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Abstract—As a new area of machine learning research, the 
deep learning algorithm has attracted a lot of attention from 
the research community. It may bring human beings to a 
higher cognitive level of data. Its unsupervised pre-training 
step allows us to find high-dimensional representations or 
abstract features which work much better than the principal 
component analysis (PCA) method. However, it will face 
problems when being applied to deal with large scale data 
due to its intensive computation from many levels of training 
process against large scale data. The sequential deep 
learning algorithms usually can not finish the computation 
in an acceptable time. In this paper, we propose a many-core 
algorithm which is based on a parallel method and is used in 
the Intel Xeon Phi many-core systems to speed up the 
unsupervised training process of Sparse Autoencoder and 
Restricted Boltzmann Machine (RBM). Using the sequential 
training algorithm as a baseline to compare, we adopted 
several optimization methods to parallelize the algorithm. 
The experimental results show that our fully-optimized 
algorithm gains more than 300-fold speedup on parallelized 
Sparse Autoencoder compared with the original sequential 
algorithm on the Intel Xeon Phi coprocessor. Also, we ran 
the fully-optimized code on both the Intel Xeon Phi 
coprocessor and an expensive Intel Xeon CPU. Our method 
on the Intel Xeon Phi coprocessor is 7 to 10 times faster than 
the Intel Xeon CPU for this application. In addition to this, 
we compared our fully-optimized code on the Intel Xeon Phi 
with a Matlab code running on single Intel Xeon CPU. Our 
method on the Intel Xeon Phi runs 16 times faster than the 
Matlab implementation. The result also suggests that the 
Intel Xeon Phi can offer an efficient but more general-
purposed way to parallelize the deep learning algorithm 
compared to GPU. It also achieves faster speed with better 
parallelism than the Intel Xeon CPU.  

Keywords:Deep learning;Unsupervised learning;Deep 
architecture;Sparse autoencoder; Restricted Boltzmann 
Machine; Parallel algorithm; Intel Xeon Phi;Many-core 

I. INTRODUCTION 
The term “Deep Learning” has gained great attention 

and become a landmark in machine learning area since 
Geoffrey Hinton and Ruslan Salakhutdinov published their 
paper in Science in 2006 [1].This paper proposed an idea 
to convert  high-dimensional data to low-dimensional data 

by training a multilayer neural network with a small 
middle layer to reconstruct the high-dimensional input 
vectors [1].This low-dimensional data can be viewed as a 
code or extracted features to make it easier to learn tasks 
of interests.  The so-called “deep” refers to multi-level 
representations of original data, where higher level 
representations are defined based on lower representations. 
The assumption underlying the deep learning is that there 
exists some invisible hidden structures behind the 
observed data which are helpful in future tasks. The idea 
of extracting the hierarchical features also has a biological 
basis that human visual cortex is hierarchical [2]. 

Since deep learning algorithms involve feature 
extraction or learning representations, they are often 
framed as unsupervised learning. It often uses the artificial 
neural networks (ANN) to perform unsupervised learning 
and then piles up many layers of neural networks like a 
stack. Sparse Autoencoder, Restricted Boltzmann Machine, 
Sparse Code and many variations of them are usually used 
as the unsupervised building block [3, 4, 5]. Since 
constructing labeled data can be very time-consuming and 
labor-intensive, unsupervised learning has an advantage of 
using more unlabeled data compared to supervised 
learning. At the meantime, more data lead to more 
computations which limits its wide use in real application. 

Sparse Autoencoder, Restricted Boltzmann Machine 
(RBM) and Sparse Code are three of the most commonly 
used building blocks of deep architectures [3, 6, 7]. By 
stacking layers of Sparse Autoencoders, we can get 
stacked Autoencoder. Another deep learning network, 
Deep Belief Network (DBN), is constructed by stacking 
many layers of RBMs. Both of them can be considered as 
neural networks.  

Sparse Autoencoder, as its name implies, plays the 
role of an encoder. It typically consists of three layers of 
neurons: input layer, hidden layer and output layer, and the 
number of neurons in the output layer is equal to that in 
the input layer. Using unsupervised training, we tune the 
weight of each connection and bias of each neuron so that 
the reconstructed data from the output of the hidden layer 
can be as close as to the original input. As a result, the 
output of the hidden layer can be recognized as a code of 
the input. 
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RBM is a generative stochastic neural network to 
learn the probability distribution of its input [8]. It has 
been applied to many areas effectively like phone 
recognition and some classification related domains [9], 
[10]. A typical RBM network consists of two layers of 
neurons with one layer representing the input or visible 
variables and another layer, called the hidden layer, for the 
unobserved variables. A well-trained RBM can get the 
unobserved structure of a certain input to help future work. 

However, training a neural network is intractable [11], 
[12]. First, leveraging large number of unlabeled data to 
boost performance brings numerous workloads. Second, 
the training process of the neural network intrinsically 
includes inevitable large matrix multiplication which is 
very time-consuming. Third, quite a number of matrix 
multiplications are naturally sequential, which limits 
parallelism. Previous optimization work using graphic 
processors or a cluster of machines has proved quite 
successful in speeding up neural network by reducing 
weeks of training to a few days or hours [2, 13].  

This paper will focus on parallelizing the Autoencoder 
and Restricted Boltzmann Machine algorithms on a many-
core platform. The many-core platform we choose is the 
Intel Xeon Phi coprocessor. Based on the Intel Many 
Integrated Core (MIC) architecture, the Intel Xeon Phi 
coprocessor achieves dramatic performance gains on some 
of the most demanding applications. Each coprocessor 
features many smaller cores,  threads and wide vector units. 
The high degree of parallelism compensates for the 
relatively lower speed of each individual core. Moreover, 
The Intel Xeon Phi many-core platform provides a 
general–purpose programming model that allows 
programmers to develop their programs in an easier and 
more general way. 

In this paper, we attempt to explore the potential of 
the many-core platform to see how much it can speed up 
the unsupervised pre-training process. 

The rest of the paper is organized as follows. Section 
 describes the basic concepts of deep learning and the 

Intel Xeon Phi platform, plus a brief introduction to the 
algorithms of Sparse Autoencoder and RBM. Section 
discusses related work. Section  introduces our 
implementation of parallel algorithm on Intel Xeon Phi in 
details. Section evaluates the experimental results of our 
implementation. 

II. BACKGROUND 

A. Training Process of Deep Learning 
The unsupervised pre-training process of a deep 

neural network consists of many layers of unsupervised 
learning processes. We take the Stacked Autoencoder as 
an example to show the unsupervised pre-training process 
of a deep neural network. 

 Figure 1. Trainging process of a Stacked Autoencoder 
 

As shown in Fig. 1, a four-layer deep neural network 
can be decomposed into three Autoencoders. Given a 
dataset, we first use the dataset to train the first 
Autoencoder. Then we use the original dataset as input 
and get the output of the hidden layer. The output dataset 
is then used as the input training set of the second 
Autoencoder. The training processes of the second and 
third Autoencoders are the same as the first Autoencoder. 
The differences between them only lie in the training set. 
The pre-training of this deep network consists of three 
sequential unsupervised trainings.  

B. Unsupervised Learning 
The training process of a deep neural network 

contains unsupervised learning process. In machine 
learning, the purpose of unsupervised learning is to find 
the hidden structure of given unlabeled data. Given a 
dataset 1 2 3{ , , ,..., }nX x x x x=  with each 

input i kx R∈ . Unsupervised learning aims to find the 
hidden structure or features i my R∈ for each input 

data ix  so that the extracted representations can benefit 
subsequent work. Here, we introduce the specific 
unsupervised learning problems discussed in this paper.  

 We investigated two unsupervised learning problems:  
Sparse Autoencoder and Restricted Boltzmann Machine 
(RBM). They are two different building blocks of deep 
neural networks. 

1) Sparse Autoencoder 
Autoencoder is an artificial neural network that is often 

used to convert high-dimensional data to low-dimensional 
vectors. A typical autoencoder usually has three layers 
including one hidden layer.  

An Autoencoder takes the input mx R∈ and then maps 
it to a hidden representation with a deterministic mapping: 
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 1 1( )y s W x b= • +  (1) 

where 1W is the connection weight between the input 
layer and hidden layer and 1b  is the bias of the hidden 
layer. s is a non-linear mapping such as the sigmoid       
 

 
 

Figure 2. the architecture of anAutoencoder 
 

function. ny R∈ is usually considered as a compressed 
code of the input (if n m< ) or over-complete feature 
representations (if n m> ). Then y is mapped back to 
z which is of the same shape of  x  using a similar 
mapping: 
 2 2( )z s W y b= • + . (2) 

1 1 2 2, , ,W b W b are the parameters to be tuned so that z 
decoded from y can be as close to x  as possible. The 
square error function is usually used as the loss function: 

 
21( , ; , )

2
J W b x z z x= − . (3) 

Given a dataset 1 2{ , ,..., }mx x x , the cost function is 
defined as follow: 

2 21 2

1

1( , ) ( , , , ) ( )
2

m
i i

i
J W b J W b x z W W

m
λ

=

= + +�
  (4) 

The second term is the regularization term to avoid 
over fitting. 

Given the fact that only a few of human visual 
neurons are activated when observing objects, a sparsity 
penalty term is added to restrict the number of neurons 
activated. If we use iρ  to denote the average activation of 
the hidden node i  given the training set, then the final 
cost function is in the shape of: 

 
1

( , , ) ( , ) ( || )
h

i
i

J W b J W b KLρ β ρ ρ
=

= + � . (5) 

Where h  is the number of nodes of the hidden layer 
and ρ  is the sparsity parameter. The denotation KL  
means the KL divergence which is calculated as follows: 

 
1( || ) log (1 ) log
1i

i i

KL ρ ρρ ρ ρ ρ
ρ ρ

−= + −
−

 . (6) 

To train the neural network, we use back propagation to 
search for the minimum point of the cost function [14]. 
The basic progress of back propagation is to compute the 
gradient layer by layer from the last level of the network 
to the first layer. The computations are correlated and thus 
we cannot compute the entire gradient all together. 

2) Restricted Boltzmann Machine 
Restricted Boltzmann Machine (RBM) is a generative 

probabilistic model which Hinton et al.[1] used to build up 
Deep Belief Network (DBN). It is another building block 
of deep neural network other than Sparse Autoencoder. 
Briefly, a Restricted Boltzmann Machine is a two-layer 
fully connected network. Fig. 3 shows the architecture of 
an RBM network. 

 

 
Figure 3. the architecture of a Restricted Boltamann Machine 

 
Consider a set of binary vectors as our input. The set 

can be modeled by RBM in which the stochastic binary 
vectors are connected to the stochastic feature detectors 
using symmetric weighted connections [4, 15, 16]. The 
input vectors correspond to visible units because they are 
observed while the feature detectors correspond to the 
hidden units. The joint distribution ( , )v h  can be assigned 
an energy as follows [17]: 

 ( ) WvhhcvbhvE ''', −−−= , (7) 
Where W  is the weights connecting the visible and 

hidden units and ,b c  are the biases of visible and hidden 
units respectively. Because of the specific structure of 
RBM, the states of visible units and hidden units are 
independent given one another. Thus the conditional 
probability can be computed as follows: 
 ( 1| ) ( )i i ij j

j
p v h s b W h= = +� , (8) 

 ( 1| ) ( )i i ji j
j

p h v s c W v= = +� . (9) 

Maximum likelihood learning is used to train an 
RBM with Contrastive Divergence that calculates the log 
likelihood gradients [15]. The derivative of the log 
probability of a training vector with respect to a weight or 
bias is computed according to the following formula: 

 
log ( )

i j i jdata model
ij

p v v h v h
w

∂ = −
∂

, (10) 
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log ( )

i i modeldata
i

p v v v
b

∂ = −
∂

, (11) 

 
log ( )

i idata model
i

p v h h
c

∂ = −
∂

, (12) 

where the angel brackets are used to denote the 
expectations under the distribution specified by the 
subscript that follows.  

However, calculating the second term is difficult. 
Hinton proposed Contrastive Divergence to get an 
approximation by running Gibbs Sampling one step. This 
algorithm first sets the visible units to one of the training 
data. At each step, the binary states of all the hidden units 
(visible units) are computed following the equations above. 
Thus the change of a weight is: 
 )(

samplejidatajiij hvhvw −=Δ η , (13) 

whereη  is the learning rate. 

C. Computing with Intel Xeon Phi 
The Intel Xeon Phi coprocessor provides up to 61 

cores, 244 threads, and 1.2 teraflops of performance with 
all the computing cores connected by a ring bus. 
Equipped with 8GB of GDDR5 memory, it can provide a 
bandwidth of 325GB/s per coprocessor. In addition, each 
computing core consists of a double-wide (256-bit) vector 
engine supporting 512-bit SIMD instructions. Thus, the 
Intel Xeon Phi family is quite suitable for highly-parallel, 
vector-intensive and memory bound computation. 

In addition to the features mentioned above, a set of 
programming languages, models and tools supporting the 
Intel x86 architecture can also be used on the Intel Xeon 
Phi coprocessor with little change. As a result, instead of 
redesigning new algorithms or models, developers now 
can reuse existing codes or applications and maintain 
common codes using familiar tools and methods. The 
vector-intensive algorithms in our method take advantage 
of this feature. 

 
Figure 4. The architecture of Intel Xeon Phi 

III. RELATED WORK 
Several methods have been proposed to parallelize 

deep learning algorithms. Recent work has shown that 
most of the work can benefit from parallel architecture by 

distributing datasets to different computing nodes and then 
combine all the results [18]. Some machine learning 
algorithms such as logistic regression and SVM are 
naturally divisible, which makes them suitable for parallel 
training. Standard Sparse Autoencoder or RBM, however, 
are intrinsically sequential. They often involve a large 
number of sequential computations in which the 
computation of new gradient is based on previous updates. 
This makes it hard to massively parallelize on a coarse 
data level  [19]. 

Despite of the difficulties mentioned above, several 
ways to speed up or optimize deep learning have been 
proved effective in practical application. We can classify 
them into two categories.  

For the first category, some algorithms focus on 
adaptive strategies for the learning rate to make it faster to 
converge [20]. Using changing learning rate instead of 
constant learning rate has reduced the iterations needed to 
converge [21, 22] and thus can speed up the training. 
Online Stochastic Gradient Descent (SGD) is a common-
used optimization method to minimize the cost function of 
one kind of deep learning algorithm. It performs its update 
for each training example. This sequential feature makes it 
hard to parallelize. In order to overcome the weakness of 
online Stochastic Gradient Descent (SGD) which is 
inherently sequential, the batch methods like limited 
memory BFGS (L-BFGS) or Conjugate Gradient (CG) has 
been proposed [23, 24]. These methods make it easier to 
parallelize the deep learning algorithms. However, these 
methods are slower to converge since one update of 
parameters involves much more computations than SGD. 

For the second category, more hardware resources are 
devoted to find the internal parallelism of a certain 
algorithm. Google has distributed a very large deep 
network to hundreds of computing nodes and uses lock––
less asynchronous update to speed up the procedure. 
Google concludes that the MapReduce platform is ill-
suited for iterative tasks like neural network training. Also,  
GraphLab which is designed for general graph 
computation is unable to exploit the computing efficiency 
found in structured graph like deep neural network [13]. In 
addition, GPU has also shown great potential in training 
modest- sized neural network [19, 25, 26]. 

In this paper, we try to exploit the potential of the 
novel architecture, the Intel Xeon Phi many-core 
coprocessor platform, to parallelize deep learning and 
evaluate its performance. We try to leverage its advantage 
on general-purpose programming to train neural network 
and offer another efficient option other than GPU. As far 
as we know, our work is the first attempt to speed up the 
training of deep learning using the Intel Xeon Phi platform.  

IV. DESIGN OF OUR PARALLEL ALGORITHM 

A. Basic Process 
The training algorithms of Sparse Autoencoder and 

Restricted Boltzmann Machine run in a similar way. 
During every epoch, they pick a small batch of unlabeled 
data, compute the gradient (using Back Propagation for 
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Sparse Autoencdoer or Contrastive Divergence for RBM) 
and then update all the parameters. Although the basic 
process is short and concise, to parallelize it successfully 
and efficiently on the Intel Xeon Phi platform requires 
careful consideration on many aspects. There are two key 
points that will play important roles in parallelizing and 
optimizing the performance of our algorithm.  

First, memory transfers between the host and the 
Intel Xeon Phi is relatively slow. Thus, the number of 
data transfers between the host and Intel Xeon Phi should 
be minimized as much as possible. Therefore, we load the 
training data into the global memory of Intel Xeon Phi in 
a large chunk. 

Second, we use a thread to load the data chunk from 
the host to the Intel Xeon Phi so that our algorithm does 
not need to wait for loading new data when finishing the 
process of training one large chunk of data. This is a key 
point to keep all cores busy all the time. 

Fig. 5 illustrates the basic data loading and 
processing strategy. 

To make full use of the potential of the Intel Xeon 
Phi, we tried to design a fine-grained algorithm. A fine-
grained algorithm may make full use of the Intel Xeon Phi. 
However, it also leads to more synchronization cost. For 
this reason, we should consider the granularity of our 
algorithm carefully. Besides, the data transfer rates 
between the host machine and the Intel Xeon Phi is 
relatively slow and thus we should avoid data transfer 
between the host and Intel Xeon Phi as much as possible. 

 

    Figure 5. Loading thread concurrent with training thread 
 

Based on the ideas above, we discribe the basic design 
of our parallel algorithm. Algorithm 1 is the pseudo-code 
for the basic process of our parallel algorithm for 
unsupervised learning. 

As we have discussed above, the transferring 
speed between the host and Intel Xeon Phi is relatively 
slow. Our test shows that it costs 132s to transfer 
10,000*4096 samples from the host to Intel Xeon Phi 
and our training time is about 628s. This means that 
about 17% of the total time is spent on transferring 
training data.  During the period of loading data, most 

of our computing cores are idle, which wastes 
computing resources and thus undermines the 
performance. We can cut down this transferring time by 
setting a loading thread and a loading buffer in the 
global memory on Intel Xeon Phi. We make part of the 
global memory as the loading buffer and set its size as 
several times as that of a data chunk. While the loading 
thread is loading data into the i th data chunk, our 
training thread can use the 1i − th data chunk to train. 
The proportion of time cost in transferring can be 
notably reduced when we train a large number of data. 

 
Algorithm 1 Parallelize Autoencoder / RBM on Intel 
Xeon Phi 

1:Initialize parameters of our unsupervised network
2:While stop condition is not satisfied 
3:   get a chunk of data from the buffer area in global 

memory 
4 split the chunk into many smaller training batches 
5:   For each small training batch 
6:     compute the gradient accordingly 
7:     update the parameters 
8:  EndFor 
9:EndWhile 

 
 
Among the steps mentioned in our algorithm, 

computing the gradient is the most time-consuming for 
both Sparse Autoencoder and RBM. We then introduce 
our method to parallelize the computing gradient step of 
RBM and Sparse Autoencoder. 

B.  Parallelizing methods for RBM and Sparse 
Autoencoder 

1) Parallelizing RBM 
To parallelize the computation of RBM as much as 

possible, we design several optimizations to reduce the 
time.  

First, since the size of our model is moderate, we 
keep all the parameters including  , ,W b c  in our global 
memory permanently. In addition to these parameters, 
several temporary variables needed by each gradient 
computation are also kept permanently to avoid 
unnecessary reallocation and release. Second, we can use 
the 512-bit wide Vector Processing Unit (VPU) of Intel 
Xeon Phi to speed up several loops. Thus, we vectorize 
the sampling and update step of RBM training. 
Specifically, the equation of the sampling step should be 
rewrited in vector form: 
 ( | ) ( )p v h vectorsig b W h= + • , (14) 
 ( | ) ( )p h v vectorsig c W v= + • . (15) 

And the sampling step can also be vectorized. Since 
the updates of each parameter are independent, the 
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updating can also be vectorized and the update step can be 
written in vector form:  
 WWW Δ+= , (16) 
 bbb Δ+= , (17) 
 ccc Δ+= . (18) 

Third, despite of all optimizations described above, 
the eventual optimizing effect would be very limited if we 
did not focus on the matrix operations that exist in our 
algorithm. 

In our algorithm, we use the Intel MKL (Math 
Kernel Library) packages to perform all the time-
consuming matrix operations. The Intel MKL is a library 
of optimized mathematical operation. Its core functions 
contain BLAS, LAPACK and so on. The Intel MKL 
packages greatly speed up common mathematical 
operations by exploiting modern many-core processors 
and wide vector units. This has been proved to be very 
efficient in our algorithm. 

Fourth, some matrix operations can also be 
calculated concurrently based on the sequence of the 
computations. We take the computation of RBM as an 
example and illustrate the parallelism we can excavate. 

Fig. 6 shows the dependency of all the variables in 
computing the gradient of the parameters needed in one 
iteration. The detonation Vb , Vc  and Vw are the 
gradients needed to be calculated and others are the 
temporary variables. Each arrow pointing from A to B 
denotes that the calculation of B depends on the 
calculation of A and thus A and B cannot be calculated 
concurrently. We try to find all the computations that can 
be computed concurrently. From the dependency graph 
above, we can find some computation bodies for 
parallelization. Once 1V is calculated, then we can only 
compute 1H  because all other computations need some 
variables that have not been calculated yet. After  getting 
the result of 1H , the computations of 2V  and 2C  can 
run in parallel. Similarly we can computeVb , 2H  and 

2C after 2V , and compute Vb , Vc  and Vw  after 
2H in parallel because all preconditions of computing 

the gradient are satisfied. 
 

 
Figure 6. the dependency of all temporary variables in computing 

the gradient of a RBM network. 

2) Parallelizing Sparse Autoencoder 
Comparing with parallelizing RBM, parallelizing 

Sparse Autoencoder is more complicated given the 
complexity of back propagation algorithm. However, the 
basic ideas to parallelize it are the same. We also need to 
find the dependencies of each matrix operation like Fig. 6 
and use OpenMP and Intel MKL packages to parallelize 
them.  

As mentioned above, the granularity of parallelism 
impacts a lot. The calculation of the back propagation has 
the features as follows: 
� Many matrix multiplications and they have been well 

tackled by the Intel MKL packages. 
� There are some loops that cannot be transformed 

effectively into matrix operations. As to these loops, 
we can simply use OpenMP to parallelize them. 
However, it turned out to be ineffective since the 
loop body is relatively small and the time cost in 
synchronization accounts most of the total time. We 
finally combine several loops together to make the 
granularity more suitable for our platform. 

V. PERFORMANCE EVALUATION 
In this section, we evaluate the performance of our 

method. We conducted five different experiments to 
analyze the performance of algorithm on Intel Xeon Phi 
from different aspects. 

First, we ran our full-optimized algorithm on both 
single Intel Xeon CPU core and Intel Xeon Phi to evaluate 
the advantage of Intel Xeon Phi over single CPU core. We 
compare the performance of Intel Xeon Phi and single 
CPU core in three aspects: network size, dataset size and 
batch size.  

Second, we ran our full-optimized algorithm of 
Autoencoder on Intel Xeon Phi and ran a Matlab code of it 
using Matlab on the same single Xeon CPU. Since Matlab 
has done a great job in optimizing matrix operations, we 
conducted this experiment to show that our optimization 
work on Intel Xeon Phi has desired effect. 

Third, we evaluated our optimization process on Intel 
Xeon Phi. We first implemented an algorithm of stacked-
up Autoencoder on Intel Xeon Phi without using Intel 
MKL packages or any other skills to speed up. Then we 
optimize it step by step until we get the full-optimized 
code today.  

A. Platforms and Datasets 
1) Platforms and Software 

We ran our algorithm on both the Intel Xeon Phi 
platform and Single Xeon CPU core. 

The Intel Xeon Phi platform we used comes with 
Xeon Phi 5110p many-core coprocessor. It is equipped 
with 60 active cores, each core with a frequency of 1.053 
GHz, memory bandwidth of 320 GB/s and global memory 
of 8GB. 

The CPU we used to do experiments is Intel(R) 
Xeon(R) E5620, with frequency of 2.4GHz and 4 cores, 
and cache size of 12288 KB.  
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The Matlab version we used is Matlab 7.14.0.739 
(R2012a). 

2) Datasets 
Our dataset comes from a large of handwritten digit 

images and natural images [27, 23]. We obtain the training 
examples by randomly extracting patches of required sizes 
from these images. 

B. The Performance and Analysis 
1) Impact of Network Size 

Firstly, we evaluate the performance when the network 
size goes up. The size of the training dataset for Sparse 
Autoencoder is about 1 million training examples. The 
dimension of the examples accords with the visible size of 
our network. We conducted back propagation updates in 
batches of 10000 examples. The total size of training 
examples and batch size for RBM are100,000 and 200 
respectively. Fig. 7 shows the time costs when the size of 
our network goes from 576*1024 to 4096 * 11008. 

 
(a) Autoencoder 

 
(b) RBM 

Figure 7. Performance of parallel Autoencoder and RBM algorithms 
running on Intel Xeon Phi compared with sequential one on single CPU 

core on host 
 

Fig. 7 shows that when the size of the network goes 
larger and larger, the time costs of single CPU core on host 
increases sharply. However, the time growth of our 
implementation on Intel Xeon Phi is mild. The time 
growth of single CPU core increases almost linearly. It 
also demonstrates that the difference between single CPU 
core and Intel Xeon Phi is small when the size of network 
is small. This is because the benefit brought by many cores 
is neutralized by the synchronization of threads when the 
network size is not big enough. 

2) Impact of Dataset Size 

To measure the performance of dataset size, we fixed 
the network size of RBM and Autoencoder to 1024 * 4096 
and the size of our dataset varies from 10000 examples to 
160000 examples. The batch size equals 1000 examples. 

 
(a) Autoencoder 

 
(b)RBM 

Figure8. performances when the size of dataset goes up. Network 
size: 1024 * 4096. Batch size: 1000 

 
When the size of dataset increases, the time cost by 

single CPU core increases much faster than Intel Xeon Phi 
while the time cost by Intel Xeon Phi does not change 
much. It shows that Intel Xeon Phi works much better 
when dealing with large dataset size. 

3) Impact of Batch Size 
It also indicates that the batch size impacts a lot on 

both single CPU core and Intel Xeon Phi. To assess the 
impact of the batch size, we fixed the network size to 1024 
* 4096 and the dataset size to 100,000 examples. The 
batch size of an update varies from 200 to 10000. When 
the batch size goes larger, we need less iterations to train a 
fixed-sized data chunk. 

 
(a)Autoencoder 
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 (b)RBM 
Figure 9. the impactof batch size when batch size goes larger 

 
No matter what the batch size is, the time cost by Intel 

Xeon Phi maintains at a low level while the single CPU 
core costs much more time. When the batch size goes 
larger, both of them decrease since the number of 
iterations decreases. The experiment shows that the time 
cost of Autoencoder decreases by two thirds when the 
batch size increases from 200 to 10,000. 

As to RBM, the time decreases on single CPU core is 
not obvious while time cost by Intel Xeon Phi drops by 
about two thirds. This is another proof that our method on 
Intel Xeon Phi works much better when dealing with large 
data and large network. 

4) Comparison with Matlab 
In addition to the experiments above, we also 

compared our algorithm with the Matlab implementation 
of Autoencoder and the parallel implementation on Intel 
Xeon Phi. Our Matlab code ran on the single CPU 
platform and Matlab has its own optimization of matrix 
operations. The dataset contains 1 million examples and 
the mini batch we used contains 10,000 examples. The 
Matlab code ran on the single CPU platform and we did 
not restrict the number of cores it used. 

 
Figure 10. comparison between Matlab code ran on single CPU and 

Intel Xeon Phi 
 

As we can see from Fig. 10, our version runs much 
faster than the Matlab version we implemented. It 
achieved about 16-fold speed up even if Matlab has an 
efficient implementation of matrix operations. We 
performed this experiment to show the effect of both Intel 
Xeon Phi and our optimization work on the training time 
of deep neural network. 

5) Impact of Each Optimization Step on Intel Xeon 
Phi 

At last, we show the impact of each optimization step 
we used in our experiment on Intel Xeon Phi. The network 
we used is different from previous ones. We used a four-
layer network and the size of each layer is 1024, 512, 256, 
128. The training process is exactly the same as the 
unsupervised pre-training process of a deep network in 
which the training examples of higher layer come from the 
output of the previous layer. The batch size we used to 
train each layer is 10000 examples and each layer ran 200 
iterations.  

 
TABLE  I. PERFORMANCE AFTER EACH OPTIMIZATION STEP ON XEON PHI 

60 cores 30 cores
Baseline 16024s 15960s
OpenMP 892s 2122s

OpenMP+MKL 97s 120s
Improved OpenMP+MKL 53s 81s
Speedup(fully-optimized 
compared with baseline)

302 197

 
The baseline code did not use Intel MKL packages or 

any other speedup methods. We then used OpenMP to 
parallelize all the loops. After that, we used MKL to 
perform the matrix operations and some speedup skills in 
section . At last, we combined some loops to reduce 
synchronization cost. The result is shown in Table I. 
Apparently, there is a remarkable disparity between the 
baseline version code and our optimized code on Intel 
Xeon Phi. The result shows that Intel Xeon Phi gained an 
approximately 302-fold speedup compared with the 
sequential algorithm. The right column shows how Intel 
Xeon Phi performs when restricting the number of cores 
by half. This table shows the result of speedup of our 
algorithm on Intel Xeon Phi. 

As far as the practical speedup of our work is 
concerned, our algorithm should have the same effect on 
real world data as it has on experimental data because the 
optimization work is irrelevant to specific data type and 
data distribution. 

VI. CONCLUSION AND FUTURE WORK 
In this paper, we designed and implemented parallel 

algorithm for unsupervised pre-training process of deep 
network on Intel Xeon Phi many-core platform and gained 
302-fold speedup compared with the un-optimized 
sequential algorithm .  

The MapReduce framework has done a great work in 
many machine learning algorithms but it relies too much 
on data parallelism [28]. Meanwhile, GPU has also shown 
its power in unsupervised pre-training [19]. However, the 
programmability of GPU has always been an obstacle. Our 
study on this paper suggests that Intel Xeon Phi shows its 
strength in training these networks. Also due to the 
general-purpose programming model for Intel Xeon Phi, 
programmers can quickly transplant their original program 
on host machine to the Intel Xeon Phi platform. This 
significantly increases the programmability for 
programmers.  
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However, the speedup is obtained largely by more 
cores and our implementation is still relatively coarse to 
make full use of Intel Xeon Phi. So there is some future 
work for us to do. First, a balance should be found 
between parallelism and synchronization. For now, we 
need to adjust the number of threads manually in our 
implementation. Second, a further combination between  
Xeon and Intel Xeon Phi can bring us higher efficiency. 
Since the transferring speed between Xeon and Intel Xeon 
Phi is slow, the transferring cost can be intolerable when 
the model becomes large. Third, we need to make our 
algorithm more efficient to deal with mini batch because 
online SGD is more common in practical use. 
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