

Training Large Scale Deep Neural Networks on the Intel Xeon Phi
Many-core Coprocessor

Lei Jin, Zhaokang Wang, Rong Gu, Chunfeng Yuan and Yihua Huang
Department of Computer Science and Technology, Nanjing University

National Key Laboratory for Novel Software Technology, Nanjing University
Nanjing 210023, China

leinking1@gmail.com, wang.zk@foxmail.com, gurongwalker@gmail.com, {cfyuan,yhuang}@nju.edu.cn

Abstract—As a new area of machine learning research, the
deep learning algorithm has attracted a lot of attention from
the research community. It may bring human beings to a
higher cognitive level of data. Its unsupervised pre-training
step allows us to find high-dimensional representations or
abstract features which work much better than the principal
component analysis (PCA) method. However, it will face
problems when being applied to deal with large scale data
due to its intensive computation from many levels of training
process against large scale data. The sequential deep
learning algorithms usually can not finish the computation
in an acceptable time. In this paper, we propose a many-core
algorithm which is based on a parallel method and is used in
the Intel Xeon Phi many-core systems to speed up the
unsupervised training process of Sparse Autoencoder and
Restricted Boltzmann Machine (RBM). Using the sequential
training algorithm as a baseline to compare, we adopted
several optimization methods to parallelize the algorithm.
The experimental results show that our fully-optimized
algorithm gains more than 300-fold speedup on parallelized
Sparse Autoencoder compared with the original sequential
algorithm on the Intel Xeon Phi coprocessor. Also, we ran
the fully-optimized code on both the Intel Xeon Phi
coprocessor and an expensive Intel Xeon CPU. Our method
on the Intel Xeon Phi coprocessor is 7 to 10 times faster than
the Intel Xeon CPU for this application. In addition to this,
we compared our fully-optimized code on the Intel Xeon Phi
with a Matlab code running on single Intel Xeon CPU. Our
method on the Intel Xeon Phi runs 16 times faster than the
Matlab implementation. The result also suggests that the
Intel Xeon Phi can offer an efficient but more general-
purposed way to parallelize the deep learning algorithm
compared to GPU. It also achieves faster speed with better
parallelism than the Intel Xeon CPU.

Keywords:Deep learning;Unsupervised learning;Deep
architecture;Sparse autoencoder; Restricted Boltzmann
Machine; Parallel algorithm; Intel Xeon Phi;Many-core

I. INTRODUCTION
The term “Deep Learning” has gained great attention

and become a landmark in machine learning area since
Geoffrey Hinton and Ruslan Salakhutdinov published their
paper in Science in 2006 [1].This paper proposed an idea
to convert high-dimensional data to low-dimensional data

by training a multilayer neural network with a small
middle layer to reconstruct the high-dimensional input
vectors [1].This low-dimensional data can be viewed as a
code or extracted features to make it easier to learn tasks
of interests. The so-called “deep” refers to multi-level
representations of original data, where higher level
representations are defined based on lower representations.
The assumption underlying the deep learning is that there
exists some invisible hidden structures behind the
observed data which are helpful in future tasks. The idea
of extracting the hierarchical features also has a biological
basis that human visual cortex is hierarchical [2].

Since deep learning algorithms involve feature
extraction or learning representations, they are often
framed as unsupervised learning. It often uses the artificial
neural networks (ANN) to perform unsupervised learning
and then piles up many layers of neural networks like a
stack. Sparse Autoencoder, Restricted Boltzmann Machine,
Sparse Code and many variations of them are usually used
as the unsupervised building block [3, 4, 5]. Since
constructing labeled data can be very time-consuming and
labor-intensive, unsupervised learning has an advantage of
using more unlabeled data compared to supervised
learning. At the meantime, more data lead to more
computations which limits its wide use in real application.

Sparse Autoencoder, Restricted Boltzmann Machine
(RBM) and Sparse Code are three of the most commonly
used building blocks of deep architectures [3, 6, 7]. By
stacking layers of Sparse Autoencoders, we can get
stacked Autoencoder. Another deep learning network,
Deep Belief Network (DBN), is constructed by stacking
many layers of RBMs. Both of them can be considered as
neural networks.

Sparse Autoencoder, as its name implies, plays the
role of an encoder. It typically consists of three layers of
neurons: input layer, hidden layer and output layer, and the
number of neurons in the output layer is equal to that in
the input layer. Using unsupervised training, we tune the
weight of each connection and bias of each neuron so that
the reconstructed data from the output of the hidden layer
can be as close as to the original input. As a result, the
output of the hidden layer can be recognized as a code of
the input.

2014 IEEE 28th International Parallel & Distributed Processing Symposium Workshops

978-1-4799-4116-2/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPSW.2014.194

1622

RBM is a generative stochastic neural network to
learn the probability distribution of its input [8]. It has
been applied to many areas effectively like phone
recognition and some classification related domains [9],
[10]. A typical RBM network consists of two layers of
neurons with one layer representing the input or visible
variables and another layer, called the hidden layer, for the
unobserved variables. A well-trained RBM can get the
unobserved structure of a certain input to help future work.

However, training a neural network is intractable [11],
[12]. First, leveraging large number of unlabeled data to
boost performance brings numerous workloads. Second,
the training process of the neural network intrinsically
includes inevitable large matrix multiplication which is
very time-consuming. Third, quite a number of matrix
multiplications are naturally sequential, which limits
parallelism. Previous optimization work using graphic
processors or a cluster of machines has proved quite
successful in speeding up neural network by reducing
weeks of training to a few days or hours [2, 13].

This paper will focus on parallelizing the Autoencoder
and Restricted Boltzmann Machine algorithms on a many-
core platform. The many-core platform we choose is the
Intel Xeon Phi coprocessor. Based on the Intel Many
Integrated Core (MIC) architecture, the Intel Xeon Phi
coprocessor achieves dramatic performance gains on some
of the most demanding applications. Each coprocessor
features many smaller cores, threads and wide vector units.
The high degree of parallelism compensates for the
relatively lower speed of each individual core. Moreover,
The Intel Xeon Phi many-core platform provides a
general–purpose programming model that allows
programmers to develop their programs in an easier and
more general way.

In this paper, we attempt to explore the potential of
the many-core platform to see how much it can speed up
the unsupervised pre-training process.

The rest of the paper is organized as follows. Section
 describes the basic concepts of deep learning and the

Intel Xeon Phi platform, plus a brief introduction to the
algorithms of Sparse Autoencoder and RBM. Section
discusses related work. Section introduces our
implementation of parallel algorithm on Intel Xeon Phi in
details. Section evaluates the experimental results of our
implementation.

II. BACKGROUND

A. Training Process of Deep Learning
The unsupervised pre-training process of a deep

neural network consists of many layers of unsupervised
learning processes. We take the Stacked Autoencoder as
an example to show the unsupervised pre-training process
of a deep neural network.

 Figure 1. Trainging process of a Stacked Autoencoder

As shown in Fig. 1, a four-layer deep neural network
can be decomposed into three Autoencoders. Given a
dataset, we first use the dataset to train the first
Autoencoder. Then we use the original dataset as input
and get the output of the hidden layer. The output dataset
is then used as the input training set of the second
Autoencoder. The training processes of the second and
third Autoencoders are the same as the first Autoencoder.
The differences between them only lie in the training set.
The pre-training of this deep network consists of three
sequential unsupervised trainings.

B. Unsupervised Learning
The training process of a deep neural network

contains unsupervised learning process. In machine
learning, the purpose of unsupervised learning is to find
the hidden structure of given unlabeled data. Given a
dataset 1 2 3{ , , ,..., }nX x x x x= with each

input i kx R∈ . Unsupervised learning aims to find the
hidden structure or features i my R∈ for each input

data ix so that the extracted representations can benefit
subsequent work. Here, we introduce the specific
unsupervised learning problems discussed in this paper.

 We investigated two unsupervised learning problems:
Sparse Autoencoder and Restricted Boltzmann Machine
(RBM). They are two different building blocks of deep
neural networks.

1) Sparse Autoencoder
Autoencoder is an artificial neural network that is often

used to convert high-dimensional data to low-dimensional
vectors. A typical autoencoder usually has three layers
including one hidden layer.

An Autoencoder takes the input mx R∈ and then maps
it to a hidden representation with a deterministic mapping:

1623

 1 1()y s W x b= • + (1)

where 1W is the connection weight between the input
layer and hidden layer and 1b is the bias of the hidden
layer. s is a non-linear mapping such as the sigmoid

Figure 2. the architecture of anAutoencoder

function. ny R∈ is usually considered as a compressed
code of the input (if n m<) or over-complete feature
representations (if n m>). Then y is mapped back to
z which is of the same shape of x using a similar
mapping:
 2 2()z s W y b= • + . (2)

1 1 2 2, , ,W b W b are the parameters to be tuned so that z
decoded from y can be as close to x as possible. The
square error function is usually used as the loss function:

21(, ; ,)

2
J W b x z z x= − . (3)

Given a dataset 1 2{ , ,..., }mx x x , the cost function is
defined as follow:

2 21 2

1

1(,) (, , ,) ()
2

m
i i

i
J W b J W b x z W W

m
λ

=

= + +�
 (4)

The second term is the regularization term to avoid
over fitting.

Given the fact that only a few of human visual
neurons are activated when observing objects, a sparsity
penalty term is added to restrict the number of neurons
activated. If we use iρ to denote the average activation of
the hidden node i given the training set, then the final
cost function is in the shape of:

1

(, ,) (,) (||)
h

i
i

J W b J W b KLρ β ρ ρ
=

= + � . (5)

Where h is the number of nodes of the hidden layer
and ρ is the sparsity parameter. The denotation KL
means the KL divergence which is calculated as follows:

1(||) log (1) log
1i

i i

KL ρ ρρ ρ ρ ρ
ρ ρ

−= + −
−

 . (6)

To train the neural network, we use back propagation to
search for the minimum point of the cost function [14].
The basic progress of back propagation is to compute the
gradient layer by layer from the last level of the network
to the first layer. The computations are correlated and thus
we cannot compute the entire gradient all together.

2) Restricted Boltzmann Machine
Restricted Boltzmann Machine (RBM) is a generative

probabilistic model which Hinton et al.[1] used to build up
Deep Belief Network (DBN). It is another building block
of deep neural network other than Sparse Autoencoder.
Briefly, a Restricted Boltzmann Machine is a two-layer
fully connected network. Fig. 3 shows the architecture of
an RBM network.

Figure 3. the architecture of a Restricted Boltamann Machine

Consider a set of binary vectors as our input. The set

can be modeled by RBM in which the stochastic binary
vectors are connected to the stochastic feature detectors
using symmetric weighted connections [4, 15, 16]. The
input vectors correspond to visible units because they are
observed while the feature detectors correspond to the
hidden units. The joint distribution (,)v h can be assigned
an energy as follows [17]:

 () WvhhcvbhvE ''', −−−= , (7)
Where W is the weights connecting the visible and

hidden units and ,b c are the biases of visible and hidden
units respectively. Because of the specific structure of
RBM, the states of visible units and hidden units are
independent given one another. Thus the conditional
probability can be computed as follows:
 (1|) ()i i ij j

j
p v h s b W h= = +� , (8)

 (1|) ()i i ji j
j

p h v s c W v= = +� . (9)

Maximum likelihood learning is used to train an
RBM with Contrastive Divergence that calculates the log
likelihood gradients [15]. The derivative of the log
probability of a training vector with respect to a weight or
bias is computed according to the following formula:

log ()

i j i jdata model
ij

p v v h v h
w

∂ = −
∂

, (10)

1624

log ()

i i modeldata
i

p v v v
b

∂ = −
∂

, (11)

log ()

i idata model
i

p v h h
c

∂ = −
∂

, (12)

where the angel brackets are used to denote the
expectations under the distribution specified by the
subscript that follows.

However, calculating the second term is difficult.
Hinton proposed Contrastive Divergence to get an
approximation by running Gibbs Sampling one step. This
algorithm first sets the visible units to one of the training
data. At each step, the binary states of all the hidden units
(visible units) are computed following the equations above.
Thus the change of a weight is:
)(

samplejidatajiij hvhvw −=Δ η , (13)

whereη is the learning rate.

C. Computing with Intel Xeon Phi
The Intel Xeon Phi coprocessor provides up to 61

cores, 244 threads, and 1.2 teraflops of performance with
all the computing cores connected by a ring bus.
Equipped with 8GB of GDDR5 memory, it can provide a
bandwidth of 325GB/s per coprocessor. In addition, each
computing core consists of a double-wide (256-bit) vector
engine supporting 512-bit SIMD instructions. Thus, the
Intel Xeon Phi family is quite suitable for highly-parallel,
vector-intensive and memory bound computation.

In addition to the features mentioned above, a set of
programming languages, models and tools supporting the
Intel x86 architecture can also be used on the Intel Xeon
Phi coprocessor with little change. As a result, instead of
redesigning new algorithms or models, developers now
can reuse existing codes or applications and maintain
common codes using familiar tools and methods. The
vector-intensive algorithms in our method take advantage
of this feature.

Figure 4. The architecture of Intel Xeon Phi

III. RELATED WORK
Several methods have been proposed to parallelize

deep learning algorithms. Recent work has shown that
most of the work can benefit from parallel architecture by

distributing datasets to different computing nodes and then
combine all the results [18]. Some machine learning
algorithms such as logistic regression and SVM are
naturally divisible, which makes them suitable for parallel
training. Standard Sparse Autoencoder or RBM, however,
are intrinsically sequential. They often involve a large
number of sequential computations in which the
computation of new gradient is based on previous updates.
This makes it hard to massively parallelize on a coarse
data level [19].

Despite of the difficulties mentioned above, several
ways to speed up or optimize deep learning have been
proved effective in practical application. We can classify
them into two categories.

For the first category, some algorithms focus on
adaptive strategies for the learning rate to make it faster to
converge [20]. Using changing learning rate instead of
constant learning rate has reduced the iterations needed to
converge [21, 22] and thus can speed up the training.
Online Stochastic Gradient Descent (SGD) is a common-
used optimization method to minimize the cost function of
one kind of deep learning algorithm. It performs its update
for each training example. This sequential feature makes it
hard to parallelize. In order to overcome the weakness of
online Stochastic Gradient Descent (SGD) which is
inherently sequential, the batch methods like limited
memory BFGS (L-BFGS) or Conjugate Gradient (CG) has
been proposed [23, 24]. These methods make it easier to
parallelize the deep learning algorithms. However, these
methods are slower to converge since one update of
parameters involves much more computations than SGD.

For the second category, more hardware resources are
devoted to find the internal parallelism of a certain
algorithm. Google has distributed a very large deep
network to hundreds of computing nodes and uses lock––
less asynchronous update to speed up the procedure.
Google concludes that the MapReduce platform is ill-
suited for iterative tasks like neural network training. Also,
GraphLab which is designed for general graph
computation is unable to exploit the computing efficiency
found in structured graph like deep neural network [13]. In
addition, GPU has also shown great potential in training
modest- sized neural network [19, 25, 26].

In this paper, we try to exploit the potential of the
novel architecture, the Intel Xeon Phi many-core
coprocessor platform, to parallelize deep learning and
evaluate its performance. We try to leverage its advantage
on general-purpose programming to train neural network
and offer another efficient option other than GPU. As far
as we know, our work is the first attempt to speed up the
training of deep learning using the Intel Xeon Phi platform.

IV. DESIGN OF OUR PARALLEL ALGORITHM

A. Basic Process
The training algorithms of Sparse Autoencoder and

Restricted Boltzmann Machine run in a similar way.
During every epoch, they pick a small batch of unlabeled
data, compute the gradient (using Back Propagation for

1625

Sparse Autoencdoer or Contrastive Divergence for RBM)
and then update all the parameters. Although the basic
process is short and concise, to parallelize it successfully
and efficiently on the Intel Xeon Phi platform requires
careful consideration on many aspects. There are two key
points that will play important roles in parallelizing and
optimizing the performance of our algorithm.

First, memory transfers between the host and the
Intel Xeon Phi is relatively slow. Thus, the number of
data transfers between the host and Intel Xeon Phi should
be minimized as much as possible. Therefore, we load the
training data into the global memory of Intel Xeon Phi in
a large chunk.

Second, we use a thread to load the data chunk from
the host to the Intel Xeon Phi so that our algorithm does
not need to wait for loading new data when finishing the
process of training one large chunk of data. This is a key
point to keep all cores busy all the time.

Fig. 5 illustrates the basic data loading and
processing strategy.

To make full use of the potential of the Intel Xeon
Phi, we tried to design a fine-grained algorithm. A fine-
grained algorithm may make full use of the Intel Xeon Phi.
However, it also leads to more synchronization cost. For
this reason, we should consider the granularity of our
algorithm carefully. Besides, the data transfer rates
between the host machine and the Intel Xeon Phi is
relatively slow and thus we should avoid data transfer
between the host and Intel Xeon Phi as much as possible.

 Figure 5. Loading thread concurrent with training thread

Based on the ideas above, we discribe the basic design
of our parallel algorithm. Algorithm 1 is the pseudo-code
for the basic process of our parallel algorithm for
unsupervised learning.

As we have discussed above, the transferring
speed between the host and Intel Xeon Phi is relatively
slow. Our test shows that it costs 132s to transfer
10,000*4096 samples from the host to Intel Xeon Phi
and our training time is about 628s. This means that
about 17% of the total time is spent on transferring
training data. During the period of loading data, most

of our computing cores are idle, which wastes
computing resources and thus undermines the
performance. We can cut down this transferring time by
setting a loading thread and a loading buffer in the
global memory on Intel Xeon Phi. We make part of the
global memory as the loading buffer and set its size as
several times as that of a data chunk. While the loading
thread is loading data into the i th data chunk, our
training thread can use the 1i − th data chunk to train.
The proportion of time cost in transferring can be
notably reduced when we train a large number of data.

Algorithm 1 Parallelize Autoencoder / RBM on Intel
Xeon Phi

1:Initialize parameters of our unsupervised network
2:While stop condition is not satisfied
3: get a chunk of data from the buffer area in global

memory
4 split the chunk into many smaller training batches
5: For each small training batch
6: compute the gradient accordingly
7: update the parameters
8: EndFor
9:EndWhile

Among the steps mentioned in our algorithm,

computing the gradient is the most time-consuming for
both Sparse Autoencoder and RBM. We then introduce
our method to parallelize the computing gradient step of
RBM and Sparse Autoencoder.

B. Parallelizing methods for RBM and Sparse
Autoencoder

1) Parallelizing RBM
To parallelize the computation of RBM as much as

possible, we design several optimizations to reduce the
time.

First, since the size of our model is moderate, we
keep all the parameters including , ,W b c in our global
memory permanently. In addition to these parameters,
several temporary variables needed by each gradient
computation are also kept permanently to avoid
unnecessary reallocation and release. Second, we can use
the 512-bit wide Vector Processing Unit (VPU) of Intel
Xeon Phi to speed up several loops. Thus, we vectorize
the sampling and update step of RBM training.
Specifically, the equation of the sampling step should be
rewrited in vector form:
 (|) ()p v h vectorsig b W h= + • , (14)
 (|) ()p h v vectorsig c W v= + • . (15)

And the sampling step can also be vectorized. Since
the updates of each parameter are independent, the

1626

updating can also be vectorized and the update step can be
written in vector form:
 WWW Δ+= , (16)
 bbb Δ+= , (17)
 ccc Δ+= . (18)

Third, despite of all optimizations described above,
the eventual optimizing effect would be very limited if we
did not focus on the matrix operations that exist in our
algorithm.

In our algorithm, we use the Intel MKL (Math
Kernel Library) packages to perform all the time-
consuming matrix operations. The Intel MKL is a library
of optimized mathematical operation. Its core functions
contain BLAS, LAPACK and so on. The Intel MKL
packages greatly speed up common mathematical
operations by exploiting modern many-core processors
and wide vector units. This has been proved to be very
efficient in our algorithm.

Fourth, some matrix operations can also be
calculated concurrently based on the sequence of the
computations. We take the computation of RBM as an
example and illustrate the parallelism we can excavate.

Fig. 6 shows the dependency of all the variables in
computing the gradient of the parameters needed in one
iteration. The detonation Vb , Vc and Vw are the
gradients needed to be calculated and others are the
temporary variables. Each arrow pointing from A to B
denotes that the calculation of B depends on the
calculation of A and thus A and B cannot be calculated
concurrently. We try to find all the computations that can
be computed concurrently. From the dependency graph
above, we can find some computation bodies for
parallelization. Once 1V is calculated, then we can only
compute 1H because all other computations need some
variables that have not been calculated yet. After getting
the result of 1H , the computations of 2V and 2C can
run in parallel. Similarly we can computeVb , 2H and

2C after 2V , and compute Vb , Vc and Vw after
2H in parallel because all preconditions of computing

the gradient are satisfied.

Figure 6. the dependency of all temporary variables in computing

the gradient of a RBM network.

2) Parallelizing Sparse Autoencoder
Comparing with parallelizing RBM, parallelizing

Sparse Autoencoder is more complicated given the
complexity of back propagation algorithm. However, the
basic ideas to parallelize it are the same. We also need to
find the dependencies of each matrix operation like Fig. 6
and use OpenMP and Intel MKL packages to parallelize
them.

As mentioned above, the granularity of parallelism
impacts a lot. The calculation of the back propagation has
the features as follows:
� Many matrix multiplications and they have been well

tackled by the Intel MKL packages.
� There are some loops that cannot be transformed

effectively into matrix operations. As to these loops,
we can simply use OpenMP to parallelize them.
However, it turned out to be ineffective since the
loop body is relatively small and the time cost in
synchronization accounts most of the total time. We
finally combine several loops together to make the
granularity more suitable for our platform.

V. PERFORMANCE EVALUATION
In this section, we evaluate the performance of our

method. We conducted five different experiments to
analyze the performance of algorithm on Intel Xeon Phi
from different aspects.

First, we ran our full-optimized algorithm on both
single Intel Xeon CPU core and Intel Xeon Phi to evaluate
the advantage of Intel Xeon Phi over single CPU core. We
compare the performance of Intel Xeon Phi and single
CPU core in three aspects: network size, dataset size and
batch size.

Second, we ran our full-optimized algorithm of
Autoencoder on Intel Xeon Phi and ran a Matlab code of it
using Matlab on the same single Xeon CPU. Since Matlab
has done a great job in optimizing matrix operations, we
conducted this experiment to show that our optimization
work on Intel Xeon Phi has desired effect.

Third, we evaluated our optimization process on Intel
Xeon Phi. We first implemented an algorithm of stacked-
up Autoencoder on Intel Xeon Phi without using Intel
MKL packages or any other skills to speed up. Then we
optimize it step by step until we get the full-optimized
code today.

A. Platforms and Datasets
1) Platforms and Software

We ran our algorithm on both the Intel Xeon Phi
platform and Single Xeon CPU core.

The Intel Xeon Phi platform we used comes with
Xeon Phi 5110p many-core coprocessor. It is equipped
with 60 active cores, each core with a frequency of 1.053
GHz, memory bandwidth of 320 GB/s and global memory
of 8GB.

The CPU we used to do experiments is Intel(R)
Xeon(R) E5620, with frequency of 2.4GHz and 4 cores,
and cache size of 12288 KB.

1627

The Matlab version we used is Matlab 7.14.0.739
(R2012a).

2) Datasets
Our dataset comes from a large of handwritten digit

images and natural images [27, 23]. We obtain the training
examples by randomly extracting patches of required sizes
from these images.

B. The Performance and Analysis
1) Impact of Network Size

Firstly, we evaluate the performance when the network
size goes up. The size of the training dataset for Sparse
Autoencoder is about 1 million training examples. The
dimension of the examples accords with the visible size of
our network. We conducted back propagation updates in
batches of 10000 examples. The total size of training
examples and batch size for RBM are100,000 and 200
respectively. Fig. 7 shows the time costs when the size of
our network goes from 576*1024 to 4096 * 11008.

(a) Autoencoder

(b) RBM

Figure 7. Performance of parallel Autoencoder and RBM algorithms
running on Intel Xeon Phi compared with sequential one on single CPU

core on host

Fig. 7 shows that when the size of the network goes
larger and larger, the time costs of single CPU core on host
increases sharply. However, the time growth of our
implementation on Intel Xeon Phi is mild. The time
growth of single CPU core increases almost linearly. It
also demonstrates that the difference between single CPU
core and Intel Xeon Phi is small when the size of network
is small. This is because the benefit brought by many cores
is neutralized by the synchronization of threads when the
network size is not big enough.

2) Impact of Dataset Size

To measure the performance of dataset size, we fixed
the network size of RBM and Autoencoder to 1024 * 4096
and the size of our dataset varies from 10000 examples to
160000 examples. The batch size equals 1000 examples.

(a) Autoencoder

(b)RBM

Figure8. performances when the size of dataset goes up. Network
size: 1024 * 4096. Batch size: 1000

When the size of dataset increases, the time cost by

single CPU core increases much faster than Intel Xeon Phi
while the time cost by Intel Xeon Phi does not change
much. It shows that Intel Xeon Phi works much better
when dealing with large dataset size.

3) Impact of Batch Size
It also indicates that the batch size impacts a lot on

both single CPU core and Intel Xeon Phi. To assess the
impact of the batch size, we fixed the network size to 1024
* 4096 and the dataset size to 100,000 examples. The
batch size of an update varies from 200 to 10000. When
the batch size goes larger, we need less iterations to train a
fixed-sized data chunk.

(a)Autoencoder

1628

 (b)RBM
Figure 9. the impactof batch size when batch size goes larger

No matter what the batch size is, the time cost by Intel

Xeon Phi maintains at a low level while the single CPU
core costs much more time. When the batch size goes
larger, both of them decrease since the number of
iterations decreases. The experiment shows that the time
cost of Autoencoder decreases by two thirds when the
batch size increases from 200 to 10,000.

As to RBM, the time decreases on single CPU core is
not obvious while time cost by Intel Xeon Phi drops by
about two thirds. This is another proof that our method on
Intel Xeon Phi works much better when dealing with large
data and large network.

4) Comparison with Matlab
In addition to the experiments above, we also

compared our algorithm with the Matlab implementation
of Autoencoder and the parallel implementation on Intel
Xeon Phi. Our Matlab code ran on the single CPU
platform and Matlab has its own optimization of matrix
operations. The dataset contains 1 million examples and
the mini batch we used contains 10,000 examples. The
Matlab code ran on the single CPU platform and we did
not restrict the number of cores it used.

Figure 10. comparison between Matlab code ran on single CPU and

Intel Xeon Phi

As we can see from Fig. 10, our version runs much
faster than the Matlab version we implemented. It
achieved about 16-fold speed up even if Matlab has an
efficient implementation of matrix operations. We
performed this experiment to show the effect of both Intel
Xeon Phi and our optimization work on the training time
of deep neural network.

5) Impact of Each Optimization Step on Intel Xeon
Phi

At last, we show the impact of each optimization step
we used in our experiment on Intel Xeon Phi. The network
we used is different from previous ones. We used a four-
layer network and the size of each layer is 1024, 512, 256,
128. The training process is exactly the same as the
unsupervised pre-training process of a deep network in
which the training examples of higher layer come from the
output of the previous layer. The batch size we used to
train each layer is 10000 examples and each layer ran 200
iterations.

TABLE I. PERFORMANCE AFTER EACH OPTIMIZATION STEP ON XEON PHI

60 cores 30 cores
Baseline 16024s 15960s
OpenMP 892s 2122s

OpenMP+MKL 97s 120s
Improved OpenMP+MKL 53s 81s
Speedup(fully-optimized
compared with baseline)

302 197

The baseline code did not use Intel MKL packages or

any other speedup methods. We then used OpenMP to
parallelize all the loops. After that, we used MKL to
perform the matrix operations and some speedup skills in
section . At last, we combined some loops to reduce
synchronization cost. The result is shown in Table I.
Apparently, there is a remarkable disparity between the
baseline version code and our optimized code on Intel
Xeon Phi. The result shows that Intel Xeon Phi gained an
approximately 302-fold speedup compared with the
sequential algorithm. The right column shows how Intel
Xeon Phi performs when restricting the number of cores
by half. This table shows the result of speedup of our
algorithm on Intel Xeon Phi.

As far as the practical speedup of our work is
concerned, our algorithm should have the same effect on
real world data as it has on experimental data because the
optimization work is irrelevant to specific data type and
data distribution.

VI. CONCLUSION AND FUTURE WORK
In this paper, we designed and implemented parallel

algorithm for unsupervised pre-training process of deep
network on Intel Xeon Phi many-core platform and gained
302-fold speedup compared with the un-optimized
sequential algorithm .

The MapReduce framework has done a great work in
many machine learning algorithms but it relies too much
on data parallelism [28]. Meanwhile, GPU has also shown
its power in unsupervised pre-training [19]. However, the
programmability of GPU has always been an obstacle. Our
study on this paper suggests that Intel Xeon Phi shows its
strength in training these networks. Also due to the
general-purpose programming model for Intel Xeon Phi,
programmers can quickly transplant their original program
on host machine to the Intel Xeon Phi platform. This
significantly increases the programmability for
programmers.

1629

However, the speedup is obtained largely by more
cores and our implementation is still relatively coarse to
make full use of Intel Xeon Phi. So there is some future
work for us to do. First, a balance should be found
between parallelism and synchronization. For now, we
need to adjust the number of threads manually in our
implementation. Second, a further combination between
Xeon and Intel Xeon Phi can bring us higher efficiency.
Since the transferring speed between Xeon and Intel Xeon
Phi is slow, the transferring cost can be intolerable when
the model becomes large. Third, we need to make our
algorithm more efficient to deal with mini batch because
online SGD is more common in practical use.

ACKNOWLEDGMENT
This work is funded in part by China NSF Grants

(No. 61223003), and the USA Intel Labs University Resea
rch Program.

REFERENCES
[1] Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the

dimensionality of data with neural networks." Science 313.5786
(2006): 504-507.

[2] Y. Bengio and Y. LeCun, "Scaling learning algorithms towards
AI," in Large Scale Kernel Machines, (L. Bottou, O. Chapelle, D.
DeCoste,and J. Weston, eds.), MIT Press, 2007.

[3] Olshausen, Bruno A., and David J. Field. "Sparse coding with an
overcomplete basis set: A strategy employed by V1?." Vision
research 37.23 (1997): 3311-3325.

[4] Smolensky, Paul (1986). "Chapter 6: Information Processing in
Dynamical Systems: Foundations of Harmony Theory". In
Rumelhart, David E.; McLelland, James L. Parallel Distributed
Processing: Explorations in the Microstructure of Cognition,
Volume 1: Foundations. MIT Press. pp. 194–281. ISBN 0-262-
68053-X.

[5] M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun, "Efficient
learning of sparse representations with an energy-based model," in
Advances in Neural Information Processing Systems 19 (NIPS'06),
(B. Schölkopf, J. Platt, and T. Hoffman, eds.), pp. 1137-1144, MIT
Press, 2007

[6] Ackley, David H., Geoffrey E. Hinton, and Terrence J. Sejnowski.
"A learning algorithm for Boltzmann machines." Cognitive science
9.1 (1985): 147-169.

[7] Cochocki, A., and Rolf Unbehauen. Neural networks for
optimization and signal processing. John Wiley & Sons, Inc.,
1993.

[8] Dahl, George, Abdel-rahman Mohamed, and Geoffrey E. Hinton.
"Phone recognition with the mean-covariance restricted Boltzmann
machine." Advances in neural information processing systems.
2010.

[9] Larochelle, Hugo, and YoshuaBengio. "Classification using
discriminative restricted Boltzmann machines." Proceedings of the
25th international conference on Machine learning.ACM, 2008.

[10] Ng, Andrew. "Sparse autoencoder."CS294A Lecture notes (2011):
72.

[11] Hecht-Nielsen, Robert. "Theory of the backpropagation neural
network."Neural Networks, 1989.IJCNN., International Joint
Conference on. IEEE, 1989.

[12] Paul J. Werbos. Beyond Regression: New Tools for Prediction and
Analysis in the Behavioral Sciences. PhD thesis, Harvard
University, 1974

[13] J. Dean , G. Corrado , R. Monga , K. Chen , M. Devin , Q. Le , M.
Mao , M. Ranzato , A. Senior , P. Tucker , K. Yang and A.

Ng "Large scale distributed deep networks", Proc. Adv. Neural
Inf. Process. Syst., 201Hinton, G. E. (2002). Training products of
experts by minimizing contrastive divergence. NeuralComputation,
14(8):1711 1800.

[14] LeCun, B. Boser, et al. "Handwritten digit recognition with a back-
propagation network." Advances in neural information processing
systems. 1990.

[15] G. E. Hinton, "A Practical Guide to Training Restricted Boltzmann
Machines," in Technical report 2010-003, Machine Learning
Group, University of Toronto, 2010.

[16] J. J. Hopfield "Neural Networks and Physical Systems with
Emergent Collective Computational Abilities", Proc. Natl. Acad.
Sci. USA, vol. 79, pp.2554 -2558 1982

[17] Chu, Cheng, et al. "Map-reduce for machine learning on
multicore." Advances in neural information processing systems 19
(2007): 281.

[18] Raina, Rajat, Anand Madhavan, and Andrew Y. Ng. "Large-scale
deep unsupervised learning using graphics processors." ICML. Vol.
9. 2009.

[19] Ngiam, Jiquan, et al. "On optimization methods for deep learning."
Proceedings of the 28th International Conference on Machine
Learning (ICML-11). 2011.

[20] Shalev-Shwartz, Shai, et al. "Pegasos: Primal estimated sub-
gradient solver for svm." Mathematical Programming 127.1 (2011):
3-30.

[21] Hazan, Elad, Alexander Rakhlin, and Peter L. Bartlett. "Adaptive
online gradient descent."Advances in Neural Information
Processing Systems. 2007.

[22] Dahl, George E., et al. "Context-dependent pre-trained deep neural
networks for large-vocabulary speech recognition." Audio, Speech,
and Language Processing, IEEE Transactions on 20.1 (2012): 30-
42.

[23] Hestenes, Magnus Rudolph, and Eduard Stiefel. "Methods of
conjugate gradients for solving linear systems." (1952): 1.

[24] Liu, Dong C., and Jorge Nocedal. "On the limited memory BFGS
method for large scale optimization."Mathematical programming
45.1-3 (1989): 503-528.

[25] ClaudiuCiresan, Dan, et al. "Deep Big Simple Neural Nets Excel
on Handwritten Digit Recognition." arXiv preprint
arXiv:1003.0358 (2010).

[26] Salakhutdinov, Ruslan, AndriyMnih, and Geoffrey Hinton.
"Restricted Boltzmann machines for collaborative
filtering."Proceedings of the 24th international conference on
Machine learning.ACM, 2007.

[27] Olshausen, Bruno A. "Emergence of simple-cell receptive field
properties by learning a sparse code for natural images." Nature
381.6583 (1996): 607-609.

[28] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified
data processing on large clusters." Communications of the ACM
51.1 (2008): 107-11

1630

