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Background

Exercise:

— Given a memory bandwidth-rich GPU platform,
take a bandwidth-bound computation with
regular memory access and produce a code that
runs at the bandwidth limit.



Background

* Problem:

Jacobi’s method for the 2-D Poisson equation
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Background

* Poisson's equation:

A partial differential equation with broad
utility in electrostatics, mechanical
engineering and theoretical physics.

Problem: Solve Poisson’s equation in 2-D on a square grid:

82 82
— (@Jr@) u(z,y) = f(z,y),
0< =,y <1,
u(0,y) =u(z,0) = 0

Centered finite-difference approximation on a (N +2) x (N +2)
regular grid with step size h:

=h*- f;; + O(h?)



Background

* Jacobi method:
Jacobi’s method for the 2-D Poisson equation

Jacobi’s method for this problem and approximation:

1: U° — 0 // Initializes an (N + 2) x (N +2) grid

2: // For each iteration, ¢t (1" iterations in all)

3: fort+—1,2,...7T do

4 for:+—1...N do

5: for y — 1...N do

6: Ufjl — %‘(Uf—l—l,j‘}'Uit—l,j‘l‘Uit,j—l—l +Uf,j_1 +h* F, ;)
7 end for

8 end for

9:

end for



Background

* Recent studies
— GPU-only
— Synchronized designs

e Our main contributions:

— CUDA platform tuning lessons
— Hybrid multi-CPU/multi-GPU implementation
— Asynchronous parallelism
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Code Design and Tuning

* We consider both sequential and parallel
Pthreads-based implementations as our CPU-

based baselines. :

 CPU-sequential version:

1: U° — 0 // Initializes an (N +2) x (N +2) grid

2: // For each iteration, ¢ (I' iterations in all)

fort«—1,2,...
for 1 —1...

for 3 «— 1.
Uttt

1,7
end for

end for

- end for
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Code Design and Tuning

* CPU-parallel version:
* Single-program multiple data (SPMD) style

1: fort— 1,2,...,T do
2:  Update my block, b: UV «— update(U;")
3:  barrier()

4:  Logically swap UV
H: end for

rCur

and U, ™ (i.e., swap pointers)




Code Design and Tuning

* CPU implementation tuning:

— Compiler SIMD optimization (verified by the
assembly code)

— Bind threads to cores
(Using pthread_attr_setaffinity _np())

— Bind data blocks to sockets in a way that physically
matches the layouts of the cores and sockets.



Code Design and Tuning

* CPU implementation tuning:

Socket0 1

DIMM DIMM
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Figure 2: (Left) A 16 x 20 grid of unknowns (plus boundaries) partitioned into a 2-D blocked grid of 4 x 5
unknowns per block. (Right) A quad-socket NUMA system with quad-core processors.

— NUMA: non-uniform memory access



Code Design and Tuning

* GPU implementation:

: Copy the grid from main host memory to the GPU.
c fort«—1...7 do

Invoke GPU kernel for all “thread-blocks.”
(Implicit) Synchronize host and GPU.
Logically swap active grid.

. end for

: Copy grid results from GPU to host memory.




Code Design and Tuning

* GPU implementation tuning:
— Padding for coalescing memory access

01 2 256 257 317 318 319

258 ’[ B—iD B L: B \J.‘f
516 ([‘ B— 2 \[\ B—D 7[3
: l B—ih D T B— J‘
J: B— & L B— '[a

{ 1|—=In—=j L[n—:l_n—= B—o—0
> N E.}—!..L!—J;—(.)—ei) o—o—(l;

Figure 3: (Left) A conventional row-major layout, for n = 256 (258 x 258 grid), which could lead to costly non-
coalesced memory accesses on a GPU. (Right) A padded row-major layout, for n = 256, avoids the problems
of the conventional layout.



Code Design and Tuning

* GPU implementation tuning:

— Shared memory, without padding.
* Hold elements from neighboring blocks.

* reduces the total number of device memory fetches by
3x and we can eliminate storage of the second grid.

— Shared memory, with padding.
* Avoid shared memory bank conflicts.
— Texture memory.
* Binding the global memory to 1-D textures as a cache.

— Unrolling
e Avoid shared memory bank conflicts.



Code Design and Tuning

* GPU implementation tuning:

— A double-precision trick.

* Using double-precision (8-byte words) leads to bank
conflicts during shared memory accesses, because the
banks are arranged in a way that favors vector loads on
4-byte words. We avoid this problem by separately
storing the lower and upper 4-byte words, and
recombining them prior to computation using a pre-
defined CUDA macro (__hiloint2double()) [1].



Code Design and Tuning

* Hybrid implementations:

: // Assign rows 1...s to the CPU(s),

: // and rows s+ 1...n to the GPU(s).

: fort—1...T do

Step 1 (GPU part): Compute one iteration of Jacobi

for the last n — s rows of the grid.

5:  Step 2 (CPU part): Simultaneously compute one
iteration of Jacobi on rows 1...s.

6: Step 3 (Exchange data): Transfer the boundary
rows between CPU and GPU.

7: end for

= Lo hD




Code Design and Tuning

Hybrid implementations:

CPU partition

o
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Figure 5: Block row partitioning used for the hybrid
CPU/GPU implementation.



Code Design and Tuning

e Hybrid implementations tuning:
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Figure 6: Illustration of expected performance of a
hybrid CPU/GPU implementation.



Code Design and Tuning

* Hybrid implementations tuning:
— Parameterized by a, an asynchronicity factor.

— An approximate measure of the degree to which
we are willing to allow threads to get “out of sync.”



Code Design and Tuning

* Hybrid implementations tuning:

— Asynchronous variations 0

—

Figure 7: Algorithm: Async 0. This algorithm is the basic skeleton in which we consider removing synchro-
nizations and/or device memory accesses to create other “fast-and-loose” variants. Here, the “penultimate
fringe” is the boundary of unknowns (outermost ring of unknowns bordering the ghost cells) that neighboring

L PN DUE W

: // Async 0:
: // Threads / block is R

// Assign R x C unknowns to each thread-block

: Transfer (n +2) x (n + 2) grid to GPU.

for t+—1...T g/ do
Execute Async 0 GPU-Kernel.
(Implicit) Sync CPU-GPU.
Logically swap grids.

end for

: Transfer (n +2) x (n + 2) grid to GPU.

thread-blocks will need.

20:
21:
22:
23:

: // Async 0 GPU-Kernel:
: // Executes on all thread-blocks
: Declare two (R + 2) x (C' + 2) shared memory grid

blocks, By and Ba.

: Fetch (R + 2) x (C + 2) elements from device memory

into Bj.

: Copy just the fringes to Bs.

sync_threads: Sync thread-block.

: // Inner o loop is “unrolled” by 2
:forv—1...a/2do

Compute 1 iteration in B, writing to Ba.
sync_threads
Write penultimate fringe from Bs to device memory.
sync_threads
Fetch fringe elements from device memory to Bs.
sync_threads
Compute 1 iteration in Ba, writing to Bi.
sync_threads
‘Write penultimate fringe from B; to device memory.
sync_threads
Fetch fringe elements from device memory to Bj.
sync_threads

end for

Compute one Jacobi step with elements in Bj.

Write results back the results to the device memory.
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L XD W

// Async 0:
// Threads / block is R
// Assign R x C' unknowns to each thread-block
Transfer (n +2) x (n + 2) grid to GPU.
fort —1...T g/a do
Execute Async 0 GPU-Kernel.
(Implicit) Sync CPU-GPU.
Logically swap grids.
end for
Transfer (n + 2) x (n 4+ 2) grid to GPU.

=

20:
21:

// Async 0 GPU-Kernel:
// Executes on all thread-blocks
Declare two (R + 2) x (C' + 2) shared memory grid
blocks, By and Ba.
Fetch (R + 2) x (C' + 2) elements from device memory
into Bj.
Copy just the fringes to Bs.
sync_threads: Sync thread-block.
// Inner « loop is “unrolled” by 2
forv—1...a/2do
Compute 1 iteration in B;, writing to Bs.
sync_threads
‘Write penultimate fringe from Bs to device memory.
sync_threads
Fetch fringe elements from device memory to Bs.
sync_threads
Compute 1 iteration in Bs, writing to Bi.
sync_threads
Write penultimate fringe from B; to device memory.
sync_threads
Fetch fringe elements from device memory to Bj.
sync_threads
end for

22: Compute one Jacobi step with elements in Bj.
23: Write results back the results to the device memory.

Figure 7: Algorithm: Async 0. This algorithm is the basic skeleton in which we consider removing synchro-
nizations and/or device memory accesses to create other “fast-and-loose” variants. Here, the “penultimate
fringe” is the boundary of unknowns (outermost ring of unknowns bordering the ghost cells) that neighboring
thread-blocks will need.
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4: Fetch (R+2) X (C+2)
elements from device
memory into B1.

5: Copy just the fringes to
B2.

6: sync_threads:
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12: sync_threads
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Code Design and Tuning

* Hybrid implementations tuning:

— Asynchronous variations 1

1: // Async 1 GPU-Kernel:
2: // Executes on all thread-blocks
3: Declare two (R+2) x (C'+2) shared memory grid blocks,
B and Bs.
4: Fetch (R + 2) x (C 4 2) elements from device memory
into Bj.
5: Copy just the fringes to Bs.
6: sync_threads: Sync thread-block.
7: forv+—1...a/2 do
8:  Compute 1 iteration in Bi, writing to Bs.
9:  Write penultimate fringe from Bs to device memory.
10:  Fetch fringe elements from device memory to Ba.
11: sync_threads
12:  Compute 1 iteration in Bs, writing to Bj.

13:  Write penultimate fringe from B1 to device memory.
14:  Fetch fringe elements from device memory to Bi.
15:  sync_threads

16: end for

17: Compute one Jacobi step with elements in Bj.
18: Write results back the results to the device memory.

Figure 8: Algorithm: Async 1. (GPU-Kernel only)
This variant eliminates 4 of the 6 local syncs in Fig-
ure 7.
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: // Async 1 GPU-Kernel:
// Executes on all thread-blocks
3: Declare two (R+42) x (C'+2) shared memory grid blocks,
B1 and Bo.
4: Fetch (R + 2) x (C' + 2) elements from device memory
into Bj.
: Copy just the fringes to Bs.

: sync_threads: Sync thread-block.
: forv+—1...a/2do

b

5

6

7

8 Compute 1 iteration in Bji, writing to Bs.

9 Write penultimate fringe from Bs to device memory.
10 Fetch fringe elements from device memory to Bs.
11: sync_threads
12:  Compute 1 iteration in Bs, writing to Bj.

13 Write penultimate fringe from B; to device memory.
14 Fetch fringe elements from device memory to Bj.
15: sync_threads

16: end for

17: Compute one Jacobi step with elements in Bj.

18: Write results back the results to the device memory.

Figure 8: Algorithm: Async 1. (GPU-Kernel only)
This variant eliminates 4 of the 6 local syncs in Fig-
ure 7.



Code Design and Tuning

* Hybrid implementations tuning:
— Asynchronous variations 2

1: // Async 2 GPU-Kernel:
2: // Executes on all thread-blocks
3: Declare two (R42) x (C'42) shared memory grid blocks,
By and Bs.
4: Fetch (R 4 2) x (C' + 2) elements from device memory
into B;.
5: Copy just the fringes to Bs.
6: sync_threads: Sync thread-block.
7: forv+—1...a/2do
8:  Compute 1 iteration in Bj, writing to Ba.
9: sync_threads
10:  Compute 1 iteration in Bz, writing to Bj.
11: sync_threads
12: end for
13: Compute one Jacobi step with elements in Bj.
14: Write results back the results to the device memory.

Figure 9: Algorithm: Async 2. (GPU-Kernel only)
This variant eliminates the fringe writes and reads
in lines 9, 10, 13, and 14 of Figure 8.
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: // Async 2 GPU-Kernel:

// Executes on all thread-blocks
Declare two (R+2) x (C'4+2) shared memory grid blocks,
Bi and Bs.
Fetch (R + 2) x (C' + 2) elements from device memory
into Bj.
Copy just the fringes to Bs.
sync_threads: Sync thread-block.
forv+—1...a/2do
Compute 1 iteration in Bj, writing to Bs.
sync_threads
Compute 1 iteration in B2, writing to Bj.
sync_threads

: end for
: Compute one Jacobi step with elements in B1.
. Write results back the results to the device memory.

Figure 9: Algorithm: Async 2. (GPU-Kernel only)
This variant eliminates the fringe writes and reads
in lines 9, 10, 13, and 14 of Figure 8.



Code Design and Tuning

* Hybrid implementations tuning:
— Asynchronous variations 3

1: // Async 3 GPU-Kernel:
2: // Executes on all thread-blocks
3: Declare one (R+2) x (C'+2) shared memory grid block,
B.
4: Fetch (R + 2) x (C + 2) elements from device memory
into B.
5: sync_threads: Sync thread-block.
6: forv—1...ado
7. Compute 1 iteration in B, writing to B.
8 Write penultimate fringe from B to device memory.
9:  Fetch fringe elements from device memory to B.
10: end for
11: Compute one Jacobi step with elements in B.
12: Write results back the results to the device memory.

Figure 10: Algorithm: Async 3. This “most wild”
variant replaces the two shared memory grid blocks
with 1, and eliminates all local synchronization.



p—t

. // Async 3 GPU-Kernel:

: // Executes on all thread-blocks

: Declare one (R+2) x (C'42) shared memory grid block,
B.

Fetch (R 4+ 2) x (C' 4 2) elements from device memory
into B.

5: sync_threads: Sync thread-block.

6: forv—1...ado

7:  Compute 1 iteration in B, writing to B.

8.

9

w Iy

e

Write penultimate fringe from B to device memory.
. Fetch fringe elements from device memory to B.
10: end for
11: Compute one Jacobi step with elements in B.
12: Write results back the results to the device memory.

Figure 10: Algorithm: Async 3. This “most wild”
variant replaces the two shared memory grid blocks
with 1, and eliminates all local synchronization.



Results and Discussion

* Evaluation platforms

— gcc 4.3.2 with “-04 -mtune=native” flags
— CUDA 2.0 SDK

Intel AMD
NVIDIA | NVIDIA | NVIDIA || Core2Duo | Opteron
Tesla Tesla Quadro E6550 8350
Feature C1060 C870 FX 570 “Conroe” | “Barcelona”
Number of
multiprocessors 30 16 2 2 4
Total no. of
cores 240 128 16 4 16
Peak bandwidth
GB/s 102 76.8 12.8 10 21.6
Empirical streaming
bandwidth (GB/s) 68.7 53.0 5.5 4.7 9.9
Double-precision? Yes No No Yes Yes
Peak GFlop/s
(Single-precision) 933 512 44 74.61 256 2
Peak GFlop/s
(Double-precision) 78 N/A N/A 37.8 128

Table 1: Hardware platforms used in our experimental evaluation. “Empirical streaming bandwidth’ mea-
sured using NVIDIA’s bandwidthTest utility and McCalpin’s STREAM Triad, as appropriate. Note that
NVIDIA’s bandwidth test benchmark reports “GB/s” assuming 1 GB = 1024% bytes, whereas we instead use
the more conventional method of computing the rate via “bytes times 107° divided by time.”



Intel AMD
NVIDIA | NVIDIA | NVIDIA || Core2Duo | Opteron
Tesla Tesla Quadro E6550 8350
Feature C1060 C870 FX 570 “Conroe” | “Barcelona”
Number of
multiprocessors 30 16 2 2 4
Total no. of
cores 240 128 16 4 16
Peak bandwidth
GB/s 102 76.8 12.8 10 21.6
Empirical streaming
bandwidth (GB/s) | 68.7 53.0 5.5 4.7 9.9
Double-precision”? Yes No No Yes Yes
Peak GFlop/s
(Single-precision) 933 512 44 74.61 256 2
Peak GFlop/s
(Double-precision) 78 N/A N/A 37.8 128

Table 1: Hardware platforms used in our experimental evaluation. “Empirical streaming bandwidth” mea-
sured using NVIDIA’s bandwidthTest utility and McCalpin’s STREAM Triad, as appropriate. Note that
NVIDIA’s bandwidth test benchmark reports “GB/s” assuming 1 GB = 10242 bytes, whereas we instead use
the more conventional method of computing the rate via “bytes times 102 divided by time.”



Results and Discussion

Effects of Tuning:
Single GPU, Single-Precision

° GPU 100% -
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B 4+ Texture memory + Shared mem + padding B+ Unrolling
Figure 12: Cumulative impact of various tuning

techniques on our implementation’s final (best) per-
formance.



Results and Discussion

* GPU

Breakdown of GPU Execution Time
CPU/GPU Cross-over
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Figure 13: (Left) Breakdown of the total execution time using a single GPU (NVIDIA C870). Grid size
is n = 4096, and number of iterations 7' = 32. A substantial amount of time is spent just transfering data
between the host memory and GPU memory. (Right) Number of iterations needed for the single-GPU
(NVIDIA C870) performance to exceed the baseline parallel CPU performance (Barcelona 4 x 4) when the
initial and final grid transfers between host and device are taken into account. Grid size is n = 4096.
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Effective Performance: NVIDIA Quadro FX 570
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Results and Discussion

* Hybrid CPU/GPU execution

Hybrid CPU-GPU (Conroe + NVIDIA FX Quadro 570) Hybrid CPU-GPU (Barcelona + C870)
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Figure 14: Measured time for hybrid multi-CPU and single-GPU implementations, normalized to GPU-only
time. Compare to our hybrid performance model, illustrated in Figure 6. (Left) Intel single-socket dual-core
Conroe + NVIDIA Quadro FX 570. At approximately 11% of rows assigned to the CPU, there is a small ~ 8%
speedup over the GPU-only code. (Right) AMD quad-socket quad-core Barcelona (16 threads) + NVIDIA
C870. The hybrid code never beats the GPU-only code due to the data exchange/synchronization.



Results and Discussion

* Multi-GPU

Multiple Heterogeneous GPUs (NVIDIA Quadro FX 570+C1060) Multi-GPU (C1060 x 2)
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Figure 15: Measured multiple GPU performance, (Left) One NVIDIA Quadro FX 570 (“GPU 1”) and One
NVIDIA C1060 (“GPU 2”). Because of the large gap between the performance of the two GPUs (~ 18x
difference, not shown), the optimal fraction does not beat the GPU 2-only code. (Compare to Figure 6.)
(Right) Two NVIDIA Tesla C1060 cards. At approximately 50% of rows assigned to GPU 1 there is a speedup
of ~ 1.8x over the GPU-only code.



Results and Discussion

* Wildly asynchronous execution

Speedup on the GPU from Loose Synchronization Relative Increase in lterations on the GPU
10 due to Loose Synchronization
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Figure 16: Comparison of asynchronous implementations on the NVIDIA C1060, for n = 4096 and 7 = 1000.
(Left) Speedup relative to the synchronized baseline. (Right) Relative increase in effective iterations required
to reach the same level of accuracy as the tuned synchronized GPU baseline (synchronized baseline = 1).



Conclusions and Future Work

* Hybrid performance models

— Host-to-device transfer time, that have sometimes
been omitted in prior work.

* Wildly Asynchronization

— Now is an appropriate time to take a fresh look
into this area of research.



My Comments

* Hybrid performance models

— A hybrid implementation will not lead to speedups
overall if there is a large gap between CPU and
GPU speeds or a high transfer overhead.

* [t may be tricky to keep the accuracy
 Comparison for double-precision



Thank you!



