
Training distributed deep
recurrent neural networks with
mixed precision on GPU clusters

Presented by Ryan Barton

Matsuoka Laboratory, Tokyo Institute of Technology

Thursday, December 20 2018

Alexey Svyatkovskiy
Princeton University

Princeton, New Jersey

Julian Kates-Harbeck
Harvard University

Cambridge, Massachusetts

William Tang Princeton
University Princeton, New

Jersey

Abstract
• Goal: implement a mixed precision, highly scalable (multi-node)

approach to train & evaluate Recurrent Neural Networks (RNNs)
• CPU + GPU heterogeneous system
• Distributed training, synchronous SGD, data-parallel
• Tensorflow & CUDA-aware MPI
• Custom learning rate scheduler

• Datasets:
Joint European Torus (JET)
• (~4300 plasma shots from a tokamak fusion experiment)

Large Movie Review
• (~50,000 IMDB reviews, each movie <= 30 reviews)

Results: near-linear strong scaling 0 !"# $
$, where N=num of GPUs

Motivation

• FP16 (half precision) -> less memory & bandwidth
• Data can fit more neatly in GPU memoryspace
• Allows for 2x parameters & more (deeper) layers
• Improves max computational throughput

• At time of publication, no good study on distributing & scaling RNNs
• Specifically, Long Short-Term Memory (LSTM) ones

Refresher: what is an LSTM?

• A type of RNN where each node has
potential to ”remember” information over
time.
• Flow to and from nodes can loop back onto

themselves (”unrolling” reveals temporal
aspect)
• Inputs are ”mini-batches” of vectors.
• Widely used in decision-making situations

(continuous speech recognition, etc).

Hardware Environment
“Tiger”, at Princeton University

• 27 petaFlops

• 80 nodes, each w/ 28 cores and 16GB
HBM2 memory

• 320 P100 GPUs

• Intel Broadwell E5-2680v4 CPUs

• Intel Omnipath interconnects

Deep Learning Distribution Method

• Based on Tensorflow
• Synchronous SGD w/ parameter averaging (70 mil in total)

STEP ACTION
Step 1 Initialize parameters randomly

Step 2 MPI broadcast parameters to each worker GPU

Step 3 Distribute mini-batch of data !" to each worker GPU.
Each perform forward and backward propagations.

Step 4 MPI allreduce to gather gradients (in lock-step).
Worker 0 averages them.

Step 5 Worker 0 updates optimizer (if exists) and global weights using these
gradients.

Step 6 MPI broadcast updated parameters, repeat steps 2-5 for mini-batch !"#$

Learning Rate Scheduler
• After each epoch, update the learning rate

!" = !$δ&

• !$ is the base learning rate (constant)
• δ& is the a learning rate “decay” (constant)
• i is the epoch number

• !$ is reduced in a distributed configuration, for reliable convergence.
• Value depends on:

• N (total num of GPUs)
• n (num of GPUs at which base learning rate is halved).

!$((, *) = ,-
..$012

Learning Rate Scheduler (2)

AUTHORS’ NOTES

Single (32-bit) precision used.

Effective batch size ! proportional to
N (num of GPUs)

For larger N = convergence is affected
(authors unsure how)

Base learning rate "# = 0.0004
Batch size ! = 256.
SGD optimizer with momentum, loss scaling factor: 10.0.

Precision Change
• At the bit level, what is FP16 like compared to FP32?

FP32 FP16

• Authors’ claim FP16 accuracy comparable to FP32 baseline.
• For FP16 training, implemented custom MPI data type
• 2 contiguous bytes and allreduce reduction operation

• Cases where precision is changed:
• Matrix multiply
• Parameter averaging and weights/gradients sent across network
• Weight updating

Timings and Scalability
• Several areas of performance improvement considered

• Synchronous SGD can be split into two timing components:

computation (Tbatch) and synchronization (Tsync)
• MPI allreduce is a tree-like operation, so Tsync is O(log(N))

• For 1 mini-batch step, processed data increases linearly with

increasing N.

• More workers = more assigned data.

• Thus, there is less fetching for mini-batches. Implies that for 1 epoch, number

of mini-batches required decreases linearly with increasing N.

Epoch time scales really well:

Timings and Scalability (2)
Thus, claiming epoch timings get linear scaling with increasing N

*My criticism: for >100 GPUs, would speedup
level off due to so much communication
taking place (temporally and spatially)?

Dataset: plasma disruptivity signals
Npar and Nlayers are max values

Timings and Scalability (3) JET Dataset
• Epoch vs Accuracy, both FP16 and FP32 (baseline) scenarios

• Both cases: plateau @ epoch 6, ROC area =0.87. 8~9 passes to finish training.

Base learning rate !" = 0.0004 Base learning rate !" = 0.0001

*ROC area is
quality of a binary
predictor.
Ie. Maximize true
positives
and minimize false
positives

Timings and Scalability (4) IMDB Dataset
• Epoch vs Accuracy, both FP16 and FP32 (baseline) scenarios

• Left case: plateau @ epoch 9, ROC area = 0.86

Right case: plateu @ epoch 6, ROC area = 0.86

Base learning rate !" = 0.02 Base learning rate !" = 0.05

*ROC area is

quality of a binary

predictor.

Ie. Maximize true

positives

and minimize false

positives

Timings and Scalability (5) FP vs TP rate

Other important factors (drawbacks?)
• OpenMPI provides theoretical max ~10GB/s bandwidth

(through GPUDirect Random Device Memory Access)
• Team’s Omnipath environment yielded ~6.25GB/s. SLOW!
• Thus, 1 Synchronized SGD iteration :

• To maintain accuracy between FP16 and FP32 (baseline) runs, loss
function includes scalar multiplier !
• Before back propagation partial derivatives
• Without this, convergence at FP16 would not be possible

t = classification label
y = predicted outcome of RNN

The Great Finding

Number of GPUs vs
Ratio of Sync time per
mini-batch

Conclusion

• Employing mixed precision (ie. reducing FP32 to FP16) in a multi-GPU

distributed synchronous SGD LSTM revealed:

• Surprising strong scalability (linear)

• Maintained accuracy (ROC) from FP32 -> FP16.

• Thanks to FP16, ability to accommodate

• larger neural networks

• larger batch sizes

• >>70 mil parameters (?)

Thank you!

