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Abstract
Increase in graphics hardware performance and improve-

ments in programmability has enabled GPUs to evolve from a
graphics-specific accelerator to a general-purpose computing
device. Titan, the world’s second fastest supercomputer for
open science in 2014, consists of more than 18,000 GPUs that
scientists from various domains such as astrophysics, fusion,
climate, and combustion use routinely to run large-scale sim-
ulations. Unfortunately, while the performance efficiency of
GPUs is well understood, their resilience characteristics in a
large-scale computing system have not been fully evaluated.

We present a detailed study to provide a thorough under-
standing of GPU errors on a large-scale GPU-enabled system.
Our data was collected from the Titan supercomputer at the
Oak Ridge Leadership Computing Facility and a GPU clus-
ter at the Los Alamos National Laboratory. We also present
results from our extensive neutron-beam tests, conducted at
Los Alamos Neutron Science Center (LANSCE) and at ISIS
(Rutherford Appleton Laboratories, UK), to measure the re-
silience of different generations of GPUs. We present several
findings from our field data and neutron-beam experiments,
and discuss the implications of our results for future GPU
architects, current and future HPC computing facilities, and
researchers focusing on GPU resilience.

1. Introduction
Increase in graphics hardware performance and improvements
in programmability has enabled Graphics Processing Units
(GPUs) to evolve from a graphics-specific accelerator to a
general-purpose computing device. Consequently, GPUs have
enjoyed wide-spread adoption in various application domains,
including scientific computing [1, 27]. Scientists have begun
to take advantage of the unprecedented amount of parallelism
available in GPUs to expedite their scientific simulations and
to derive scientific insights more quickly. For example, Titan,
the world’s second fastest supercomputer for open science in
2014, consists of 18,688 GPUs that scientists from various
domains such as astrophysics, fusion, climate, and combustion
use routinely to run large-scale simulations [1, 27].

These large-scale scientific applications are often very long-
running; a single simulation may take from a few hours to a
couple of days. Due to the large-scale and the long duration,
leadership scientific applications may encounter interruptions
due to system failures. Therefore, while the performance
improvement achieved via inherent parallelism available in
GPUs is necessary to expedite the scientific discovery process,
it is equally critical that applications are able to cope with
system failures during a run, without losing all of the work.
Scientific applications typically employ a checkpoint/restart
mechanism to periodically take checkpoints such that it can
continue to make forward progress even in the event of failures.
However, the efficiency of these mechanisms depends on the
resilience characteristics of the system. Unfortunately, while
the performance efficiency of GPUs is well understood, their
resilience characteristics in a large-scale computing system
have not been well studied.

As we approach exascale, the resilience challenge will be-
come even more critical due to increase in system-scale [23].
Additionally, GPUs are anticipated to be a part of the projected
path to exascale due to their ability of offer more FLOPS com-
pared to traditional CPUs. Therefore, understanding the nature
of GPU errors is critical for operating today’s large-scale HPC
systems such as the Titan supercomputer as well as designing
future extreme-scale systems [39]. In fact, lack of understand-
ing about resilience characteristics of these emerging compute
system components may lead to lower scientific productivity,
lower operational efficiency and even, significant monetary
loss [39]. This led us to conduct a large-scale field study on
GPU error characterization, quantification, and impact. To
the best of our knowledge, this is the first study to provide a
thorough understanding of GPU errors on a large-scale GPU-
enabled system using both field and experimental data.

Our study consists of three parts. First, we present findings
from analyzing GPU errors on the Titan supercomputer at the
Oak Ridge Leadership Computing Facility (OLCF). Our data
includes single and double bit errors for all 18,688 GPUs in
the Titan supercomputer. We investigate the temporal and
spatial characteristics of GPU errors, their correlation with
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Figure 1: A representative CUDA-based GPU architecture.

temperature and per memory structure breakdown among sev-
eral other factors. Our analysis reveals interesting insights
about GPU error characteristics that can be used to improve
operational efficiency of large-scale HPC facilities and makes
recommendations to future GPU architects. The second part of
the study, conducted at the Los Alamos National Laboratory,
shares our experience with the first generation of GPU cards
enabled with ECC support.

Finally, the third part the study presents results from our
extensive neutron-beam tests, conducted at the Los Alamos
Neutron Science Center (LANSCE) and ISIS (Rutherford Ap-
pleton Laboratories, UK), to measure the resilience of different
generations of GPUs. Our controlled neutron beam experi-
ments provide additional deeper insights into the resilience
characteristics of GPUs, that are not otherwise possible by the
field data alone. We discuss the implications of our findings
for future GPU architects, the design of GPU fault-injectors,
and application programmers.

We believe that insights derived from our large-scale field
data analysis and extensive neutron-beam experiments carry
significant implications for future generation GPU architec-
tures, current and future HPC computing facilities, researchers
focusing on GPU resilience, and end users.

2. Background
This section provides a brief background on GPU architecture,
resilience support, sources of GPU errors and their impact on
the application execution.

2.1. GPU Architecture and Resilience Support

Fig 1 shows a simplified, representative GPU architecture for
Kepler and Fermi generations. The GPU architecture is com-
posed of multiple streaming multiprocessors (SM). The SMs
are the basic building blocks of a GPU. All SMs have access to
the shared L2 cache and the device memory. The thread block
scheduler dispatches one or more blocks of threads to an idle
SM. Each SM has multiple Compute Unified Device Architec-
ture (CUDA) cores. A group of threads (called a warp) to be
executed next on the CUDA cores of a given SM are selected

Table 1: GPU errors and its impact

GPU Error XID Impact
Single Bit Error (Corrected by the ECC)
Silent data corruption may occur, if no
ECC support.

– No side effect on
the program.

Double Bit Error (Detected by the ECC)
Silent data corruption may occur, if no
ECC support.

48 Program crash.

Off the Bus – Program crash
Display Engine error 56 Program crash
Error programming video memory inter-
face

57 Program crash

Unstable video memory interface de-
tected

58 Program crash

Internal micro-controller halt 62 Program crash
ECC page retirement error 63,64 Program crash
Video processor exception 65 Program crash

by the warp scheduler, then instructions are dispatched by the
instruction dispatch unit. Note that each CUDA core executes
only one thread at a time. Each CUDA core has access to the
shared memory and the L1 cache region. The Shared memory
and the L1 cache regions are a dedicated resource for each
SM. Similarly, each SM has a dedicated register file that can
be accessed only by the threads executing in the same SM.

All major storage structures of GPUs for HPC applications
are protected with a Single Error Correction Double Error De-
tection (SECDED) ECC including device memory, L2 cache,
instruction cache, register files, shared memory, and L1 cache
region. However, not all resources benefit from ECC protec-
tion, for example, logic, queues, the thread block scheduler,
warp scheduler, instruction dispatch unit, and interconnect
network are not covered. It was shown experimentally that
a soft error in a storage structure is likely to affect multiple
threads, possibly multiple warps or thread blocks [31]. There-
fore, providing costly ECC protection to storage structures
is expected to be a better return on investment. Additionally,
the area occupied by scheduler structures are estimated to be
much smaller than the cache and memory regions, hence the
likelihood of a soft error striking in that region is much lower
as well. However, the details of resilience support for these
structure are considered business-sensitive by vendors, and
hence, unavailable. Consequently, some of the application
crashes due to soft-errors in non-protected structures may not
be correctly logged by the system or may even be incorrectly
attributed to other causes. We point out that our radiation
test results include the effect of corruptions in these areas as
well when estimating the overall soft-error rate. Therefore, in
addition to the field data, our neutron beam tests are critical
for developing a thorough understanding of the GPU errors.

2.2. GPU Errors and Their Impact

An application may encounter a GPU error due to multiple
reasons, for example, an application bug, driver bug, hardware
or radiation-induced bit corruptions. We note that analyzing
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GPU errors due to an application or a runtime system can be
misleading as an excessive number of errors may be occurring
due to debugging runs, program bugs, bad programming prac-
tices, and script errors. Therefore, in this paper, we primarily
focus on GPU application crashes that are caused by bit errors.
Different GPU errors are logged with different codes (XID
numbers as per Nvidia [3]).

Radiation strike may corrupt one or more bits leading to
one of the following outcomes: (1) no effect on the program
output (the failure is masked or corrupted data is not used),
(2) single bit errors: corruption corrected by the ECC logic
(correct program output), (3) program crash, (4) silent data cor-
ruption (incorrect output, but program does not crash). Out of
these outcomes, only the latter two outcomes are undesirable
from a programmer’s point of view as they lead to program
crash/incorrect output. There may be system integration re-
lated errors that may not be specific to GPU micro-architecture;
“Off the bus” error is such an error considered in this study
that is related to losing the connection to the host. It may be
caused due to system integration issues and is not specific to
the GPU micro-architecture or radiation strikes.

Table 1 lists all the GPU errors that were considered in the
this study and their possible outcomes [3]. In rest of the paper,
we refer to GPU errors that lead to application crash as GPU
failures. Section 3 describes in detail how these events are
collected under different data collection methods, and what
the challenges and limitations of recording these events are.

3. Methodology
In this section, we first briefly describe the systems that were
used in this study and our data collection methodology. Fol-
lowing that we describe the neutron beam experimental setup
and methodology.

3.1. Data Sources and Data Collection Methodology

Oak Ridge Leadership Computing Facility (OLCF)
We collected GPU error logs from the Titan Supercomputer,
hosted at the Oak Ridge Leadership Computing Facility
(OLCF). Titan has a total of 18,688 K20X GPUs (Kepler
G110 processor). The K20X GPU has 2688 CUDA cores, a to-
tal of 7.1 billion transistors on each GPU at the 28nm process
technology. A single GPU is capable of delivering 3.95 Tflops
single precision performance and 1.31 Tflops double precision
performance. There are a total of 14 SMs and 192 CUDA
cores within each SM. Each SM has 64K registers, 64KB of
combined shared memory and L1 cache, and 48KB of read-
only data cache. SMs share 1536 KB of L2 cache and a total
6GB GDDR5 memory. The register files, shared-memory, L1
and L2 caches are SECDED ECC protected, while read-only
data cache is parity protected.

We have collected the GPU error data for over 18 months
(since Feb’13 to Aug’14). The GPU errors were collected in
two ways. First, we analyzed the data that were collected from
the console log. The console log has a record for each GPU

related event. We continuously parse the console log to filter
GPU related records. These records include the node location,
time-stamp and description of the event. Note that single bit
errors are not logged to the console log. Therefore, we rely
on the second method to collect information about single bit
correctable errors. We collected this data by running nvidia-
smi utility on all the GPU nodes. In addition to reporting
the single bit errors, nvidia-smi output also includes double
bit and ECC page retirement related errors. There are two
key differences between these two data collection methods
(console log and nvidia-smi). First, nvidia-smi utility provides
a snapshot of the system (cumulative count of an event at a per-
node granularity) unlike the console log that records events
with timestamps at which they occurred. Second, the console
log does not provide memory structure in which a particular
event occurred, however, this information is provided by the
nvidia-smi utility. Therefore, we use both these methods of
data collection to quantify and analyze the characteristics of
GPU errors.

Los Alamos National Laboratory (LANL)
We collected GPU error logs and GPU counter data from
the Moonlight GPGPU cluster at the Los Alamos National
Laboratory (LANL). Moonlight has a total of 616 M2090
GPGPUs (Fermi architecture). The M2090 GPU has 512
CUDA cores, a total of 3.0 billion transistors on each GPU
at the 40nm process technology. A single GPU is capable of
delivering 1.33 Tflops single precision performance and 0.66
Tflops double precision performance. There are a total of 16
SMs and 32 CUDA cores within each SM. Each SM has 32K
registers, 64KB of combined shared memory and L1 cache.
SMs share 768 KB of L2 cache and a total 6GB GDDR5
memory. The register files, shared-memory, L1 and L2 caches
are SECDED ECC protected. Although relatively smaller in
scale, the Moonlight cluster provides us an interesting data
point – one of the first Nvidia GPUs to be adopted in the HPC
domain (due to first time ECC support).

3.2. Neutron Beam Test Experimental Set Up

Radiation experiments were performed at the Los Alamos
National Laboratory’s (LANL) Los Alamos Neutron Science
Center (LANSCE) Irradiation of Chips and Electronics House
II and in the VESUVIO beam line in ISIS, Rutherford Ap-
pleton Laboratories, Didcot, UK. The experiments were con-
ducted at different times of the years in 2013 and 2014. As
shown in Fig. 2, both of these facilities provide a white neutron
source that emulates the energy spectrum of the atmospheric
neutron flux between 10 and 750 MeV. The ISIS beam has
been empirically demonstrated to be suitable to mimic the
LANSCE beam and the terrestrial radiation environment [43],
despite its relatively lower component of high-energy neutrons.
We also point out that the ISIS beam includes a non-negligible
component of thermal neutrons, which may increase the mea-
sured error rate if Boron-10 is present in the tested devices.
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Figure 2: LANSCE, ISIS, and TRIUMF neutrons spectrum: plot-

ted against neutrons spectrum at the sea level multiplied
by 107 and 108 [43].

Therefore, in our discussions we discard thermal neutrons
contribution and make a direct comparison only among exper-
iments performed in the same facility and in the same time
slot.

The neutron flux was approximately 1⇥106n/(cm2 ⇥ s) in
LANSCE and 4⇥104n/(cm2 ⇥ s) in ISIS for energies above
10 MeV. The neutron fluxes used are higher than the neutron
flux at sea level [20], but we have carefully designed the ex-
periments to ensure that probability of more than one neutron
generating a failure in a single code execution remains prac-
tically negligible. The observed error rates were lower than
10�2 errors/execution. Since a much lower neutron flux may
hit a GPU in a realistic environment, it is highly likely to
not have more than one corruption during one single execu-
tion. We can, therefore, scale the experimental data in the
natural radioactive environment without introducing artificial
behaviors.

The GPU hardware setup includes connecting the GPU to a
host computer through a PCIe extender (Fig. 3). The role of
the host computer is to initialize the test and gather the results
from the GPU. A software and a hardware watchdog were
included in the setup. The software watchdog monitors a time-
stamp written by the application running on the GPU. If the
time-stamp is not updated in ten seconds the GPU application
is killed and launched again. Such a watchdog is required to
detect and manage radiation-induced program crashes. The
hardware watchdog is an Ethernet controlled switch that per-
forms a power cycle of the host computer if the host computer
itself does not acknowledge any ping requests in ten minutes.
The hardware watchdog is necessary as radiation can corrupt
the PCIe controller on the GPU board as well, possibly causing
the host computer to hang. Irradiation was performed at room
temperature with normal incidence and nominal voltages.

Figure 3: Radiation test setup inside the ICE House II, Los
Alamos Neutron Science Center (LANSC), LANL. A
similar setup was used at ISIS, Didcot, UK.

4. Understanding and Quantifying GPU Errors
on the Titan Supercomputer

In this section, we present a detailed characterization of GPU
failures, share interesting findings and implications for GPU
architects and system operators.
Temporal characteristics of GPU failures

Fig. 4 shows the monthly-frequency of different types of
GPU failures for the Titan supercomputer. First, we observe
that the frequency of GPU related failure events is fairly low
(typically occurring once in two days on an average). This is a
significant result in the context of a such a large-scale system
where more than two failures per day are likely to occur on an
average, estimated using vendor-specified MTBF for the GPU
card [2].

Second, we note that Off the bus, ECC page retirement
errors and DBE failures are more dominant than other types of
failures. We also point out that Off the bus failures were domi-
nant only before the GPU production run (December 2013).
A system integration issue with GPU cards was identified and
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Figure 4: Monthly frequency of different types of GPU fail-
ures. Some errors (Table 1) that lead to program crash
were observed to have zero error counts. ECC page retire-
ment related errors were available only for the production
run. GPU off the bus error is always followed by the micro-
controller halt error after the recent driver upgrade.

4



0 20 40 60 80
100

Time between two failures (in hours)

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

Pe
rc

en
ta

ge
of

to
ta

lf
ai

lu
re

s

ALL GPU Failures

0 50
100

150
200

250
300

Time between two failures (in hours)

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

Pe
rc

en
ta

ge
of

to
ta

lf
ai

lu
re

s

Double Bit Errors

0 50
100

150
200

250
300

Time between two failures (in hours)

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

Pe
rc

en
ta

ge
of

to
ta

lf
ai

lu
re

s

ECC Page Retirement Errors

0 50
100

150
200

250
300

Time between two failures (in hours)

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

Pe
rc

en
ta

ge
of

to
ta

lf
ai

lu
re

s

Off the Bus Errors

Figure 5: GPU failures exhibit temporal locality: These figures show the failure arrival time distribution. The dashed vertical line indicates the
“observed" mean time between failure (MTBF). Multiple failures that occur beyond the x-axis limits are not shown here for clarity, but they
contribute toward the MTBF calculation. Note that the combined MTBF is less than the MTBF for each individual types of failure.
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Figure 6: Frequency of daily occurrences for three dominant
GPU failure types. This figure shows that the temporal
locality is not an artifact of multiple errors occurring on a few
number of days.
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Figure 7: QQ-Plot for graphical representation of fitting
different probability distribution functions (PDF).
The quantiles drawn from the sample (failure log) are on the
x-axis and y-axis shows theoretical quantiles. If the sam-
ples statistically come from a particular distribution function
then points of QQ-plot fall on or near the straight line with
slope=1. Each type of GPU failures show similar behavior
(but not shown here).

resolved by soldering the cards before the system went into
production with GPUs. The mean time to application interrup-
tion (due to all failure events) in the production run is more
than 40 hours, significantly higher than the estimated MTBF
of the whole system (11.7 hours) using the vendor specified
MTBF for the GPU card [2].

We perform rigorous stress tests and high-standard accep-
tance tests on these GPU cards before they go in production.
The rigor helps the center’s operations team identify bad GPU
cards early enough. Even during a production run, if a GPU
card exhibits a particular kind of error more than a small thresh-
old, that particular GPU card goes under rigorous stress testing
and is disqualified if the errors re-appear. As we show later
as well, only a small fraction of “bad” GPU cards encounter

All GPU Failures 
Off the Bus Error
Page Rtrmt Error 
Double Bit Error

K-S test D-Statistics Critical 
D-value

k = 0.70

0.059
0.08
0.14
0.10

Log 
Normal

0.23
0.29
0.42
0.17

Exp.

0.04
0.08
0.10
0.08

Weibull

0.08
0.11
0.15
0.14

Weibull
Shape 

Parameter
GPU Failure 

Type

k = 0.49
k = 0.55
k = 0.640.06 0.23

Figure 8: Result of Kolmogorov-Smirnov test (K-S test) for
different types of GPU failure data. Null hypothesis
that the samples for a given system come from a given
probability distribution function is rejected at level 0.05 if k-s
test’s D-statistics is higher than the critical D-value. Com-
parison between D-statistics and critical D-value shows that
Weibull distribution fits the best.

most of the errors repeatedly, and hence, are enough to bring
down the MTBF of the whole system significantly. Therefore,
by doing this exercise continuously, we identify such cards
early and consequently, increase the mean time to application
interruption significantly.
Observation 1. Our field data suggests that the current gener-
ation of GPUs deployed on the Titan supercomputer are fairly
stable and experience failures at very low rate. We note that
performing rigorous tests during the production phase and
high-standard acceptance tests before the production phase
helps us identify the bad cards early enough, and consequently,
increases the mean time to application interruption signifi-
cantly.

While MTBF is a useful metric, it is not sufficient by itself
to understand the characteristics of GPU related failures. To
address this issue, we plot the inter-arrival failure distribution
for GPU related failures (Fig. 5). Interestingly, a significant
fraction of the failures occur much before the observed MTBF.
This is true not only for all GPU failures combined, but also for
dominant GPU failure types as well. These results indicate that
there exists a strong temporal locality between GPU failures.
This finding also implies that the average work lost due to a
failure would be less, because a significant fraction of failures
occur soon after a previous failure. However, this temporal
locality characteristic is not artificially generated because a
high number of failures occur on the same day or in the span of
a couple of days. Fig. 6 shows that GPU failures do not show
this kind of behavior, for example, there are only a couple of
days during the observed period when more than two failures
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Figure 9: Number of distinct GPU cards affected by differ-
ent types of GPU failures. A bend in the DBE curve
suggests that a few card experience multiple DBEs.

of a type occurred on the same day.
Next, we mathematically capture the temporal locality char-

acteristics of failures. We use two statistical techniques to
fit our data against four distributions, normal, Weibull, log
normal, and the exponential distribution. First, the QQ-plot
visually shows the fitness of these distributions (Fig. 7). We
notice that Weibull distribution is a better fit than exponential
distribution for our failure samples. Second, Fig. 8 shows the
results from the Kolmogorov-Smirnov test for different dis-
tributions [16] to reaffirm the same conclusion quantitatively.
This result is particularly important for fault-tolerance studies
and fault-injector tools that often assume that failure samples
come from an exponential distribution – leading to incorrect
estimation of the impact of failures, total execution time and
checkpointing decisions.

In addition to the scale parameter (l ), a Weibull distribution
is specified using a shape parameter (k). We find that the shape
parameter (k) for the Weibull distribution is less than 1 for
each type of failure (Fig. 8). If the shape parameter is less
than one, it implies a high infant mortality rate, confirming
our observation about temporal locality in failures. Due to
this property, GPU programs can also take intelligent check-
pointing techniques such as “Lazy checkpointing” and “Skip
checkpointing” that exploit temporal locality in failures to
reduce the I/O overhead significantly [42].
Observation 2. We observed that a significant fraction of
GPU failures occur much before the MTBF. This suggests
that GPU failures have a strong temporal locality. This re-
sult is particularly important for reducing the I/O overhead
significantly by employing techniques such as “Lazy check-
pointing” [42]. This finding is also useful for fault-tolerance
studies and tools that often do not take this characteristic into
account – leading to incorrect estimation of impact of failures,
total execution time and checkpointing decisions.
Distinct number of cards affected by different failures

Next, we investigate how many GPU cards are affected by
different GPU failure types. Fig. 9 shows that Off the bus
errors have affected the most number of nodes (nearly 150
out of more than 18000 cards). Recall that almost all of these
errors occurred in pre-production and were subsequently fixed
by soldering. The ECC page retirement and DBE errors affect

nearly half the numbers of GPU cards. Interestingly, Fig. 9
also shows that there are a few cards that experience double bit
errors multiple times. In fact, six GPU cards are responsible
for 25% of all DBE errors. There is only one card that exhibits
multiple occurrences of ECC page retirement error. These
cards were moved around the machine to see if a particular
node location was more susceptible to such errors. Our results
suggest that that some cards may be inherently more prone
to double bit errors. We also found that one particular card
was responsible for more than 10% of the ECC page retire-
ment errors. Having learned from these trends, the Operations
team takes proactive measures to identify such cards early
and performs stress testing in a separate cluster before putting
them back in the machine. This strategy has worked well for
keeping the mean time to application interruption high. Due
to this, we have seen relatively lower multiple occurrences of
DBEs on the same card that would have occurred otherwise.
Observation 3. Certain GPU cards may experience DBEs
and ECC page retirement errors multiple times, motivating the
Operations team to identify such cards early. Performing stress
testing on these cards (on a separate cluster) before putting
them back in production has proven to be an effective strategy
for reducing the number of interruptions to applications.
Temperature sensitivity of GPU failures

Next, we investigate if GPU failures have sensitivity towards
temperature (Fig. 10). First, we observe that the combined
GPU failures show sensitivity towards temperature, i.e., more
occurrences in the hotter cages (chassis). But, not all failures
individually show this trend (for example, double bit errors
tend to occur least in the middle cage). However, as we had
observed earlier, a few GPU cards experience multiple DBEs.
This may possibly skew the sensitivity study. To address this
issue, we counted only the first occurrences of DBEs on a
given card. Our results show that double bit errors may be
sensitive to temperature as well, while page retirement errors
are not sensitive to temperature. However, we also recognize
that establishing this correlation with high confidence is chal-
lenging because some cards themselves may be more prone
to errors and variance in the temperature data may further
complicate the problem. Additionally, the number of errors
(e.g., double bit errors) are fairly small and hence, do not form
a very large population size, making it more challenging to
establish a correlation with high confidence. Nevertheless, we
believe that our field data results may be useful and timely
towards understanding this correlation better as the research
community is still in the early stages of determining the effects
of temperature on DBEs [4, 6].
Observation 4. Our field data suggests that some GPU fail-
ures may be sensitive toward temperature (e.g., off the bus and
double bit errors), however this is not the case for all failure
types. Though our field data suggests that some GPU failures
may exhibit sensitivity toward temperature, there is a need
for more experimental evidence to establish the correlation
between GPU errors and temperature with higher confidence.
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Analysis of GPU Single Bit Errors (SBE)
Next, we study the characteristics of single bit errors (SBE)

on the Titan supercomputer. Recall that if ECC is enabled
on a system, SBE can be successfully corrected with some
performance overhead. However, most of this performance
overhead is due to the detection logic since the correction step
only involves a few simple hardware-accelerated operations.

We found that less than 5% of the total GPU cards (899
cards) experienced one or more SBEs during Feb’13 to
Aug’14. Interestingly, close to 98% of all SBEs occurred
on only ten cards (out of 899 offender cards). This observation
is also shown in Fig. 11. Like double bit errors, single bit
errors tend to occur repeatedly on the same node, albeit this
trend is much stronger in this case. We did not find any statis-
tically sound correlation of SBEs with node or cage location,
leading us to believe that some GPU cards may be more prone
to single bit errors than others. Note that since SBEs do not in-
terrupt an application and are corrected automatically. Recall
that the SBE events are collected using the nvidia-smi utility
which can provide only the snapshot of the system, and not
continuous output to study temporal characteristics of SBEs
in a statistically sound manner.
Observation 5. Almost 98% of all single bit errors occur
in only 10 GPU cards. This suggests that a few cards may
be significantly more prone to re-occurrence of SBEs. Future
studies modeling, simulating and evaluating the effect of single
bit errors in large-scale system should take into account this
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Figure 12: Breakdown of SBEs per storage structure: for
GPU cards encountering at least one single bit error.

characteristic of SBEs instead of simply assuming that the
probability of an SBE occurring on all nodes is equal.

We further investigate the breakdown of SBE events in
different regions on the GPU card. Fig. 12 shows the break-
down of all SBE events for all cards, for the 10 cards with the
most number of SBEs, and for all cards except these top 10
offenders.

We found that overall the L2 Cache region is the major
contributer in SBE events, showing that 98% of the SBE events
happen in that structure alone. It is not surprising that the top
10 offenders also show the same behavior (99% of the SBE
events occurred in the L2 Cache). However, it is interesting to
note that once we eliminate the top 10 offenders, the device
memory is the structure where most of the SBEs occur (96%
of all SBEs). We also point out that the fraction of SBEs
occurring in different structures is not proportional to the
respective structure sizes. This finding could be used by future
architects in deciding which memory structures may need
better protection. Fault-injector tools could use this finding to
account for the relative likelihood of soft-errors occurring in
different memory structures and its corresponding impact on
the application.
Observation 6. GPU cards which experience most of the
SBEs are likely to have all the SBEs occur in the device mem-
ory instead of the L2 cache. This finding can be used to identify
the top offenders early on. Our results may also be useful for
future architects in terms of which structures need better pro-
tection (device memory and L2 cache) and which structures
may not need additional costly protection schemes (L1 cache,
register file and texture memory).
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5. Experience with Moonlight GPU Cluster
In this section, we share our experience with Moonlight, a
GPU-enabled HPC cluster at LANL. The GPUs deployed in
Moonlight are the M2090 GPUs based on the Fermi architec-
ture and enabled with the ECC support.
Performance Variation
Software developers and application users observed significant
performance variation on these GPUs. Fig. 13(a) shows that
two GPUs on the same node may exhibit significant perfor-
mance variation. Each card achieves significantly different
Gflops performance at different times. This is further sup-
ported by the observed variation in the performance-states of
GPU cards (Fig. 13(b)). This behavior is particularly problem-
atic for HPC workloads which heavily rely on global synchro-
nization. Because of the global synchronization, the overall
system performance is determined by the slowest GPU. There-
fore, any variance in performance among GPU cards leads to
an increase in application run time.

We suspect that power starvation or temperature variance is
potentially causing this behavior (performance-state throttling
and consequently, performance variation). Therefore, we con-
ducted other tests on smaller testbeds at LANL using M2090
cards that were in different enclosures. However, we observed
similar variance in performance and performance-states. For-
tunately, this problem seems to have resolved in the recently
purchased GPUs (K20, kepler architecture). Our results show
less than ±0.02% of performance variation, indicating the
maturity of GPU architecture in this particular regard.
Inconsistency in Error Logging
As discussed in Section 3, GPU error counts can be obtained
via either querying the nvidia-smi tool or mining syslog. In our
experiments, we observed that logged errors (as per syslog)
may not always exactly match with the nvidia-smi output.

We increased the temperature of a M2090 GPU node by
blocking the exhaust, and hence, increasing the probability of
bit corruptions. We recall from our previous discussion related
to GPU cards on the Titan supercomputer that the probabil-
ity of bit errors may increase with temperature-rise. Due to
increased temperature, we could observe multiple bit corrup-
tions. However, there were several inconsistencies between
syslog and nvidia-smi output. In another dedicated experi-
ment, we ran vendor-provided HPL tests consuming 279 GPU
node-hours. We observed 27 double bit errors reported in
syslog but only one was captured by the nvidia-smi output.
One inconsistent logging issue was observed with a GPU card
on Titan too. We suspect that this is because DBE forces the
node to go down, and the driver may not correctly log the error
to the persistent storage on the host just-in-time, before the
host loses contact or becomes unresponsive.
Observation 7. Performance variations across GPU cards
seem to be fixed on newer generation of GPU cards – making
GPUs more amenable to HPC workloads. However, inconsis-
tency in error logging may not have been completely elimi-
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nated. This is critical as system administrators often rely on
error counters to monitor the health of the system.

6. Radiation Experiments
In this section, we describe our neutron-beam experiments,
results, and implications. First, we measure and report the
raw sensitivity of the GPU devices from different architecture
generations. Second, we evaluate the silent data corruption
and program crash rate for different HPC benchmarks under
neutron flux (refer to Section 3 for experimental setup).
Raw sensitivity of the GPU memory structures

We tested the raw sensitivity of the GPU memory structures
for two GPUs: Fermi architecture based C2050 (similar to one
used in the LANL study) and Kepler architecture based K20
(similar to the Titan’s GPU). Since our goal for this part of the
study is to measure the raw sensitivity of the SRAM structures
of the GPUs, we disabled built-in ECC mechanism.

To measure the raw sensitivity of these devices, we store a
particular pattern (all 1s or all 0s) in the structure, expose the
device to a controlled high-energy neutron flux and, finally,
check if radiation corrupted the initially stored values.

We experimentally measured the cross section, a widely
used metric to evaluate the radiation sensitivity of a device [5],
for the register file cells and the L2 cache cells of both K20
and C2050 boards. The cross section is calculated by dividing
the number of observed errors by the received neutron fluence
( neutrons

cm2 ). If the cross section of the memory structure is di-
vided by the number of the cells, it yields the average sensitive
area of a single cell, i.e., the portion of the cell that, if hit by a
neutron, will produce a failure. Higher cross section implies
higher probability for an impinging neutron to corrupt a bit.

Figure 14(a) shows the per-bit cross section for L2 cache
and register file normalized to the cross section of K20 L2
cache obtained with the 1s pattern. The 95% confidence inter-
vals for our results, which is a combination of neutron counts
uncertainty and statistical error, are lower than 12% for all the
reported values. Note that the results reported in Figure 14(a)
are normalized to the number of available bits, however, the
K20 structures are significantly larger than the C2050 struc-
tures. Figure 14(b) shows the total-area cross section for the
K20 and C2050 L2 cache and register file, obtained by multi-
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Figure 14: Normalized cross sections for the K20 and C2050
structures: per-bit (a) and total-area (b). Lower is
better. The K20 is less prone to bit corruptions than C2050.

plying the per-bit cross section with the size of the respective
memory structure.

Figure 14 shows that the Kepler generation GPU has better
reliability than Fermi generation GPU per bit as well as for the
whole L2 cache and register area. This is an encouraging result,
because at lower feature sizes (newer process technology), the
reliability can get worse [11]. The observed improvement can
be attributed to various factors, including a better cell design
in Kepler architecture. Unfortunately, the details of cell design
are considered business-sensitive. However, this indicates that
architects have improved the cell design to combat the danger
of increased sensitivity at lower feature sizes.

We also found that bits set to zero are 40% more prone
to corruption than bits in the L2 caches for both generations
of GPUs. However, this is not true for bits in the register
file (Figure 14(a)). This is due to the intrinsic asymmetries
to the cache cell design. Some memory cell designs are not
symmetric, meaning that the pull-up and pull-down transistor
capacitance may differ. Under radiation, this results into a
different radiation sensitivity for bits set to different values.
We point out that this specific result can be achieved only
through radiation experiments and is fundamental to precisely
evaluating the resilience of GPUs.
Observation 8. Overall, K20 architecture is less prone to
radiation-induced bit corruptions due to its improved cell
design, despite its significantly bigger structure sizes. How-
ever, the probability of bit corruption highly depends on the
initial value of the bit and the memory structure. Current fault-
injection tools and techniques do not account for this particu-
lar characteristic. Future research studies should model and
simulate this behavior correctly to capture realistic soft-error
characteristics. GPU architects should focus on mitigating
this behavior.

Next, we investigate what fraction of all neutron-induced
errors result into double and triple bit errors. Recall that
SECDED mechanism can not correct double or detect triple
bit errors. We found that, fortunately, only 4-6% errors are
double bit errors in L2 cache and register file area for the
K20 card – suggesting that current SECDED mechanism is a
cost-effective choice for the current generation of GPU cards.
Our Titan data also suggested a very low rate of DBEs in
the field. Interestingly, C2050 GPU card exhibits even lower

(close to 1%) DBEs. This can be explained due to difference
in the process technology. Due to smaller transistor size at
28nm (K20 card), it is easier for a neutron to interact with
more than one transistor in the K20 card than in the C2050
card, possibly generating more DBEs. A lower rate of DBEs is
also typically achieved via radiation-aware intelligent memory
interleaving [19]. No errors with more than 2 bits corruption
were observed during the experiments.
Observation 9. While K20 has a significantly higher DBE
rate than the C2050 due to smaller transistor size (hence,
higher likelihood of one neutron interacting with multiple
bits), the absolute DBE rate remains fairly low (6%) and
no triple bit corruptions were observed. This suggests that
SECDED ECC mechanism should suffice for correcting most
of the radiation induced single bit corruptions.

Evaluating Radiation Sensitivity of HPC Benchmarks
To evaluate the impact of radiation-sensitivity on real-world

HPC applications, we chose a representative set of bench-
marks. We point out that HPC workloads running on the Titan
supercomputer are considered sensitive. Since we cannot run
those workloads under the neutron beam experimental set up,
we have evaluated a wide variety of benchmarks that have
similar characteristics as the real-workloads on Titan super-
computer. In fact, many real-world workloads often use the
algorithms implemented in these benchmarks as their kernel.
Our chosen benchmarks [7, 24, 31] cover a wide range of
computational and data movement requirements (Table 2).

The described benchmarks were experimentally tested on
NVIDIA K20s in ISIS and LANSCE neutron sources with
the setup described in Section 3.2. To detect if a an execution
is affected by the Silent Data Corruption (SDC), the desk-
top PC compares the program output with a pre-computed
golden output and checks for mismatches. A program crash
(simply, referred to as Crash) is detected when the program
crashes or when GPU gets stuck requiring the killing of the
application or a system reboot. SDC and Crash are generated
by radiation-induced errors in the GPU memory, logic, or
scheduler resources [44].

The benchmark cross section is measured as the observed
error rate ( errors

s , separately for the SDC and Crash) divided by
the average particles flux ( particles

cm2⇥s ), yielding an area. The exe-
cution time is normalized when measuring the cross section,
so that the cross section has no dependence on the computa-
tional time, but only on the amount of resources required for
computation. The experimentally observed cross section is
an intrinsic characteristic of the device and benchmark, inde-
pendent on the neutron source. Multiplying the cross section
(cm2) with the expected neutron flux on the GPU (13 n

cm2⇥h
at sea level), one can estimate the GPU error rate or Failure
In Time (FIT), expressed as errors

h . Table 2 shows the experi-
mental results with a 95% confidence interval, which includes
both statistical error and neutron counts uncertainty, for all the
benchmarks. We also evaluate the efficiency of built-in ECC
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Table 2: Benchmarks details, and FIT at NYC of the different benchmarks (ECC enabled only for the last 2 rows).

Input Output Instr. Exec. SDC Cross Section SDC FIT Crash Cross Section Crash FIT

lavaMD 1,098,500 878,800 111.3 B (2.65±0.40)⇥10�7 (3.44±0.52)⇥103 (1.17±0.18)⇥10�7 (1.52±0.23)⇥103

FFT 131,072 131,072 30.6 B (6.72±1.01)⇥10�8 (8.74±1.31)⇥102 (4.69±0.73)⇥10�8 (6.09±0.71)⇥102

dgemm 33,554,432 16,777,216 21.8 B (6.59±1.06)⇥10�8 (8.57±1.29)⇥102 (6.27±0.95)⇥10�8 (8.15±1.22)⇥102

MxM 33,554,432 16,777,216 20.4 B (5.83±0.87)⇥10�8 (7.57±1.14)⇥102 (3.34±0.51)⇥10�8 (4.34±0.65)⇥102

Hotspot 2,097,152 1,048,576 266.4 M (1.57±0.24)⇥10�8 (2.04±0.31)⇥102 (8.63±1.29)⇥10�9 (1.12±0.17)⇥102

MTrans 4,194,304 4,194,304 88.1 M (2.89±0.43)⇥10�9 (3.75±0.56)⇥101 (1.55±0.23)⇥10�10 (2.02±0.30)⇥100

MxM ECC 33,554,432 16,777,216 20.4 B (5.67±1.02)⇥10�9 (7.38±1.32)⇥101 (5.09±0.92)⇥10�8 (6.62±1.19)⇥102

Hotspot ECC 2,097,152 1,048,576 266.4 M (3.49±0.52)⇥10�9 (4.53±0.68)⇥101 (1.90±0.29)⇥10�8 (2.47±0.37)⇥102

support. When the ECC is enabled, the number of output er-
rors is significantly reduced – indicating the efficiency of ECC
support. But, it also significantly increases the challenge of
gather enough experimental data. Therefore, we report the re-
sults of two benchmarks with ECC support enabled for which
we could gather statistically significant amount of data. First,
we discuss the results for all benchmarks without ECC support,
followed by our findings about implications and efficiency of
ECC support.

We observed significant variance in the FIT rates across
applications for both the SDC and Crash. The underlying
reason is differences in the GPU resources utilization and in-
trinsic code characteristics like the Architectural Vulnerability
Factor (AVF, i.e., the probability for a failure to propagate
to the output [13]), amount of data elaborated, and the num-
ber of executions performed. We note that amount of data
elaborated alone is not sufficient to indicate the program’s
neutron-induced error rate. For example, dgemm and MxM
elaborate 3x more data than lavaMD but have 4x lower SDC
FIT. On the other hand, the higher occurrences of program
crashes in dgemm and FFT can be explained by the fact that
crashes related to the number of instructions executed by a
thread that, if corrupted, lead to a control flow error. The
difference among dgemm and MxM is of particular interest
as they solve the same problem on the same data but with
two opposite approaches (computing-bounded vs. memory
bounded). Since elaborated data are the same, their SDC FIT
also remain comparable. However, being computing-bounded,
dgemm execution requires the GPU cores to be always busy
and fully loaded while during MxM execution the GPU cores
are often waiting for data transfer. It is then more likely for
dgemm to be affected by a corruption that leads to a control-
flow error, possibly causing the dgemm Crash FIT rate to be
twice higher than that of MxM.

Our results for both Hotspot and MxM benchmarks show
that ECC is efficient in reducing the FIT rate significantly, in
accordance with our previous findings where we observed that
DBEs rate fairly low in the field as well as under the neutron
beam. Interestingly, SDC FIT rate are reduced significantly
when ECC is enabled; MxM SDC rate is reduced by one order
of magnitude, while Hotspot SDC rate is four times lower.
We point out that remaining SDC errors are due to corruptions

in logic resources or scheduler as they are not protected by the
ECC.
Observation 10. ECC reduces the Silent Data Corruption
rate up to one order of magnitude. However, a non-negligible
amount of SDC may still occur due to errors in unprotected
areas (including queues, flip-flops, logics, and schedulers).
GPU architects should focus on improving the reliability of
these unprotected structures to further reduce the SDC rate.

Interestingly, we observe that while ECC can decrease the
overall FIT rate (SDC and Crash combined), it may actually
increase the Crash FIT. For example, Crash FIT for Hotspot is
almost doubled. The underlying reason is relatively more com-
plex than reasoning about the observed decrease in SDC FIT
rate. When ECC mechanism detects a double bit corruption, it
launches an exception that eventually leads to program crash
(see Table1). Recall our Observation 9 that the number of dou-
ble bit corruptions is about an order of magnitude smaller than
single bit corruptions. However, that does not directly imply
that the Crash rate will be necessarily decreased by an order
of magnitude when ECC is enabled. We observed that a large
portion of single-bit and double-bit errors are benign and do
not affect the program output. Hence, they do not contribute
towards SDC and Crash rate when ECC is disabled. But, when
ECC is enabled, all the double bit errors (including the benign
ones) are converted into program crashes. Even benign double
bit errors cause program crash when ECC is enabled, causing
the crash FIT rate to go up. However, increase in program
crash rate is not necessarily undesirable. In fact, that shows
ECC is effective in decreasing the more undesirable outcome
(SDC) – critical for long running HPC workloads that often do
not have mechanism in place to detect SDC, but can recover
from program crashes by reading in the last saved checkpoint.
Observation 11. ECC may increases the program crash rate
due to the fact that many benign double bit corruptions, that
did not result in SDC or crash, are being detected by ECC and
result in program crash. This finding is useful for others to
identify double bit errors that may actually be benign. If such
corruptions could be predicted successfully, the program does
not need to crash proactively and incur high I/O overhead due
to reading previously saved checkpoint from the parallel file
system [39].

Next, we scale the FIT rate of these benchmarks to Titan’s

10



scale. Notice that we can only compare the Crash FIT, since
SDC for the Titan system can not be measured. Also, recall
that SDC rates are reduced by an order of magnitude when
ECC is enabled. Crash FIT rates, when scaled, results in the
mean time to application interruption of approx. 85 hours
(ECC enabled) and 35 hours (ECC disabled) for lavaMD ap-
plication. Recall that lavaMD benchmark experiences an order
of magnitude higher FIT rate than other applications. Other
applications are estimated to be interrupted over 100 hours
on average. These results align well with our field observed
MTBF for different GPU errors, for example MTBF for DBE
was observed 144 hours on Titan and combined MTBF of all
types of GPU failures was approximately 44 hours (Fig. 4 and
5). Our radiation experiments indicate that Kepler generations
of GPU cards perform well under the controlled radiation tests
and our results matches with what we observe in the field.
Observation 12. Radiation experiments and field data from
two Supercomputing facilities align well and indicate that
Kepler generation of GPU are significantly more resilient than
Fermi generation of GPUs.

7. Related Work

System failures and their characteristics has been studied ex-
tensively in the past to dissect the reliability of large-scale
systems in general [9, 12, 21, 22, 25, 28, 35, 36]. There are
more focused studies such as [18, 38, 40] on DRAM failures
and [37] on disk failures. Our work is the first study focused
specifically on GPU failures on large-scale systems. A recent
work on the Blue waters system [9], primarily focusing on
the characterizing all system failures, reports only the number
of uncorrectable errors on GPU memory. This study provides
a more detailed and rich characterization both in terms of sys-
tem size and time, accompanied with neutron beam tests. We
also present several interesting findings and implications of
various different kinds of GPU errors for architects and system
operators.

Recently, there have been extensive scientific efforts study-
ing and improving GPU reliability, motivated by the spread
of GPUs in both HPC and safety-critical applications [15].
Some initial work in the HPC domain have started to look
at reliability evaluation of GPUs exposed to terrestrial radia-
tion [8, 30, 33]. At the same time, fault injection experiments
have been performed to track error propagation towards the
GPU outputs and evaluate the Architectural Vulnerability Fac-
tor (AVF) of several parallel codes [13, 14, 17, 41]. Some
recent works have focused on evaluation of the parallel code
robustness to soft errors [10,32,34]. Experimentally-tuned and
optimized hardening strategies for a limited set of algorithms
have been investigated as well [26, 29, 31].

In contrast to these efforts, this is first study that provides
radiation experiments for a variety of workloads and evaluates
the efficiency of ECC on these codes. No prior work has com-
bined the field study and radiation tests to understand the GPU

failures in a unified way. Our study provides insights about dif-
ferences in the reliability of memory. If these insights are taken
into account, it can make fault injection tools/models more
realistic and accurate. The radiation experiments presented
here ensure that all resources are exposed and were carefully
conducted to ensure that all resources can be corrupted. This
is also the first study to provide operational insights and rec-
ommendations for current and future large-scale GPU-enabled
HPC centers.

8. Conclusion
We present an in-depth study of GPU failures on large-scales
system and derive insights about GPU error characteristics that
can be used to improve operational efficiency of large-scale
HPC facilities. Our insights related to the failure characteris-
tics based on raw sensitivity of the GPU memory structures
tested using neutron-beam experiments can be incorporated
into the future failure/soft-error modeling, simulation and tool
frameworks. Overall, we believe that insights derived from
our large-scale field data analysis and neutron-beam experi-
ments carry significant implications for future generation GPU
architectures and exascale systems.

9. Acknowledgment
This manuscript used the resources of the Oak Ridge Lead-
ership Computing Facility, located in the National Center for
Computational Sciences at the Oak Ridge National Laboratory,
which is managed by UT Battelle, LLC for the U.S. Depart-
ment of Energy, under the contract No. DEAC05-00OR22725.

This manuscript has been authored by UT-Battelle, LLC,
under Contract No. DE-AC05-00OR22725 with the U.S. De-
partment of Energy. The United States Government retains
and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a
non- exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript, or
allow others to do so, for United States Government purposes.

Part of this work was performed at the Ultrascale Systems
Research Center (USRC) at Los Alamos National Laboratory,
supported by the U.S. Department of Energy contract DE-
FC02-06ER25750. The publication has been assigned the
LANL identifier LA-UR-15-20004.

The authors would like to thank Stephen Keckler, Timothy
Tsai, and Siva Hari for providing K20 boards for the radiation
tests. The authors would also like to thank Heather Quinn,
Thomas Fairbanks, and Christopher Frost for their help with
the radiation tests.

References
[1] “Computational science requirements for leadership computing,

2007, http://www.olcf.ornl.gov/wp-content/uploads/2010/03/ORNL_
TM-2007_44.pdf.”

[2] “Tesla k20 gpu accelerator, board specification,” http://www.nvidia.
com/content/PDF/kepler/Tesla-K20-Passive-BD-06455-001-v07.
pdf.

[3] “Understanding xid errors,” http://docs.nvidia.com/deploy/xid-errors/
index.html.

11

http://www.olcf.ornl.gov/wp-content/uploads/2010/03/ORNL_TM-2007_44.pdf
http://www.olcf.ornl.gov/wp-content/uploads/2010/03/ORNL_TM-2007_44.pdf
http://www.nvidia.com/content/PDF/kepler/Tesla-K20-Passive-BD-06455-001-v07.pdf
http://www.nvidia.com/content/PDF/kepler/Tesla-K20-Passive-BD-06455-001-v07.pdf
http://www.nvidia.com/content/PDF/kepler/Tesla-K20-Passive-BD-06455-001-v07.pdf
http://docs.nvidia.com/deploy/xid-errors/index.html
http://docs.nvidia.com/deploy/xid-errors/index.html


[4] M. Bagatin, S. Gerardin, A. Paccagnella, C. Andreani, G. Gorini, and
C. Frost, “Temperature dependence of neutron-induced soft errors in
srams,” Microelectronics Reliability, vol. 52, no. 1, pp. 289–293, 2012.

[5] R. Baumann, “Radiation-induced soft errors in advanced semiconduc-
tor technologies,” Device and Materials Reliability, IEEE Transactions
on, vol. 5, no. 3, pp. 305–316, Sept 2005.

[6] G. Bruni, “Temperature effects on soft error rate due to atmospheric
neutrons on 28 nm fpgas,” 2014.

[7] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter, “The scalable heterogeneous
computing (shoc) benchmark suite,” in Proceedings of the 3rd
Workshop on General-Purpose Computation on Graphics Processing
Units, ser. GPGPU ’10. New York, NY, USA: ACM, 2010, pp. 63–74.
[Online]. Available: http://doi.acm.org/10.1145/1735688.1735702

[8] N. DeBardeleben, S. Blanchard, L. Monroe, P. Romero, D. Grunau,
C. Idler, and C. Wright, “GPU Behavior on a Large HPC Cluster,” 6th
Workshop on Resiliency in High Performance Computing (Resilience)
in Clusters, Clouds, and Grids in conjunction with the 19th Interna-
tional European Conference on Parallel and Distributed Computing
(Euro-Par 2013), Aachen, Germany,, August 26-30 2013.

[9] C. Di Martino, F. Baccanico, W. Kramer, J. Fullop, Z. Kalbarczyk,
and R. Iyer, “Lessons learned from the analysis of system failures at
petascale: The case of blue waters,” 44th international.

[10] C. Ding, C. Karlsson, H. Liu, T. Davies, and Z. Chen, “Matrix multipli-
cation on gpus with on-line fault tolerance,” in Parallel and Distributed
Processing with Applications (ISPA), 2011 IEEE 9th International
Symposium on, May 2011, pp. 311–317.

[11] A. Dixit and A. Wood, “The impact of new technology on soft error
rates,” in Reliability Physics Symposium (IRPS), 2011 IEEE Interna-
tional. IEEE, 2011, pp. 5B–4.

[12] N. El-Sayed and B. Schroeder, “Reading between the lines of failure
logs: Understanding how hpc systems fail, DSN,” 2013.

[13] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, “Gpu-qin:
A methodology for evaluating the error resilience of gpgpu applica-
tions,” 2014.

[14] B. Fang, J. Wei, K. Pattabiraman, and M. Ripeanu, “Poster: Evaluating
error resiliency of gpgpu applications,” in High Performance Comput-
ing, Networking, Storage and Analysis (SCC), 2012 SC Companion:,
Nov 2012, pp. 1504–1504.

[15] L. A. B. Gomez, F. Cappello, L. Carro, N. DeBardeleben, B. Fang,
S. Gurumurthi, S. Keckler, K. Pattabiraman, R. Rech, and M. S. Re-
orda, “Gpgpus: How to combine high computational power with high
reliability,” in 2014 Design Automation and Test in Europe Conference
and Exhibition, Dresden, Germany, 2014.

[16] D. M. H. and M. J. Schervish, “Probability and statistics. 3rd ed. boston,
ma: Addison-wesley, 2002.”

[17] I. Haque and V. Pande, “Hard Data on Soft Errors: A Large-Scale
Assessment of Real-World Error Rates in GPGPU,” in Cluster, Cloud
and Grid Computing (CCGrid), 2010 10th IEEE/ACM International
Conference on, 2010, pp. 691–696.

[18] A. A. Hwang, I. A. Stefanovici, and B. Schroeder, “Cosmic rays don’t
strike twice: understanding the nature of dram errors and the implica-
tions for system design,” ACM SIGPLAN Notices, vol. 47, no. 4, pp.
111–122, 2012.

[19] E. Ibe, S. Chung, S. Wen, H. Yamaguchi, Y. Yahagi, H. Kameyama,
S. Yamamoto, and T. Akioka, “Spreading diversity in multi-cell
neutron-induced upsets with device scaling,” in Custom Integrated
Circuits Conference, 2006. CICC’06. IEEE. IEEE, 2006, pp. 437–
444.

[20] JEDEC, “Measurement and Reporting of Alpha Particle and Terrestrial
Cosmic Ray-Induced Soft Errors in Semiconductor Devices,” JEDEC
Standard, Tech. Rep. JESD89A, 2006.

[21] Y. Liang, Y. Zhang, M. Jette, A. Sivasubramaniam, and R. Sahoo,
“Bluegene/l failure analysis and prediction models,” in Dependable
Systems and Networks, 2006. DSN 2006. International Conference on.
IEEE, 2006, pp. 425–434.

[22] Y. Liang, Y. Zhang, A. Sivasubramaniam, R. K. Sahoo, J. Moreira,
and M. Gupta, “Filtering failure logs for a bluegene/l prototype,” in
Dependable Systems and Networks, 2005. DSN 2005. Proceedings.
International Conference on. IEEE, 2005, pp. 476–485.

[23] R. Lucas, “Top ten exascale research challenges,” in DOE ASCAC
Subcommittee Report, 2014.

[24] NVIDIA, “uBLAS Library User Guide,” http://docs.nvidia.com/cuda/
pdf/CUBLAS_Library.pdf, 2014.

[25] A. Oliner and J. Stearley, “What supercomputers say: A study of five
system logs,” in Dependable Systems and Networks, 2007. DSN’07.
37th Annual IEEE/IFIP International Conference on. IEEE, 2007,
pp. 575–584.

[26] D. A. G. Oliveira, P. Rech, L. L. Pilla, P. O. A. Navaux, and L. Carro,
“Gpgpus ecc efficiency and efficacy,” in International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT
2014), 2014.

[27] “Preparing for Exascale: ORNL Leadership Computing Facility Ap-
plication Requirements and Strategy, 2009, http://www.olcf.ornl.gov/
wp-content/uploads/2010/03/olcf-requirements.pdf.”

[28] A. Pecchia, D. Cotroneo, Z. Kalbarczyk, and R. K. Iyer, “Improving
log-based field failure data analysis of multi-node computing systems,”
in Dependable Systems & Networks (DSN), 2011 IEEE/IFIP 41st
International Conference on. IEEE, 2011, pp. 97–108.

[29] L. Pilla, P. Rech, F. Silvestri, C. Frost, P. Navaux, M. Reorda, and
L. Carro, “Software-based hardening strategies for neutron sensitive fft
algorithms on gpus,” Nuclear Science, IEEE Transactions on, vol. PP,
no. 99, pp. 1–7, 2014.

[30] P. Rech, C. Aguiar, R. Ferreira, C. Frost, and L. Carro, “Neutron radia-
tion test of graphic processing units,” in On-Line Testing Symposium
(IOLTS), 2012 IEEE 18th International, June 2012, pp. 55–60.

[31] P. Rech, C. Aguiar, C. Frost, and L. Carro, “An Efficient and Ex-
perimentally Tuned Software-Based Hardening Strategy for Matrix
Multiplication on GPUs,” Nuclear Science, IEEE Transactions on,
vol. 60, no. 4, pp. 2797–2804, 2013.

[32] ——, “Experimental evaluation of thread distribution effects on multi-
ple output errors in gpus,” in Test Symposium (ETS), 2013 18th IEEE
European. IEEE, 2013, pp. 1–6.

[33] P. Rech, L. Carro, N. Wang, T. Tsai, S. K. S. Hari, and S. W. Keckler,
“Measuring the Radiation Reliability of SRAM Structures in GPUS
Designed for HPC,” in IEEE 10th Workshop on Silicon Errors in Logic
- System Effects (SELSE), 2014.

[34] D. Sabena, M. Sonza Reorda, L. Sterpone, P. Rech, and L. Carro,
“On the evaluation of soft-errors detection techniques for gpgpus,” in
Design and Test Symposium (IDT), 2013 8th International, Dec 2013,
pp. 1–6.

[35] R. K. Sahoo, M. S. Squillante, A. Sivasubramaniam, and Y. Zhang,
“Failure data analysis of a large-scale heterogeneous server environ-
ment,” in Dependable Systems and Networks, 2004 International Con-
ference on. IEEE, 2004, pp. 772–781.

[36] B. Schroeder and G. Gibson, “A large-scale study of failures in high-
performance computing systems,” Dependable and Secure Computing,
IEEE Transactions on, vol. 7, no. 4, pp. 337–350, 2010.

[37] B. Schroeder and G. A. Gibson, “Disk failures in the real world: What
does an mttf of 1, 000, 000 hours mean to you?” in FAST, vol. 7, 2007,
pp. 1–16.

[38] B. Schroeder, E. Pinheiro, and W.-D. Weber, “Dram errors in the
wild: a large-scale field study,” in ACM SIGMETRICS Performance
Evaluation Review, vol. 37, no. 1. ACM, 2009, pp. 193–204.

[39] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson et al., “Address-
ing failures in exascale computing,” International Journal of High
Performance Computing Applications, p. 1094342014522573, 2014.

[40] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and S. Gu-
rumurthi, “Feng shui of supercomputer memory: positional effects in
dram and sram faults,” in Proceedings of SC13: International Con-
ference for High Performance Computing, Networking, Storage and
Analysis. ACM, 2013, p. 22.

[41] J. Tan, N. Goswami, T. Li, and X. Fu, “Analyzing soft-error vulner-
ability on gpgpu microarchitecture,” in Workload Characterization
(IISWC), 2011 IEEE International Symposium on, Nov 2011, pp. 226–
235.

[42] D. Tiwari, S. Gupta, and S. S. Vazhkudai, “Lazy checkpointing: Ex-
ploiting temporal locality in failures to mitigate checkpointing over-
heads on extreme-scale systems,” International Conference on Depend-
able Systems and Networks (DSN), 2014.

[43] M. Violante, L. Sterpone, A. Manuzzato, S. Gerardin, P. Rech,
M. Bagatin, A. Paccagnella, C. Andreani, G. Gorini, A. Pietropaolo,
G. Cardarilli, S. Pontarelli, and C. Frost, “A New Hardware/Software
Platform and a New 1/E Neutron Source for Soft Error Studies: Testing
FPGAs at the ISIS Facility,” Nuclear Science, IEEE Transactions on,
vol. 54, no. 4, pp. 1184–1189, 2007.

[44] J. F. Ziegler and H. Puchner, SER–history, Trends and Challenges: A
Guide for Designing with Memory ICs. Cypress, 2010.

12

http://doi.acm.org/10.1145/1735688.1735702
http://docs.nvidia.com/cuda/pdf/CUBLAS_Library.pdf
http://docs.nvidia.com/cuda/pdf/CUBLAS_Library.pdf
http://www.olcf.ornl.gov/wp-content/uploads/2010/03/olcf-requirements.pdf
http://www.olcf.ornl.gov/wp-content/uploads/2010/03/olcf-requirements.pdf

	Introduction
	Background
	GPU Architecture and Resilience Support
	GPU Errors and Their Impact

	Methodology
	Data Sources and Data Collection Methodology
	Neutron Beam Test Experimental Set Up

	Understanding and Quantifying GPU Errors on the Titan Supercomputer
	Experience with Moonlight GPU Cluster
	Radiation Experiments
	Related Work
	Conclusion
	Acknowledgment

