Tuned and Wildly Asynchronous Stencil
Kernels for Hybrid CPU/GPU Systems

Reference

e Sundaresan Venkatasubramanian, Richard W. Vuduc
Georgia Institute of Technology

* International Conference on Supercomputing ‘09

Outline

Background

Code Design and Tuning

— CPU

— GPU

— Hybrid

Results and Discussion
Conclusions and Future Work

My Comments

Background

Exercise:

— Given a memory bandwidth-rich GPU platform,
take a bandwidth-bound computation with
regular memory access and produce a code that
runs at the bandwidth limit.

Background

* Problem:

Jacobi’s method for the 2-D Poisson equation

0 J

P
Ly

" " rI"u "
0 {.—- g o
2 s 1
=, -
-~

T,

o "\‘\
I ™ ST)
| oo —ee={Ujj=pe——¢

b, . : *
{.-l' St L
.
.

b O— O

n+1o O ™ O O

I‘:"\ Y I
= & O
Q}‘—C—l

N+
o—O0—0

{

Background

* Poisson's equation:

A partial differential equation with broad
utility in electrostatics, mechanical
engineering and theoretical physics.

Problem: Solve Poisson’s equation in 2-D on a square grid:

82 82
— (@Jr@) u(z,y) = f(z,y),
0< =,y <1,
u(0,y) =u(z,0) = 0

Centered finite-difference approximation on a (N +2) x (N +2)
regular grid with step size h:

=h*- f;; + O(h?)

Background

* Jacobi method:
Jacobi’s method for the 2-D Poisson equation

Jacobi’s method for this problem and approximation:

1: U° — 0 // Initializes an (N + 2) x (N +2) grid

2: // For each iteration, ¢t (1" iterations in all)

3: fort+—1,2,...7T do

4 for:+—1...N do

5: for y — 1...N do

6: Ufjl — %‘(Uf—l—l,j‘}'Uit—l,j‘l‘Uit,j—l—l +Uf,j_1 +h* F, ;)
7 end for

8 end for

9:

end for

Background

* Recent studies
— GPU-only
— Synchronized designs

e Our main contributions:

— CUDA platform tuning lessons
— Hybrid multi-CPU/multi-GPU implementation
— Asynchronous parallelism

3:

4
5:
6:
7
8
9

Code Design and Tuning

* We consider both sequential and parallel
Pthreads-based implementations as our CPU-

based baselines. :

 CPU-sequential version:

1: U° — 0 // Initializes an (N +2) x (N +2) grid

2: // For each iteration, ¢ (I' iterations in all)

fort«—1,2,...
for 1 —1...

for 3 «— 1.
Uttt

1,7
end for

end for

- end for

o .

i

1‘1% O [S

/N

"\u 2% ? @

=
4]
l.,
I
L]

T do "
N do

.N do
L (Ul g+ UL 1 +UE 1+ ULy +h2 - F)

—O0—0

o o
. [}
[o—0 OO0 —0—0 +

Code Design and Tuning

* CPU-parallel version:
* Single-program multiple data (SPMD) style

1: fort— 1,2,...,T do
2: Update my block, b: UV «— update(U;")
3: barrier()

4: Logically swap UV
H: end for

rCur

and U, ™ (i.e., swap pointers)

Code Design and Tuning

* CPU implementation tuning:

— Compiler SIMD optimization (verified by the
assembly code)

— Bind threads to cores
(Using pthread_attr_setaffinity _np())

— Bind data blocks to sockets in a way that physically
matches the layouts of the cores and sockets.

Code Design and Tuning

* CPU implementation tuning:

Socket0 1

DIMM DIMM

Core0 | Corel 0 1
D |:|
Core2 | Core3 2 3

A~
A 4
\ 4

A

A J
N <
) -
[h+] (=]
) -

DIMM DIMM

Figure 2: (Left) A 16 x 20 grid of unknowns (plus boundaries) partitioned into a 2-D blocked grid of 4 x 5
unknowns per block. (Right) A quad-socket NUMA system with quad-core processors.

— NUMA: non-uniform memory access

Code Design and Tuning

* GPU implementation:

: Copy the grid from main host memory to the GPU.
c fort«—1...7 do

Invoke GPU kernel for all “thread-blocks.”
(Implicit) Synchronize host and GPU.
Logically swap active grid.

. end for

: Copy grid results from GPU to host memory.

Code Design and Tuning

* GPU implementation tuning:
— Padding for coalescing memory access

01 2 256 257 317 318 319

258 ’[B—iD B L: B \J.‘f
516 ([‘ B— 2 \[\ B—D 7[3
: l B—ih D T B— J‘
J: B— & L B— '[a

{ 1|—=In—=j L[n—:l_n—= B—o—0
> N E.}—!..L!—J;—(.)—ei) o—o—(l;

Figure 3: (Left) A conventional row-major layout, for n = 256 (258 x 258 grid), which could lead to costly non-
coalesced memory accesses on a GPU. (Right) A padded row-major layout, for n = 256, avoids the problems
of the conventional layout.

Code Design and Tuning

* GPU implementation tuning:

— Shared memory, without padding.
* Hold elements from neighboring blocks.

* reduces the total number of device memory fetches by
3x and we can eliminate storage of the second grid.

— Shared memory, with padding.
* Avoid shared memory bank conflicts.
— Texture memory.
* Binding the global memory to 1-D textures as a cache.

— Unrolling
e Avoid shared memory bank conflicts.

Code Design and Tuning

* GPU implementation tuning:

— A double-precision trick.

* Using double-precision (8-byte words) leads to bank
conflicts during shared memory accesses, because the
banks are arranged in a way that favors vector loads on
4-byte words. We avoid this problem by separately
storing the lower and upper 4-byte words, and
recombining them prior to computation using a pre-
defined CUDA macro (__hiloint2double()) [1].

Code Design and Tuning

* Hybrid implementations:

: // Assign rows 1...s to the CPU(s),

: // and rows s+ 1...n to the GPU(s).

: fort—1...T do

Step 1 (GPU part): Compute one iteration of Jacobi

for the last n — s rows of the grid.

5: Step 2 (CPU part): Simultaneously compute one
iteration of Jacobi on rows 1...s.

6: Step 3 (Exchange data): Transfer the boundary
rows between CPU and GPU.

7: end for

= Lo hD

Code Design and Tuning

Hybrid implementations:

CPU partition

o

n+1
; ghost cells

£ & ey
—o—8—@ }
T - . - .
L L ¢ kY]/
TS rd ™
. e - i
I
Tt

e
I8
!

e ..: .y i
]i %
LS
&Y

i

¥
"y
L5
™y %
Oo—O

ST il) it £
L -\. et = = Py

—O0—0

I

_:[-: T s ot

\]: . L L i L
. 3 e b T -
L s L Y L =

GPU partition

. .,

1 st

-.. s at
'I)—i"}—{}—{

Figure 5: Block row partitioning used for the hybrid
CPU/GPU implementation.

Code Design and Tuning

e Hybrid implementations tuning:

° 100% >
£ 27
E Baseline Hybrid 77 -
= GPU-only \ ’
-~
9) Z
- - <<
o -
U - ” -
- ”
8 ~ <
— -~ ’ -
2 Y
m ” - = o ™
S CPU part ’ ~
P - ~ GPU part
c ”
(] \ ” -~ -
— ” .
] e Exchange S e
i e ¥ S
0% 2
0% Optimal Fraction 100%

Fraction Assigned to CPU

Figure 6: Illustration of expected performance of a
hybrid CPU/GPU implementation.

Code Design and Tuning

* Hybrid implementations tuning:
— Parameterized by a, an asynchronicity factor.

— An approximate measure of the degree to which
we are willing to allow threads to get “out of sync.”

Code Design and Tuning

* Hybrid implementations tuning:

— Asynchronous variations 0

—

Figure 7: Algorithm: Async 0. This algorithm is the basic skeleton in which we consider removing synchro-
nizations and/or device memory accesses to create other “fast-and-loose” variants. Here, the “penultimate
fringe” is the boundary of unknowns (outermost ring of unknowns bordering the ghost cells) that neighboring

L PN DUE W

: // Async 0:
: // Threads / block is R

// Assign R x C unknowns to each thread-block

: Transfer (n +2) x (n + 2) grid to GPU.

for t+—1...T g/ do
Execute Async 0 GPU-Kernel.
(Implicit) Sync CPU-GPU.
Logically swap grids.

end for

: Transfer (n +2) x (n + 2) grid to GPU.

thread-blocks will need.

20:
21:
22:
23:

: // Async 0 GPU-Kernel:
: // Executes on all thread-blocks
: Declare two (R + 2) x (C' + 2) shared memory grid

blocks, By and Ba.

: Fetch (R + 2) x (C + 2) elements from device memory

into Bj.

: Copy just the fringes to Bs.

sync_threads: Sync thread-block.

: // Inner o loop is “unrolled” by 2
:forv—1...a/2do

Compute 1 iteration in B, writing to Ba.
sync_threads
Write penultimate fringe from Bs to device memory.
sync_threads
Fetch fringe elements from device memory to Bs.
sync_threads
Compute 1 iteration in Ba, writing to Bi.
sync_threads
‘Write penultimate fringe from B; to device memory.
sync_threads
Fetch fringe elements from device memory to Bj.
sync_threads

end for

Compute one Jacobi step with elements in Bj.

Write results back the results to the device memory.

—_

L XD W

// Async 0:
// Threads / block is R
// Assign R x C' unknowns to each thread-block
Transfer (n +2) x (n + 2) grid to GPU.
fort —1...T g/a do
Execute Async 0 GPU-Kernel.
(Implicit) Sync CPU-GPU.
Logically swap grids.
end for
Transfer (n + 2) x (n 4+ 2) grid to GPU.

=

20:
21:

// Async 0 GPU-Kernel:
// Executes on all thread-blocks
Declare two (R + 2) x (C' + 2) shared memory grid
blocks, By and Ba.
Fetch (R + 2) x (C' + 2) elements from device memory
into Bj.
Copy just the fringes to Bs.
sync_threads: Sync thread-block.
// Inner « loop is “unrolled” by 2
forv—1...a/2do
Compute 1 iteration in B;, writing to Bs.
sync_threads
‘Write penultimate fringe from Bs to device memory.
sync_threads
Fetch fringe elements from device memory to Bs.
sync_threads
Compute 1 iteration in Bs, writing to Bi.
sync_threads
Write penultimate fringe from B; to device memory.
sync_threads
Fetch fringe elements from device memory to Bj.
sync_threads
end for

22: Compute one Jacobi step with elements in Bj.
23: Write results back the results to the device memory.

Figure 7: Algorithm: Async 0. This algorithm is the basic skeleton in which we consider removing synchro-
nizations and/or device memory accesses to create other “fast-and-loose” variants. Here, the “penultimate
fringe” is the boundary of unknowns (outermost ring of unknowns bordering the ghost cells) that neighboring
thread-blocks will need.

Blocks

1/11/1/1/1/1/1 1

1/1]1]1]1/1/11
11/1/1/1/1/1 1

Global Memory

B2

Bl

4: Fetch (R+2) X (C+2)
elements from device
memory into B1.

5: Copy just the fringes to
B2.

6: sync_threads:

Y I NS

= (= (= [= (= = (=

= = = (= (= = = (=

RR R R R R Rk

S A R N

N N N = e = =

= = (= (= = (= (= (=

N N e S N

Global Memory

R R R R (R R,

N Y

B2

ol | o= o= ¥ ¥ =¥ =i i
it i |
it =i | i
it |
it i | —
it i i
it i i i
i | o] i ¥ 8 ¥ i
=
(=
9
)
©
gq 3
598
e.mm
i
+~ o
S5 c
X
(-
o2&
(@) ~ ..
.. = O
O N -

Global Memory

1
1
1
1

1/1/1/1]1/1]1 1
1/2/2/2/2/2/2|1

1
1
1
1

1/12/2/2/2/2]|2]1

1/1/1/1/1/1/1 1

1
1
1
1

1'1/1/1]1/1|1 1
1/1/1/1/1/1]/1/1

1
1
1
1

1/1/1/1/1/1]1/1
1/1/1/1/1/1/1 1

B2

Bl

2
2
2
2

212212222 2
21221222 2|2

212121222 2|2
2122122222

2
2
2
2

11: Write penultimate

fringe from B2 to device

memory.

12: sync_threads

Global Memory

1
1
1
1

1/11/1/1/1/1/1 1

1/2/2/2/2/2/2|1

1
1
1
1

1/12/2/2/2/2]|2]1

1/1/1/1/1/1/1 1

1
1
1
1

1/1/1/1/1/1]/1 1
1/1/1/1/1/1]/1/1

1
1
1
1

1/1/1/1/1/1]1/1
1/1/1/1/1/1/1 1

B2

Bl

AN AN AN AN AN AN AN N
AN AN AN AN
AN AN AN AN
AN AN AN AN
AN AN AN AN
AN AN AN AN
AN AN AN AN

(7))

s

C O

Qo +

E >

QL o

v £ .m.

Qo Q

©

2E o

* o— | -

- Q c

i t_

< >

O o

td [

) >

_le (V5]

m O« <

- ¢ 0O i

Global Memory

2
2
2
2

212121212222

212/22(2/2 22

2
2
2
2

21212222 2]2

212122122 2 2

1
1
1
1

1/1/1/1/1/1]/1 1
1/1/1/1/1/1]/1/1

1
1
1
1

1/1/1/1/1/1]1/1
1/1/1/1/1/1/1 1

B2

Bl

2

2
2
2

212212222 2

21221222 2|2

212121222 2|2
2122122222

2

2
2
2

15: Compute 1 iteration in

B2, writing to B1.
16: sync_threads

Global Memory

2
2
2
2

2121221212 2|2
212/22(2/2 22

2
2
2
2

21212222 2]2
212122122 2 2

1
1
1
1

1/11/1/1/1/1/1 1

1/3/3/3/3/3/3/1

1
1
1
1

1/3/3/3/3/3/3]|1

1/1/1/1/1/1/1 1

B2

Bl

3
3
3
3

3/3/3/3/33 33

3/3/3/3/3/3/ 33

3

3
3

3/3/3/3/3/3 33

3 3/3/3/3 333

17: Write penultimate

fringe from B1 to device

memory.

18: sync_threads

Global Memory

2
2
2
2

2121221212 2|2
212/22(2/2 22

2
2
2
2

21212222 2]2
212122122 2 2

1
1
1
1

1/11/1/1/1/1/1 1

1/3/3/3/3/3/3/1

1
1
1
1

1/3/3/3/3/3/3]|1

1/1/1/1/1/1/1 1

B2

Bl

3
3
3
3

3/3/3/3/33 33

3/3/3/3/3/3/ 33

3
3
3
3

3/3/3/3/3/3 33

3 3/3/3/3 333

19: Fetch fringe elements
from device memory to

B1.

20: sync_threads

Global Memory

2
2
2
2

2121221212 2|2
212/22(2/2 22

2
2
2
2

21212222 2]2
212122122 2 2

3
3
3
3

33/33/]3/3/ 33

3/3/3/3/3/3 33

3
3
3
3

313/13/3/3/3/3 3

3/3/33/3/3/3 3

B2

Bl

3
3
3
3

3/3/3/3/33 33

3/3/3/3/3/3/ 33

3
3
3
3

3/3/3/3/3/3 33

3 3/3/3/3 333

22: Compute one Jacobi

step with elements in B1.

Global Memory

2
2
2
2

21212121222 2
204 4 4/ 4/4 4 2

2
2
2
2

2444/ 4/(4 42
202(2, 22 22 2

3
3
3
3

33/33/]3/3/ 33

3/3/3/3/3/3 33

3
3
3
3

313/13/3/3/3/3 3

3/3/33/3/3/3 3

B2

Bl

4
4

414/4/4 4/4 4 4

414/4/4 4/4 4 4

4
4
4

41444 4/4 4 4
41444 4/4 4 4

23: Write results back the

results to the device

memory.

Global Memory

2
2
2
2

21212121222 2
204 4 4/ 4/4 4 2

2
2
2
2

2444/ 4/(4 42
202(2, 22 22 2

3
3
3
3

33/33/]3/3/ 33

3/3/3/3/3/3 33

3
3
3
3

313/13/3/3/3/3 3

3/3/33/3/3/3 3

B2

Bl

Code Design and Tuning

* Hybrid implementations tuning:

— Asynchronous variations 1

1: // Async 1 GPU-Kernel:
2: // Executes on all thread-blocks
3: Declare two (R+2) x (C'+2) shared memory grid blocks,
B and Bs.
4: Fetch (R + 2) x (C 4 2) elements from device memory
into Bj.
5: Copy just the fringes to Bs.
6: sync_threads: Sync thread-block.
7: forv+—1...a/2 do
8: Compute 1 iteration in Bi, writing to Bs.
9: Write penultimate fringe from Bs to device memory.
10: Fetch fringe elements from device memory to Ba.
11: sync_threads
12: Compute 1 iteration in Bs, writing to Bj.

13: Write penultimate fringe from B1 to device memory.
14: Fetch fringe elements from device memory to Bi.
15: sync_threads

16: end for

17: Compute one Jacobi step with elements in Bj.
18: Write results back the results to the device memory.

Figure 8: Algorithm: Async 1. (GPU-Kernel only)
This variant eliminates 4 of the 6 local syncs in Fig-
ure 7.

—

: // Async 1 GPU-Kernel:
// Executes on all thread-blocks
3: Declare two (R+42) x (C'+2) shared memory grid blocks,
B1 and Bo.
4: Fetch (R + 2) x (C' + 2) elements from device memory
into Bj.
: Copy just the fringes to Bs.

: sync_threads: Sync thread-block.
: forv+—1...a/2do

b

5

6

7

8 Compute 1 iteration in Bji, writing to Bs.

9 Write penultimate fringe from Bs to device memory.
10 Fetch fringe elements from device memory to Bs.
11: sync_threads
12: Compute 1 iteration in Bs, writing to Bj.

13 Write penultimate fringe from B; to device memory.
14 Fetch fringe elements from device memory to Bj.
15: sync_threads

16: end for

17: Compute one Jacobi step with elements in Bj.

18: Write results back the results to the device memory.

Figure 8: Algorithm: Async 1. (GPU-Kernel only)
This variant eliminates 4 of the 6 local syncs in Fig-
ure 7.

Code Design and Tuning

* Hybrid implementations tuning:
— Asynchronous variations 2

1: // Async 2 GPU-Kernel:
2: // Executes on all thread-blocks
3: Declare two (R42) x (C'42) shared memory grid blocks,
By and Bs.
4: Fetch (R 4 2) x (C' + 2) elements from device memory
into B;.
5: Copy just the fringes to Bs.
6: sync_threads: Sync thread-block.
7: forv+—1...a/2do
8: Compute 1 iteration in Bj, writing to Ba.
9: sync_threads
10: Compute 1 iteration in Bz, writing to Bj.
11: sync_threads
12: end for
13: Compute one Jacobi step with elements in Bj.
14: Write results back the results to the device memory.

Figure 9: Algorithm: Async 2. (GPU-Kernel only)
This variant eliminates the fringe writes and reads
in lines 9, 10, 13, and 14 of Figure 8.

—t

: // Async 2 GPU-Kernel:

// Executes on all thread-blocks
Declare two (R+2) x (C'4+2) shared memory grid blocks,
Bi and Bs.
Fetch (R + 2) x (C' + 2) elements from device memory
into Bj.
Copy just the fringes to Bs.
sync_threads: Sync thread-block.
forv+—1...a/2do
Compute 1 iteration in Bj, writing to Bs.
sync_threads
Compute 1 iteration in B2, writing to Bj.
sync_threads

: end for
: Compute one Jacobi step with elements in B1.
. Write results back the results to the device memory.

Figure 9: Algorithm: Async 2. (GPU-Kernel only)
This variant eliminates the fringe writes and reads
in lines 9, 10, 13, and 14 of Figure 8.

Code Design and Tuning

* Hybrid implementations tuning:
— Asynchronous variations 3

1: // Async 3 GPU-Kernel:
2: // Executes on all thread-blocks
3: Declare one (R+2) x (C'+2) shared memory grid block,
B.
4: Fetch (R + 2) x (C + 2) elements from device memory
into B.
5: sync_threads: Sync thread-block.
6: forv—1...ado
7. Compute 1 iteration in B, writing to B.
8 Write penultimate fringe from B to device memory.
9: Fetch fringe elements from device memory to B.
10: end for
11: Compute one Jacobi step with elements in B.
12: Write results back the results to the device memory.

Figure 10: Algorithm: Async 3. This “most wild”
variant replaces the two shared memory grid blocks
with 1, and eliminates all local synchronization.

p—t

. // Async 3 GPU-Kernel:

: // Executes on all thread-blocks

: Declare one (R+2) x (C'42) shared memory grid block,
B.

Fetch (R 4+ 2) x (C' 4 2) elements from device memory
into B.

5: sync_threads: Sync thread-block.

6: forv—1...ado

7: Compute 1 iteration in B, writing to B.

8.

9

w Iy

e

Write penultimate fringe from B to device memory.
. Fetch fringe elements from device memory to B.
10: end for
11: Compute one Jacobi step with elements in B.
12: Write results back the results to the device memory.

Figure 10: Algorithm: Async 3. This “most wild”
variant replaces the two shared memory grid blocks
with 1, and eliminates all local synchronization.

Results and Discussion

* Evaluation platforms

— gcc 4.3.2 with “-04 -mtune=native” flags
— CUDA 2.0 SDK

Intel AMD
NVIDIA | NVIDIA | NVIDIA || Core2Duo | Opteron
Tesla Tesla Quadro E6550 8350
Feature C1060 C870 FX 570 “Conroe” | “Barcelona”
Number of
multiprocessors 30 16 2 2 4
Total no. of
cores 240 128 16 4 16
Peak bandwidth
GB/s 102 76.8 12.8 10 21.6
Empirical streaming
bandwidth (GB/s) 68.7 53.0 5.5 4.7 9.9
Double-precision? Yes No No Yes Yes
Peak GFlop/s
(Single-precision) 933 512 44 74.61 256 2
Peak GFlop/s
(Double-precision) 78 N/A N/A 37.8 128

Table 1: Hardware platforms used in our experimental evaluation. “Empirical streaming bandwidth’ mea-
sured using NVIDIA’s bandwidthTest utility and McCalpin’s STREAM Triad, as appropriate. Note that
NVIDIA’s bandwidth test benchmark reports “GB/s” assuming 1 GB = 1024% bytes, whereas we instead use
the more conventional method of computing the rate via “bytes times 107° divided by time.”

Intel AMD
NVIDIA | NVIDIA | NVIDIA || Core2Duo | Opteron
Tesla Tesla Quadro E6550 8350
Feature C1060 C870 FX 570 “Conroe” | “Barcelona”
Number of
multiprocessors 30 16 2 2 4
Total no. of
cores 240 128 16 4 16
Peak bandwidth
GB/s 102 76.8 12.8 10 21.6
Empirical streaming
bandwidth (GB/s) | 68.7 53.0 5.5 4.7 9.9
Double-precision”? Yes No No Yes Yes
Peak GFlop/s
(Single-precision) 933 512 44 74.61 256 2
Peak GFlop/s
(Double-precision) 78 N/A N/A 37.8 128

Table 1: Hardware platforms used in our experimental evaluation. “Empirical streaming bandwidth” mea-
sured using NVIDIA’s bandwidthTest utility and McCalpin’s STREAM Triad, as appropriate. Note that
NVIDIA’s bandwidth test benchmark reports “GB/s” assuming 1 GB = 10242 bytes, whereas we instead use
the more conventional method of computing the rate via “bytes times 102 divided by time.”

Results and Discussion

Effects of Tuning:
Single GPU, Single-Precision

° GPU 100% -

3 o0% -:
S 80% - ——
€ 70% -
~§ 60% -
o 50% -
L
O 40% -
c .
o 30% - —
]
E 20% - —
w 10% —
0% T
Quadro FX 570 c870 C1060
O Baseline GPU W+ Padding ¥ + Shared mem, no padding
B 4+ Texture memory + Shared mem + padding B+ Unrolling
Figure 12: Cumulative impact of various tuning

techniques on our implementation’s final (best) per-
formance.

Results and Discussion

* GPU

Breakdown of GPU Execution Time
CPU/GPU Cross-over

//”’r— “‘\ 100

Host-to-device: g e {]

21.9% o Lol

g 10 o
I}

Kernel: =t

56.3% ._.-"'

Device-to-host:
21.8%
1 T T T 1
1 10 100 1000
lterations (T

~“-GPU only *® GPUstransfer CPU (4x4)

Figure 13: (Left) Breakdown of the total execution time using a single GPU (NVIDIA C870). Grid size
is n = 4096, and number of iterations 7' = 32. A substantial amount of time is spent just transfering data
between the host memory and GPU memory. (Right) Number of iterations needed for the single-GPU
(NVIDIA C870) performance to exceed the baseline parallel CPU performance (Barcelona 4 x 4) when the
initial and final grid transfers between host and device are taken into account. Grid size is n = 4096.

* GPU

1.8
1.6
14
1.2

Gflop/s

0.8
0.6
0.4
0.2

25

20

Gflop/s

Results and Discussion

Effective Performance: NVIDIA Quadro FX 570

N e — v — - A
s Ease - s 2= = ¥
l__
10 100 1000
No. iterations (T)
--n=64 Wn=256 n=1024 ¢n=4096
Effective Performance: NVIDIA C870
-/-_.__H
10 100 1000

No. iterations (T)

“-n=64 Wn=256 n=1024 ¢n=4096

Sustained Bandwidth: NVIDIA Quadro FX 570

35 * — %
T
3
25 T
> o
@ 2 -
¢}
1.5
1
0.5
0
10 100 1000
No. iterations (T)
“4-n=64 Wn=256 n=1024 -»n=4096
Sustained Bandwidth: NVIDIA C870
45
40 * L — X_}k *
35 |
30 /._:.==—H |
© 25 —
3]
G 20 ./
15
10
5 - +—— Py
= h = {
0
1 10 100 1000
No. iterations (T)
“4-n=64 n=256 n=1024 +¢n=4096

* GPU

Gflop/s

40
35
30
25
20
15
10

Results and Discussion

Effective Performance: NVIDIA C1060

- . . . r .

>— & < —¢ o
1 10 100 1000

No. iterations (T)
“-n=64 Wn=256 n=1024 -»¢n=4096
Effective Performance:
NVIDIA C1060 - Double-Precision

- - -

o o *
10 100 1000

No. iterations (T)

4-n=256 #Wn=1024

n=4096

Sustained Bandwidth: NVIDIA C1060

80

70 * M x

60 {

50 E
£ E

40
a | g——8— & |

30 ./

20

10 |

0 *— *r———+ ¢

1 10 100 1000
No. iterations (T)
“4-n=64 Wn=256 n=1024 *n=4096
Sustained Bandwidth:
NVIDIA C1060 - Double-precision

70

60 - - a

50
o 40 * 4 -
o
O 30

20

10

0
10 100 1000

No. iterations (T)

4-n=256 #Wn=1024

n=4096

Results and Discussion

* Hybrid CPU/GPU execution

Hybrid CPU-GPU (Conroe + NVIDIA FX Quadro 570) Hybrid CPU-GPU (Barcelona + C870)
14 2
1.8 -
212 i > =
£ > €16 = o=
3 e e 3 o
F T e bl N k % ;3 | L a 1.4 —x
2 08 ™ %** N an i G 12 "__h'-*ff
E : P E 1 A& & & & —'?, =>¢
= C = T s e e
5 08 7 5 0.8 == —
c c
S04 -~ S 06 x)""" x
8 ~ ® 04 7
L 0.2 =z T
— 0.2
0= 0
0 0.02 0.04 0.06 0.08 0.1 012 0.14 0.16 0 0.05 01 015 02
Fraction of Rows Assigned to CPU Fraction of rows assigned to CPU
== CPU =¥ GPU Exchange -~ Hybrid GPU only “¥=CPU == GPU Exchange -*Hybrid GPU only

Figure 14: Measured time for hybrid multi-CPU and single-GPU implementations, normalized to GPU-only
time. Compare to our hybrid performance model, illustrated in Figure 6. (Left) Intel single-socket dual-core
Conroe + NVIDIA Quadro FX 570. At approximately 11% of rows assigned to the CPU, there is a small ~ 8%
speedup over the GPU-only code. (Right) AMD quad-socket quad-core Barcelona (16 threads) + NVIDIA
C870. The hybrid code never beats the GPU-only code due to the data exchange/synchronization.

Results and Discussion

* Multi-GPU

Multiple Heterogeneous GPUs (NVIDIA Quadro FX 570+C1060) Multi-GPU (C1060 x 2)
10 2.5
225 \ y&

_x
&S

=
c
?
(]
2 1 -
(0])
E i H %
1.25
o
0.1 il
5 0.75 v
§ 0.5 =
0.01 - 0 ! | | | | B |
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0 01 02 03 04 05 06 07 08 09 1
Fraction of rows assigned to GPU 1 Fraction of rows assigned to GPU 2
A GPU1 B GPU2 Exchange ~* Hybrid -*°GPU 2 only #-GPU 1 GPU 2 Exchange ~* Hybrid —<Single GPU

Figure 15: Measured multiple GPU performance, (Left) One NVIDIA Quadro FX 570 (“GPU 1”) and One
NVIDIA C1060 (“GPU 2”). Because of the large gap between the performance of the two GPUs (~ 18x
difference, not shown), the optimal fraction does not beat the GPU 2-only code. (Compare to Figure 6.)
(Right) Two NVIDIA Tesla C1060 cards. At approximately 50% of rows assigned to GPU 1 there is a speedup
of ~ 1.8x over the GPU-only code.

Results and Discussion

* Wildly asynchronous execution

Speedup on the GPU from Loose Synchronization Relative Increase in lterations on the GPU
10 due to Loose Synchronization

2 =
7]

Iy 2 10
2 - b =
£ -—— TE= - 2
8 ~a =
8 . 2
@ . S

% —""-I-._“‘J g 1
° \ =
=] . v
o : ‘ 2
4 3
@ i

0.1 0.1

1 10 100 1 10 100
Async Factor () Async Factor (a)
==Async 1 Async2 = Async3 —Baseline Sync —Async 1 Async2 = -Async3 —Baseline Sync

Figure 16: Comparison of asynchronous implementations on the NVIDIA C1060, for n = 4096 and 7 = 1000.
(Left) Speedup relative to the synchronized baseline. (Right) Relative increase in effective iterations required
to reach the same level of accuracy as the tuned synchronized GPU baseline (synchronized baseline = 1).

Conclusions and Future Work

* Hybrid performance models

— Host-to-device transfer time, that have sometimes
been omitted in prior work.

* Wildly Asynchronization

— Now is an appropriate time to take a fresh look
into this area of research.

My Comments

* Hybrid performance models

— A hybrid implementation will not lead to speedups
overall if there is a large gap between CPU and
GPU speeds or a high transfer overhead.

* [t may be tricky to keep the accuracy
 Comparison for double-precision

Thank you!

