L2 cache misses than OpenVZ. Meanwhile, Adams et al. [14]

compare software VMM (binary translation) with hardware-

assisted VMM. They show that software and hardware VMMs

both perform well on compute-intensive workloads. However,
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Fig. 10: Effects of Changing VM Placement Using the Commercial Hypervisor. Minimizing the number of VMs on a physical machine for
CVM drastically decreases the completion times for TestDFSIO Read and slightly improves the completion times for TestDFSIO Write.

if workloads include progressively more privileged operations

such context switches, memory mapping, I/O, interrupts and

system calls, both VMMs suffer overheads while software

outperforms hardware.

Deshane et al. [15] focus on three aspects of benchmarking

Xen and KVM: overall performance, performance isolation,

and scalability. They illustrate that Xen has excellent scalabil-

ity, while KVM has substantial problems with guests crashing

when it hosts more than 4 guests. KVM outperforms Xen

in isolation. In overall performance test, Xen has a better

performance than KVM on a kernel compile test, while KVM

outperforms Xen on I/O-intensive tests. Camargos et al. [16]

analyze the performance and scalability of six virtualization

technologies (KQEMU, KVM, Linux-VServer, OpenVZ, Vir-

tualBox and Xen) for Linux. They find Linux-Server delivers

little or even no overhead in all test. In all these experiments,

Xen, KVM and VirtualBox perform well. The experimental

result of OpenVZ is disappointing and they suggest that

KQEUM should be avoided in production systems.

VI. CONCLUSION

In this paper, we ran experiments on a commercial virtual

machine monitor, Xen and KVM, using MapReduce. We

verified our results using the Filebench micro-benchmark. We

analyzed the performance results for each experiment and

found similarities and significant performance variations be-

tween the different hypervisors. For example, for CPU-bound

benchmarks, we found that there was negligible performance

differences among the hypervisors; however, for I/O-bound

benchmarks and benchmarks that were both CPU and I/O

intensive, there were considerable performance differences.

The commercial hypervisor was found to be better at disk

writing, while KVM was better for disk reading. Xen was

better when there was a combination of disk reading and

writing with CPU intensive computations. Increasing process-

ing parallelism for I/O-intensive workloads is detrimental to

performance, but may increase performance in I/O and CPU-

intensive workloads.

More generally, this work enhances the understanding of

hypervisors when running MapReduce workloads. In addition,

experiment results show the need to better study the differ-

ences among hypervisors in order to better determine which

hypervisor to use for user applications.
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