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Abstract
• Goal: implement a mixed precision, highly scalable (multi-node)

approach to train & evaluate Recurrent Neural Networks (RNNs)
• CPU + GPU heterogeneous system
• Distributed training, synchronous SGD, data-parallel
• Tensorflow & CUDA-aware MPI
• Custom learning rate scheduler

• Datasets: 
Joint European Torus (JET) 
• (~4300 plasma shots from a tokamak fusion experiment) 

Large Movie Review 
• (~50,000 IMDB reviews, each movie <= 30 reviews) 

Results: near-linear strong scaling 0 !"# $
$ , where N=num of GPUs



Motivation

• FP16 (half precision) -> less memory & bandwidth
• Data can fit more neatly in GPU memoryspace
• Allows for 2x parameters & more (deeper) layers
• Improves max computational throughput

• At time of publication, no good study on distributing & scaling RNNs
• Specifically, Long Short-Term Memory (LSTM) ones



Refresher: what is an LSTM?

• A type of RNN where each node has 
potential to ”remember” information over 
time.
• Flow to and from nodes can loop back onto 

themselves (”unrolling” reveals temporal 
aspect)
• Inputs are ”mini-batches” of vectors.  
• Widely used in decision-making situations 

(continuous speech recognition, etc).



Hardware Environment
“Tiger”, at Princeton University

• 27 petaFlops

• 80 nodes, each w/ 28 cores and 16GB 
HBM2 memory

• 320 P100 GPUs

• Intel Broadwell E5-2680v4 CPUs

• Intel Omnipath interconnects



Deep Learning Distribution Method

• Based on Tensorflow
• Synchronous SGD w/ parameter averaging (70 mil in total)

STEP ACTION
Step 1 Initialize parameters randomly

Step 2 MPI broadcast parameters to each worker GPU

Step 3 Distribute mini-batch of data !" to each worker GPU.  
Each perform forward and backward propagations.

Step 4 MPI allreduce to gather gradients (in lock-step).  
Worker 0 averages them.

Step 5 Worker 0 updates optimizer (if exists) and global weights using these 
gradients.

Step 6 MPI broadcast updated parameters, repeat steps 2-5 for mini-batch !"#$



Learning Rate Scheduler
• After each epoch, update the learning rate 

!" = !$δ&

• !$ is the base learning rate (constant)
• δ& is the a learning rate “decay” (constant)
• i is the epoch number

• !$ is reduced in a distributed configuration, for reliable convergence.
• Value depends on:

• N (total num of GPUs)
• n (num of GPUs at which base learning rate is halved).

!$((, *) = ,-
..$012



Learning Rate Scheduler (2)

AUTHORS’ NOTES

Single (32-bit) precision used.

Effective batch size ! proportional to 
N (num of GPUs)

For larger N = convergence is affected 
(authors unsure how)

Base learning rate "# = 0.0004
Batch size ! = 256. 
SGD optimizer with momentum, loss scaling factor: 10.0.



Precision Change
• At the bit level, what is FP16 like compared to FP32?

FP32 FP16

• Authors’ claim FP16 accuracy comparable to FP32 baseline.
• For FP16 training, implemented custom MPI data type
• 2 contiguous bytes and allreduce reduction operation

• Cases where precision is changed:
• Matrix multiply
• Parameter averaging and weights/gradients sent across network
• Weight updating



Timings and Scalability
• Several areas of performance improvement considered

• Synchronous SGD can be split into two timing components: 

computation (Tbatch) and synchronization (Tsync)
• MPI allreduce is a tree-like operation, so Tsync is O(log(N)) 

• For 1 mini-batch step, processed data increases linearly with 

increasing N.

• More workers = more assigned data.

• Thus, there is less fetching for mini-batches. Implies that for 1 epoch, number 

of mini-batches required decreases linearly with increasing N. 

Epoch time scales really well: 



Timings and Scalability (2)
Thus, claiming epoch timings get linear scaling with increasing N

*My criticism: for >100 GPUs, would speedup 
level off due to so much communication 
taking place (temporally and spatially)?

Dataset: plasma disruptivity signals 
Npar and Nlayers are max values



Timings and Scalability (3)  JET Dataset
• Epoch vs Accuracy, both FP16 and FP32 (baseline) scenarios

• Both cases: plateau @ epoch 6, ROC area =0.87.  8~9 passes to finish training. 

Base learning rate !" = 0.0004 Base learning rate !" = 0.0001

*ROC area is
quality of a binary
predictor. 
Ie. Maximize true 
positives
and minimize false 
positives



Timings and Scalability (4)  IMDB Dataset  
• Epoch vs Accuracy, both FP16 and FP32 (baseline) scenarios

• Left case: plateau @ epoch 9, ROC area = 0.86 

Right case: plateu @ epoch 6, ROC area = 0.86

Base learning rate !" = 0.02 Base learning rate !" = 0.05

*ROC area is

quality of a binary

predictor. 

Ie. Maximize true 

positives

and minimize false 

positives



Timings and Scalability (5)  FP vs TP rate



Other important factors (drawbacks?)
• OpenMPI provides theoretical max ~10GB/s bandwidth 

(through GPUDirect Random Device Memory Access)
• Team’s Omnipath environment yielded ~6.25GB/s.  SLOW!
• Thus, 1 Synchronized SGD iteration : 

• To maintain accuracy between FP16 and FP32 (baseline) runs, loss 
function includes scalar multiplier !
• Before back propagation partial derivatives
• Without this, convergence at FP16 would not be possible

t = classification label
y = predicted outcome of RNN



The Great Finding

Number of GPUs vs 
Ratio of Sync time per 
mini-batch



Conclusion

• Employing mixed precision (ie. reducing FP32 to FP16) in a multi-GPU 

distributed synchronous SGD LSTM revealed:

• Surprising strong scalability (linear)

• Maintained accuracy (ROC) from FP32 -> FP16.

• Thanks to FP16, ability to accommodate 

• larger neural networks

• larger batch sizes

• >>70 mil parameters (?)



Thank you!


