Training distributed deep recurrent neural networks with mixed precision on GPU clusters

Alexey Svyatkovskiy Princeton University Princeton, New Jersey Julian Kates-Harbeck Harvard University Cambridge, Massachusetts William Tang Princeton University Princeton, New Jersey

Presented by Ryan Barton Matsuoka Laboratory, Tokyo Institute of Technology Thursday, December 20 2018

Abstract

- Goal: implement a **mixed precision, highly scalable (multi-node)** approach to train & evaluate Recurrent Neural Networks (RNNs)
 - CPU + GPU heterogeneous system
 - Distributed training, synchronous SGD, data-parallel
 - Tensorflow & CUDA-aware MPI
 - Custom learning rate scheduler
- Datasets:

Joint European Torus (JET)

• (~4300 plasma shots from a tokamak fusion experiment)

Large Movie Review

(~50,000 IMDB reviews, each movie <= 30 reviews)

Results: near-linear strong scaling $O\left(\frac{\log(N)}{N}\right)$, where N=num of GPUs

Motivation

- FP16 (half precision) -> less memory & bandwidth
 - Data can fit more neatly in GPU memoryspace
 - Allows for 2x parameters & more (deeper) layers
 - Improves max computational throughput
- At time of publication, no good study on distributing & scaling RNNs
 - Specifically, Long Short-Term Memory (LSTM) ones

Refresher: what is an LSTM?

- A type of RNN where each node has potential to "remember" information over time.
- Flow to and from nodes can loop back onto themselves ("unrolling" reveals temporal aspect)
- Inputs are "mini-batches" of vectors.
- Widely used in decision-making situations (continuous speech recognition, etc).

Hardware Environment

- "Tiger", at Princeton University
 - 27 petaFlops
 - 80 nodes, each w/ 28 cores and 16GB HBM2 memory
 - 320 P100 GPUs
 - Intel Broadwell E5-2680v4 CPUs
 - Intel Omnipath interconnects

Deep Learning Distribution Method

- Based on Tensorflow
- Synchronous SGD w/ parameter averaging (70 mil in total)

STEP	ACTION		
Step 1	Initialize parameters randomly		
Step 2	MPI broadcast parameters to each worker GPU		
Step 3	B Distribute mini-batch of data m_i to each worker GPU. Each perform forward and backward propagations.		
Step 4	MPI <i>allreduce</i> to gather gradients (in lock-step). Worker 0 averages them.		
Step 5	Worker 0 updates optimizer (if exists) and global weights using these gradients.		
Step 6	MPI <i>broadcast</i> updated parameters, repeat steps 2-5 for mini-batch m_{i+1}		

Learning Rate Scheduler

• After each epoch, update the learning rate

$$\lambda_i = \lambda_0 \delta^i$$

- λ_0 is the base learning rate (constant)
- δ^i is the a learning rate "decay" (constant)
- i is the epoch number
- λ_0 is reduced in a distributed configuration, for reliable convergence.
- Value depends on:
 - N (total num of GPUs)
 - n (num of GPUs at which base learning rate is halved).

$$\lambda_0(N,n) = \frac{\lambda_0}{1.0 + \frac{N}{n}}$$

Learning Rate Scheduler (2)

Base learning rate $\lambda_0 = 0.0004$ Batch size $\beta = 256$. SGD optimizer with momentum, loss scaling factor: 10.0.

AUTHORS' NOTES

Single (32-bit) precision used.

Effective batch size β proportional to N (num of GPUs)

For larger N = convergence is affected (authors unsure how)

Precision Change

• At the bit level, what is FP16 like compared to FP32?

- Authors' claim FP16 accuracy comparable to FP32 baseline.
- For FP16 training, implemented custom MPI data type
 - 2 contiguous bytes and *allreduce* reduction operation
- Cases where precision is changed:
 - Matrix multiply
 - Parameter averaging and weights/gradients sent across network
 - Weight updating

Timings and Scalability

- Several areas of performance improvement considered
- Synchronous SGD can be split into two timing components:
 computation (T_{batch}) and synchronization (T_{sync})
- MPI allreduce is a tree-like operation, so T_{sync} is O(log(N))
- For 1 mini-batch step, processed data **increases** linearly with increasing N.
 - More workers = more assigned data.
 - Thus, there is less fetching for mini-batches. Implies that for 1 epoch, number of mini-batches required **decreases** linearly with increasing N.

Epoch time scales really well:

$$T_{epoch} \propto \frac{1}{N} (T_{batch} + T_{sync}) = \frac{1}{N} (A + B \cdot log(N)) = O(\frac{log(N)}{N})$$

Timings and Scalability (2)

Thus, claiming epoch timings get linear scaling with increasing N

Dataset: plasma disruptivity signals Npar and Nlayers are max values

Precision	Npar	N _{layers}	Batch size
FP64	$4.6 \cdot 10^{6}$	15	256
FP32	$9.2 \cdot 10^{6}$	29	256
FP16	$18.2 \cdot 10^{6}$	58	256
FP64	$18.2 \cdot 10^{6}$	58	64
FP32	$36.3 \cdot 10^{6}$	118	64
FP16	$72.1 \cdot 10^{6}$	234	64

*My criticism: for >100 GPUs, would speedup level off due to so much communication taking place (temporally and spatially)?

Timings and Scalability (3) JET Dataset

- Epoch vs Accuracy, both FP16 and FP32 (baseline) scenarios
- Both cases: plateau @ epoch 6, ROC area =0.87. 8~9 passes to finish training.

Base learning rate $\lambda_0 = 0.0004$

Base learning rate $\lambda_0 = 0.0001$

Timings and Scalability (4) IMDB Dataset

- Epoch vs Accuracy, both FP16 and FP32 (baseline) scenarios
- Left case: plateau @ epoch 9, ROC area = 0.86
 Right case: plateu @ epoch 6, ROC area = 0.86

*ROC area is quality of a binary predictor. le. Maximize true positives and minimize false positives

Base learning rate $\lambda_0 = 0.02$

Base learning rate $\lambda_0 = 0.05$

Timings and Scalability (5) FP vs TP rate

Other important factors (drawbacks?)

- OpenMPI provides theoretical max ~10GB/s bandwidth (through GPUDirect Random Device Memory Access)
- Team's Omnipath environment yielded ~6.25GB/s. SLOW!
- Thus, 1 Synchronized SGD iteration :

 $\frac{Net \ gradient \ size}{Bandwidth} = \frac{9.4 \ GB/iter}{6.25 \ GB/s} \approx 1500 \ ms/iter$

- To maintain accuracy between FP16 and FP32 (baseline) runs, loss function includes scalar multiplier *a*
 - *Before* back propagation partial derivatives
 - Without this, convergence at FP16 would **not be possible**

$$L(y) = \alpha \cdot max(0, 1 - t \cdot y)$$

t = classification label y = predicted outcome of RNN

Conclusion

- Employing mixed precision (ie. reducing FP32 to FP16) in a multi-GPU distributed synchronous SGD LSTM revealed:
 - Surprising strong scalability (linear)
 - Maintained accuracy (ROC) from FP32 -> FP16.
 - Thanks to FP16, ability to accommodate
 - larger neural networks
 - larger batch sizes
 - >>70 mil parameters (?)

Thank you!