
The Eucalyptus Open-source Cloud-computing System

Daniel Nurmi, Rich Wolski, Chris Grzegorczyk
Graziano Obertelli, Sunil Soman, Lamia Youseff, Dmitrii Zagorodnov

Computer Science Department
University of California, Santa Barbara

Santa Barbara, California 93106

Abstract

Cloud computing systems fundamentally provide ac-
cess to large pools of data and computational resources
through a variety of interfaces similar in spirit to exist-
ing grid and HPC resource management and program-
ming systems. These types of systems offer a new pro-
gramming target for scalable application developers and
have gained popularity over the past few years. However,
most cloud computing systems in operation today are pro-
prietary, rely upon infrastructure that is invisible to the
research community, or are not explicitly designed to be
instrumented and modified by systems researchers.

In this work, we present EUCALYPTUS – an open-
source software framework for cloud computing that im-
plements what is commonly referred to as Infrastructure
as a Service (IaaS); systems that give users the ability to
run and control entire virtual machine instances deployed
across a variety physical resources. We outline the ba-
sic principles of the EUCALYPTUS design, detail impor-
tant operational aspects of the system, and discuss archi-
tectural trade-offs that we have made in order to allow
Eucalyptus to be portable, modular and simple to use on
infrastructure commonly found within academic settings.
Finally, we provide evidence that EUCALYPTUS enables
users familiar with existing Grid and HPC systems to ex-
plore new cloud computing functionality while maintain-
ing access to existing, familiar application development
software and Grid middle-ware.

1 Introduction

There are many ways in which computational power
and data storage facilities are provided to users, rang-
ing from a user accessing a single laptop to the alloca-
tion of thousands of compute nodes distributed around the
world. Users generally locate resources based on a va-
riety of characteristics, including the hardware architec-
ture, memory and storage capacity, network connectivity
and, occasionally, geographic location. Usually this re-
source location process involves a mix of resource avail-

ability, application performance profiling, software ser-
vice requirements, and administrative connections. While
great strides have been made in the HPC and Grid Com-
puting communities [15, 7] toward the creation of resource
provisioning standards [14, 18, 33, 38], this process re-
mains somewhat cumbersome for a user with complex re-
source requirements.

For example, a user that requires a large number of
computational resources might have to contact several
different resource providers in order to satisfy her re-
quirements. When the pool of resources is finally deliv-
ered, it is often heterogeneous, making the task of per-
formance profiling and efficient use of the resources diffi-
cult. While some users have the expertise required to ex-
ploit resource heterogeneity, many prefer an environment
where resource hardware, software stacks, and program-
ming environments are uniform. Such uniformity makes
the task of large-scale application development and de-
ployment more accessible.

Recently, a number of systems have arisen that at-
tempt to convert what is essentially a manual large-scale
resource provisioning and programming problem into a
more abstract notion commonly referred to as elastic, util-
ity, or cloud computing (we use the term “cloud com-
puting” to refer to these systems in the remainder of this
work). As the number and scale of cloud-computing sys-
tems continues to grow, significant study is required to de-
termine directions we can pursue toward the goal of mak-
ing future cloud computing platforms successful. Cur-
rently, most existing cloud-computing offerings are either
proprietary or depend on software that is not amenable
to experimentation or instrumentation. Researchers in-
terested in pursuing cloud-computing infrastructure ques-
tions have few tools with which to work.

The lack of research tools is unfortunate given that
even the most fundamental questions are still unanswered:
what is the right distributed architecture for a cloud-
computing system? What resource characteristics must
VM instance schedulers consider to make most efficient
use of the resources? How do we construct VM instance

!"#$%&&&'()*$%+",-+."/0+.1$234506/74$0+$)176",-$)0457"/+8$.+9$"#,$:-/9

!"#$%$"&!'$(&))$*+%!,-)'.%%,/,)%%!,0111
230,4%.44%!+556702.)%%!.!(

4)*

networks that are flexible, well-performing, and secure?
In addition, questions regarding the benefits of cloud com-
puting remain difficult to address. Which application do-
mains can benefit most from cloud computing systems and
what interfaces are appropriate? What types of service
level agreements should cloud computing provide? How
can cloud-computing systems be merged with more com-
mon resource provisioning systems already deployed?

Cloud computing systems provide a wide variety
of interfaces and abstractions ranging from the ability
to dynamically provision entire virtual machines (i.e.,
Infrastructure-as-a-Service systems such as Amazon EC2
and others [4, 12, 27, 9, 30]) to flexible access to hosted
software services (i.e. Software-as-a-Service systems
such as salesforce.com and others [37, 20, 21, 29]). All,
however, share the notion that delivered resources should
be well defined, provide reasonably deterministic perfor-
mance, and can be allocated and de-allocated on demand.
We have focused our efforts on the “lowest” layer of cloud
computing systems (IaaS) because here we can provide
a solid foundation on top of which language-, service-,
and application-level cloud-computing systems can be ex-
plored and developed.

In this work, we present EUCALYPTUS: an open-source
cloud-computing framework that uses computational and
storage infrastructure commonly available to academic re-
search groups to provide a platform that is modular and
open to experimental instrumentation and study. With EU-
CALYPTUS, we intend to address open questions in cloud
computing while providing a common open-source frame-
work around which we hope a development community
will arise. EUCALYPTUS is composed of several compo-
nents that interact with one another through well-defined
interfaces, inviting researchers to replace our implementa-
tions with their own or to modify existing modules. Here,
we address several crucial cloud computing questions, in-
cluding VM instance scheduling, VM and user data stor-
age, cloud computing administrative interfaces, construc-
tion of virtual networks, definition and execution of ser-
vice level agreements (cloud/user and cloud/cloud), and
cloud computing user interfaces. In this work, we will
discuss each of these topics in more detail and provide a
full description of our own initial implementations of so-
lutions within the EUCALYPTUS software framework.

2 Related Work

Machine virtualization projects producing Virtual Ma-
chine (VM) hypervisor software [5, 6, 25, 40] have en-
abled new mechanisms for providing resources to users.
In particular, these efforts have influenced hardware de-
sign [3, 22, 26] to support transparent operating sys-
tem hosting. The “right” virtualization architecture re-
mains an open field of study [2]): analyzing, optimiz-
ing, and understanding the performance of virtualized sys-
tems [23, 24, 31, 32, 41] is an active area of research.
EUCALYPTUS implements a cloud computing “operating

system” that is, by design, hypervisor agnostic. However,
the current implementation of the system uses Xen-based
virtualization as its initial target hypervisor.

Grid computing must be acknowledged as an intellec-
tual sibling of, if not ancestor to, cloud computing [7, 15,
33, 38]. The original metaphor for a computational utility,
in fact, gives grid computing its name. While grid com-
puting and cloud computing share a services oriented ap-
proach [16, 17] and may appeal to some of the same users
(e.g., researchers and analysts performing loosely-coupled
parallel computations), they differ in two key ways. First,
grid systems are architected so that individual user re-
quests can (and should) consume large fractions of the
total resource pool [34]. Cloud systems often limit the
size of an individual request to be tiny fraction of the to-
tal available capacity [4] and, instead, focus on scaling to
support large numbers of users.

A second key difference concerns federation. From its
inception, grid computing took a middleware-based ap-
proach as a way of promoting resource federation among
cooperating, but separate, administrative domains [14].
Cloud service venues, to date, are unfederated. That is, a
cloud system is typically operated by a single (potentially
large) entity with the administrative authority to mandate
uniform configuration, scheduling policies, etc. While
EUCALYPTUS is designed to manage and control large col-
lections of distributed resources, it conforms to the design
constraints governing cloud systems with regards to fed-
eration of administrative authority and resource allocation
policies.

Thanks in part to the new facilities provided by virtu-
alization platforms, a large number of systems have been
built using these technologies for providing scalable In-
ternet services [4, 1, 8, 10, 11, 19, 37], that share in com-
mon many system characteristics: they must be able to
rapidly scale up and down as workload fluctuates, support
a large number of users requiring resources “on-demand”,
and provide stable access to provided resources over the
public Internet. While the details of the underlying re-
source architectures on which these systems operate are
not commonly published, EUCALYPTUS is almost cer-
tainly shares some architectural features with these sys-
tems due to shared objectives and design goals.

In addition to the commercial cloud computing of-
ferings mentioned above (Amazon EC2/S3, Google Ap-
pEngine, Salesforce.com, etc.), which maintain a propri-
etary infrastructure with open interfaces, there are open-
source projects aimed at resource provisioning with the
help of virtualization. Usher [30] is a modular open-
source virtual machine management framework from
academia. Enomalism [12] is an open-source cloud soft-
ware infrastructure from a start-up company. Virtual
Workspaces [27] is a Globus-based [14] system for pro-
visioning workspaces (i.e., VMs), which leverages sev-
eral pre-existing solutions developed in the grid comput-

4)'

ing arena. The Cluster-on-demand [9] project focuses on
the provisioning of virtual machines for scientific com-
puting applications. oVirt [35] is a Web-based virtual ma-
chine management console.

While these projects produced software artifacts that
are similar to EUCALYPTUS, there are several differences.
First, EUCALYPTUS was designed from the ground up to
be as easy to install and as non-intrusive as possible, with-
out requiring sites to dedicate resources to it exclusively
(one can even install it on a laptop for experimentation.)
Second, the EUCALYPTUS software framework is highly
modular, with industry-standard, language-agnostic com-
munication mechanisms, which we hope will encourage
third-party extensions to the system and community de-
velopment. Third, the external interface to EUCALYPTUS
is based on an already popular API developed by Amazon.
Finally, EUCALYPTUS is unique among the open-source
offerings in providing a virtual network overlay that both
isolates network traffic of different users and allows two or
more clusters to appear to belong to the same Local Area
Network (LAN).

Overall, we find that there are a great number of cloud
computing systems in design and operation today that ex-
pose interfaces to proprietary and closed software and re-
sources, a smaller number of open-source cloud comput-
ing offerings that typically require substantial effort and/or
dedication of resources in order to use, and no system an-
tecedent to EUCALYPTUS that has been designed specif-
ically with support academic exploration and community
involvement as fundamental design goals.

3 EUCALYPTUS Design

The architecture of the EUCALYPTUS system is simple,
flexible and modular with a hierarchical design reflecting
common resource environments found in many academic
settings. In essence, the system allows users to start, con-
trol, access, and terminate entire virtual machines using
an emulation of Amazon EC2’s SOAP and “Query” in-
terfaces. That is, users of EUCALYPTUS interact with the
system using the exact same tools and interfaces that they
use to interact with Amazon EC2. Currently, we support
VMs that run atop the Xen [5] hypervisor, but plan to add
support for KVM/QEMU [6], VMware [40], and others in
the near future.

We have chosen to implement each high-level system
component as a stand-alone Web service. This has the
following benefits: first, each Web service exposes a well-
defined language-agnostic API in the form of a WSDL
document containing both operations that the service can
perform and input/output data structures. Second, we
can leverage existing Web-service features such as WS-
Security policies for secure communication between com-
ponents. There are four high-level components, each with
its own Web-service interface, that comprise a EUCALYP-
TUS installation:

!"!#$%&#'$()*+#

!(*+,-)#.#

!!#

/
!
#

/
!
#

/
!
#

/
!
#

0)12$,-#

%-,34)5#

!(*+,-)#6#

!!#

/
!
#

/
!
#

/
!
#

/
!
#

0)12$,-#

%-,34)5#

0*7(18#

%-,34)5#

Figure 1. EUCALYPTUS employs a hierarchical de-
sign to reflect underlying resource topologies.

• Node Controller controls the execution, inspection,
and terminating of VM instances on the host where it
runs.

• Cluster Controller gathers information about and
schedules VM execution on specific node controllers,
as well as manages virtual instance network.

• Storage Controller (Walrus) is a put/get storage
service that implements Amazon’s S3 interface, pro-
viding a mechanism for storing and accessing virtual
machine images and user data.

• Cloud Controller is the entry-point into the cloud
for users and administrators. It queries node man-
agers for information about resources, makes high-
level scheduling decisions, and implements them by
making requests to cluster controllers.

The relationships and deployment locations of each
component within a typical small cluster setting are shown
in Figure 1.

Node Controller

An Node Controller (NC) executes on every node that
is designated for hosting VM instances. An NC queries
and controls the system software on its node (i.e., the
host operating system and the hypervisor) in response to
queries and control requests from its Cluster Controller.

An NC makes queries to discover the node’s physical
resources – the number of cores, the size of memory, the
available disk space – as well as to learn about the state of
VM instances on the node (although an NC keeps track of
the instances that it controls, instances may be started and
stopped through mechanisms beyond NC’s control). The
information thus collected is propagated up to the Cluster
Controller in responses to describeResource and describe-
Instances requests.

4)&

Cluster Controllers control VM instances on a node by
making runInstance and terminateInstance requests to the
node’s NC. Upon verifying the authorization – e.g., only
the owner of an instance or an administrator is allowed to
terminate it – and after confirming resource availability,
the NC executes the request with the assistance of the hy-
pervisor. To start an instance, the NC makes a node-local
copy of the instance image files (the kernel, the root file
system, and the ramdisk image), either from a remote im-
age repository or from the local cache, creates a new end-
point in the virtual network overlay, and instructs the hy-
pervisor to boot the instance. To stop an instance, the NC
instructs the hypervisor to terminate the VM, tears down
the virtual network endpoint, and cleans up the files as-
sociated with the instance (the root file system is not pre-
served after the instance terminates).

Cluster Controller

The Cluster Controller (CC) generally executes on a
cluster front-end machine, or any machine that has net-
work connectivity to both the nodes running NCs and to
the machine running the Cloud Controller (CLC). Many
of the CC’s operations are similar to the NC’s opera-
tions but are generally plural instead of singular (e.g.
runInstances, describeInstances, terminateInstances, de-
scribeResources). CC has three primary functions: sched-
ule incoming instance run requests to specific NCs, con-
trol the instance virtual network overlay, and gather/report
information about a set of NCs. When a CC receives
a set of instances to run, it contacts each NC compo-
nent through its describeResource operation and sends the
runInstances request to the first NC that has enough free
resources to host the instance. When a CC receives a de-
scribeResources request, it also receives a list of resource
characteristics (cores, memory, and disk) describing the
resource requirements needed by an instance (termed a
VM “type”). With this information, the CC calculates
how many simultaneous instances of the specific “type”
can execute on its collection of NCs and reports that num-
ber back to the CLC.

Virtual Network Overlay

Perhaps one of the most interesting challenges in the de-
sign of a cloud computing infrastructure is that of VM
instance interconnectivity. When designing EUCALYP-
TUS, we recognized that the VM instance network so-
lution must address connectivity, isolation, and perfor-
mance.

First and foremost, every virtual machine that EUCA-
LYPTUS controls must have network connectivity to each
other, and at least partially to the public Internet (we use
the word “partially” to denote that at least one VM in-
stance in a “set” of instances must be exposed externally
so that the instance set owner can log in and interact with
their instances). Because users are granted super-user ac-
cess to their provisioned VMs, they may have super-user

access to the underlying network interfaces. This ability
can cause security concerns, in that, without care, a VM
instance user may have the ability to acquire system IP
or MAC addresses and cause interference on the system
network or with another VM that is co-allocated on the
same physical resource. Thus, in a cloud shared by dif-
ferent users, VMs belonging to a single cloud allocation
must be able to communicate, but VMs belonging to sep-
arate allocations must be isolated. Finally, one of the pri-
mary reasons that virtualization technologies are just now
gaining such popularity is that the performance overhead
of virtualization has diminished significantly over the past
few years, including the cost of virtualized network inter-
faces. Our design attempts to maintain inter-VM network
performance as close to native as possible.

Within EUCALYPTUS, the CC currently handles the set
up and tear down of instance virtual network interfaces in
three distinct, administrator defined “modes”, correspond-
ing to three common environments we currently support.
The first configuration instructs EUCALYPTUS to attach
the VM’s interface directly to a software Ethernet bridge
connected to the real physical machine’s network, allow-
ing the administrator to handle VM network DHCP re-
quests the same way they handle non-EUCALYPTUS com-
ponent DHCP requests. The second configuration allows
an administrator to define static Media Access Control
(MAC) and IP address tuples. In this mode, each new
instance created by the system is assigned a free MAC/IP
tuple, which is released when the instance is terminated.
In these modes, the performance of inter-VM communi-
cation is near-native, when VMs are running on the same
cluster (any performance overhead is that imposed by the
underlying hypervisor implementation), but there is not
inter-VM network isolation. Finally, we support a mode
in which EUCALYPTUS fully manages and controls the
VM networks, providing VM traffic isolation, the defini-
tion of ingress rules (configurable firewalls) between logi-
cal sets of VMs, and the dynamic assignment of public IP
addresses to VMs at boot and run-time.

In this mode, the users are allowed to attach VMs, at
boot time, to a “network” that is named by the user. Each
such network is assigned a unique VLAN tag by EUCA-
LYPTUS, depicted in Figure 2, as well as a unique IP sub-
net from a range specified by the administrator of EUCA-
LYPTUS in advance (typically a private IP range). In this
way, each set of VMs within a given named network is
isolated from VMs on a different named network at us-
ing VLANs, and further using IP subnetting. The CC acts
as a router between VM subnets, with the default policy
blocking all IP traffic between VM networks. If the user
wishes, they may associate ingress rules with their named
networks, allowing for example ICMP ping traffic to and
from the public Internet, but only allowing SSH connec-
tions between VMs that they control. The CC uses the
Linux iptables packet filtering system to implement and

4)"

!"#$%&'(%)*#

+,-&.)(/#0*&123)*#

+,-&.)(/#$%'*34()*#

!567#8(99*:#

!.3'2(/#$%'*34()*#

;1<=(3*#

>',*3%*'#?3.:9*#

!.3'2(/#$%'*34()*#

81#@,-&.)(/#

>',*3%*'#

81#@,-&.)(/#

>',*3%*'#

Figure 2. Each EUCALYPTUS VM instance is assigned
a virtual interface that is connected to a software Eth-
ernet bridge on the physical machine, to which a VLAN
tagged interface is further connected.

!"#$%&'(%)*#

+!,-.#-/#

012&'*3#04%'3411*3#

!"#$%&'(%)*#

+!,-.#5/#

!,-.##-#6(77*8#

!93'2(1#$%'*3:()*#

!,-.##5#6(77*8#

!93'2(1#$%'*3:()*#

;42<%7#;21*&#

=*%>#-,,#?*'@**%#.A6BC;D#-#(%8#.A6BC;D#5#

-114@#$0"E#:34F#-,,#'4#.A6BC;D#-#

-114@#60EGHHI#:34F#.A6BC;D#5#'4#.A6BC;D#-#

J43@(38#EK5,0E#L#'4#E;$!-6A$E#M#

Figure 3. The CC uses the Linux iptables packet filter-
ing system to allow users to define inter-VM network
ingress rules, and to assign public IP addresses dy-
namically at boot or run-time.

control VM network ingress rules. Finally, note that all
VMs in this mode are typically assigned form a pool of
private IP addresses, and as such cannot be contacted by
external systems. To manage this situation, the CC al-
lows the administrator to specify a list of public IPv4 ad-
dresses that are unused, and provides the ability for users
to dynamically request that an IP from this collection be
assigned to a VM at boot or run-time; again using the
Linux iptables Network Address Translation (NAT) fa-
cilities to define dynamic Destination NAT (DNAT) and
Source NAT (SNAT) rules for public IP to private IP ad-
dress translation (see Figure 3 for details).

From a performance perspective, the solution we em-
ploy exhibits near native speed when two VMs within a
given named network within a single cluster communi-
cate with one another. When VMs on different named
networks need to communicate, our solution imposes one
extra hop through the CC machine which acts as an IP
router. Thus, we afford the user with the ability to choose,
based on their specific application requirements, between
native performance without inter-VM communication re-
strictions, or suffer an extra hop but gain the ability to re-
strict inter-VM communication.

When VMs are distributed across clusters, we provide
a manual mechanism for linking the cluster front-ends via
a tunnel (for example, VTUN [28]). Here, all VLAN
tagged Ethernet packets from one cluster are tunneled to
another over a TCP or UDP connection. Performance of
cross-cluster VM communication is likely to be dictated,
primarily, by the speed of the wide area link. However,
the performance impact of this tunnel can be substantial if
the link between clusters is sufficiently high performance.
More substantial performance evaluation study of this and
other cloud networking systems is being performed, but is
beyond the scope of this work.

Storage Controller (Walrus)

EUCALYPTUS includes Walrus, a data storage service
that leverages standard web services technologies (Axis2,
Mule) and is interface compatible with Amazon’s Simple
Storage Service (S3) [36]. Walrus implements the REST
(via HTTP), sometimes termed the “Query” interface, as
well as the SOAP interfaces that are compatible with S3.
Walrus provides two types of functionality.

• Users that have access to EUCALYPTUS can use Wal-
rus to stream data into/out of the cloud as well as
from instances that they have started on nodes.

• In addition, Walrus acts as a storage service for
VM images. Root filesystem as well as kernel and
ramdisk images used to instantiate VMs on nodes can
be uploaded to Walrus and accessed from nodes.

Users use standard S3 tools (either third party or those
provided by Amazon) to stream data into and out of Wal-
rus. The system shares user credentials with the Cloud
Controller’s canonical user database.

Like S3, Walrus supports concurrent and serial data
transfers. To aid scalability, Walrus does not provide lock-
ing for object writes. However, as is the case with S3,
users are guaranteed that a consistent copy of the object
will be saved if there are concurrent writes to the same
object. If a write to an object is encountered while there
is a previous write to the same object in progress, the pre-
vious write is invalidated. Walrus responds with the MD5
checksum of the object that was stored. Once a request
has been verified, the user has been authenticated as a
valid EUCALYPTUS user and checked against access con-
trol lists for the object that has been requested, writes and
reads are streamed over HTTP.

Walrus also acts as an VM image storage and manage-
ment service. VM root filesystem, kernel and ramdisk im-

4)#

!"#$%&!#'()#""*)&+*),-.*/&

!!"#

!!$#

%&'#(#!!'#

)*+#,,,#

,+#

Figure 4. Overview of Cloud Controller services.
Dark lines indicate the flow of user requests while light
lines correspond to inter-service system messages.

Figure 5. EUCALYPTUS includes Walrus, a S3 com-
patible storage management service for storing and ac-
cessing user data as well as images.

ages are packaged and uploaded using standard EC2 tools
provided by Amazon. These tools compress images, en-
crypt them using user credentials, and split them into mul-
tiple parts that are described in a image description file
(called the manifest in EC2 parlance). Walrus is entrusted
with the task of verifying and decrypting images that have
been uploaded by users. When a node controller (NC) re-
quests an image from Walrus before instantiating it on a
node, it sends an image download request that is authenti-
cated using an internal set of credentials. Then, images are
verified and decrypted, and finally transferred. As a per-
formance optimization, and because VM images are often
quite large, Walrus maintains a cache of images that have
already been decrypted. Cache invalidation is done when
an image manifest is overwritten, or periodically using a
simple least recently used scheme.

Walrus is designed to be modular such that the authen-
tication, streaming and back-end storage subsystems can
be customized by researchers to fit their needs.

Cloud Controller

The underlying virtualized resources that comprise a
EUCALYPTUS cloud are exposed and managed by, the
Cloud Controller (CLC). The CLC is a collection of web-
services which are best grouped by their roles into three
categories:

• Resource Services perform system-wide arbitration
of resource allocations, let users manipulate proper-
ties of the virtual machines and networks, and moni-
tor both system components and virtual resources.

• Data Services govern persistent user and system data
and provide for a configurable user environment for
formulating resource allocation request properties.

• Interface Services present user-visible interfaces,
handling authentication & protocol translation, and
expose system management tools providing.

The Resource services process user virtual machine
control requests and interact with the CCs to effect the
allocation and deallocation of physical resources. A sim-
ple representation of the system’s resource state (SRS) is
maintained through communication with the CCs (as in-
termediates for interrogating the state of the NCs) and
used in evaluating the realizability of user requests (vis
a vis service-level agreements, or SLAs). The role of the
SRS is executed in two stages: when user requests arrive,
the information in the SRS is relied upon to make an ad-
mission control decision with respect to a user-specified
service level expectation. VM creation, then, consists of
reservation of the resources in the SRS, downstream re-
quest for VM creation, followed by commitment of the
resources in the SRS on success, or rollback in case of
errors.

The SRS then tracks the state of resource allocations
and is the source of authority of changes to the proper-
ties of running reservations. SRS information is leveraged
by a production rule system allowing for the formulation
of an event-based SLA scheme. Application of an SLA is
triggered by a corresponding event (e.g., network property
changes, expiry of a timer) and can evaluate and modify
the request (e.g., reject the request if it is unsatisfiable)
or enact changes to the system state (e.g., time-limited al-
locations). While the system’s representation in the SRS
may not always reflect the actual resources, notably, the
likelihood and nature of the inaccuracies can be quanti-
fied and considered when formulating and applying SLAs.
Further, the admission control and the runtime SLA met-
rics work in conjunction to: ensure resources are not over-
committed and maintain a conservative view on resource
availability to mitigate possibility of (service- level) fail-
ures.

A concrete example from our implementation allows
users to control the cluster to be used for the VM al-
locations by specifying the ”zone” (as termed by Ama-

4)!

zon). Further, we have extended the notion of zone to
meta-zones which advertise abstract allocation policies.
For example, the “any” meta-zone will allocate the user-
specified number of VMs to the emptiest cluster, but, in
the face of resource shortages, overflow the allocation to
multiple clusters.

The middle tier of Data Services handle the creation,
modification, interrogation, and storage of stateful system
and user data. Users can query these services to discover
available resource information (images and clusters) and
manipulate abstract parameters (keypairs, security groups,
and network definitions) applicable to virtual machine and
network allocations. The Resource Services interact with
the Data Services to resolve references to user provided
parameters (e.g., keys associated with a VM instance to
be created). However, these services are not static config-
uration parameters. For example, a user is able to change,
what amounts to, firewall rules which affect the ingress of
traffic. The changes can be made offline and provided as
inputs to a resource allocation request, but, additionally,
they can be manipulated while the allocation is running.
As a result, the services which manage the networking and
security group data persistence must also act as agents of
change on behalf of a user request to modify the state of a
running collection of virtual machines and their support-
ing virtual network.

In addition to the programmatic interfaces (SOAP and
“Query”), the Interface tier also offers a Web interface for
cloud users and administrators. Using a Web browser,
users can sign up for cloud access, download the cryp-
tographic credentials needed for the programmatic inter-
face, and query the system, e.g., about available disk im-
ages. The administrators can, additionally, manage user
accounts, inspect the availability of system components.

Lastly, the collection of interface web services adver-
tises entry points for user requests using a variety of in-
terface specifications (e.g., EC2’s SOAP & “Query”, S3’s
SOAP & REST’) where single sign authentication is done
according to the best practices common among cloud ven-
dors. Users can make requests using either the EC2 SOAP
or EC2 “Query” protocols [4]. In particular this has al-
lowed the wide variety of tools which comply with the
EC2 and S3 interfaces to work without modification. The
key design goal achieved by the interface services is a
insulation of the internal communication data types by
mapping requests from these disparate protocols to an in-
dependent system-internal protocol. Consequently, inter-
nal services are unconcerned with details of the outward-
facing interfaces utilized by users while being able to
mimic the functionality, syntax, and structure of the in-
terface primitives preserving existing investment in tools
and code.

4 Conclusions

The EUCALYPTUS system is built to allow administra-
tors and researchers the ability to deploy an infrastructure

for user-controlled virtual machine creation and control
atop existing resources. Its hierarchical design targets re-
source commonly found within academic and laboratory
settings, including but not limited to small- and medium-
sized Linux clusters, workstation pools, and server farms.
We use a virtual networking solution that provides VM
isolation, high performance, and a view of the network
that is simple and flat. The system is highly modular,
with each module represented by a well-defined API, en-
abling researchers to replace components for experimen-
tation with new cloud-computing solutions. Finally, the
system exposes its feature set through a common user in-
terface currently defined by Amazon EC2 and S3. This
allows users who are familiar with EC2 and S3 to tran-
sition seamlessly to a EUCALYPTUS installation by, in
most cases, a simple addition of a command-line argument
or environment variable, instructing the client application
where to send its messages.

In sum, this work aims to illustrate the fact that the
EUCALYPTUS system has filled an important niche in
the cloud-computing design space by providing a system
that is easy to deploy atop existing resources, that lends
itself to experimentation by being modular and open-
source, and that provides powerful features out-of-the-box
through an interface compatible with Amazon EC2.

Presently, we and our users have successfully deployed
the complete system on resources ranging from a single
laptop (EC2 on a laptop) to small Linux clusters (48 to 64
nodes). The system is being used to experiment with HPC
and cloud computing by trying to combine cloud comput-
ing systems like EUCALYPTUS and EC2 with the Teragrid
(presented as a demo at SuperComputing’08 as part of the
VGrADS [39] project), as a platform to compare cloud
computing systems’ performance, and by many users who
are interested in experimenting with a cloud computing
system on their own resources.

In addition, we have made a EUCALYPTUS installation
available to all who wish to try out the system without
installing any software [13]. Our experience so far has
been extremely positive, leading us to the conclusion that
EUCALYPTUS is helping to provide the research commu-
nity with a much needed, open-source software frame-
work around which a user-base of cloud-computing re-
searchers can be developed.

References

[1] 3Tera home page. http://www.3tera.com/.
[2] K. Adams and O. Agesen. A comparison of software and

hardware techniques for x86 virtualization. In ASPLOS-
XII: Proceedings of the 12th international conference on
Architectural support for programming languages and op-
erating systems, pages 2–13, New York, NY, USA, 2006.
ACM.

[3] Advanced Micro Devices, AMD Inc. AMD Virtualization
Codenamed “Pacifica” Technology, Secure Virtual Ma-
chine Architecture Reference Manual. May 2005.

4(%

[4] Amazon Web Services home page. http://aws.
amazon.com/.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In SOSP ’03: Proceedings of the
nineteenth ACM symposium on Operating systems princi-
ples, pages 164–177, New York, NY, USA, 2003. ACM.

[6] F. Bellard. QEMU, a Fast and Portable Dynamic Transla-
tor. Proceedings of the USENIX Annual Technical Confer-
ence, FREENIX Track, pages 41–46, 2005.

[7] F. Berman, G. Fox, and T. Hey. Grid Computing: Making
the Global Infrastructure a Reality. Wiley and Sons, 2003.

[8] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wal-
lach, M. Burrows, T. Chandra, A. Fikes, and R. Gruber.
Bigtable: A Distributed Storage System for Structured
Data. Proceedings of 7th Symposium on Operating System
Design and Implementation(OSDI), page 205218, 2006.

[9] J. Chase, D. Irwin, L. Grit, J. Moore, and S. Sprenkle. Dy-
namic virtual clusters in a grid site manager. High Per-
formance Distributed Computing, 2003. Proceedings. 12th
IEEE International Symposium on, pages 90–100, 2003.

[10] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. Proceedings of 6th Sym-
posium on Operating System Design and Implementa-
tion(OSDI), pages 137–150, 2004.

[11] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: amazon’s highly available key-
value store. Proceedings of twenty-first ACM SIGOPS
symposium on Operating systems principles, pages 205–
220, 2007.

[12] Enomalism elastic computing infrastructure. http://
www.enomaly.com.

[13] Eucalyptus Public Cloud (EPC). http:
//eucalyptus.cs.ucsb.edu/wiki/
EucalyptusPublicCloud/.

[14] I. Foster and C. Kesselman. Globus: A metacomputing
infrastructure toolkit. International Journal of Supercom-
puter Applications, 1997.

[15] I. Foster and C. Kesselman, editors. The Grid – Blueprint
for a New Computing Infrastructure. Morgan Kaufmann,
1998.

[16] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The phys-
iology of the grid: An open grid services architecture for
distributed systems integration, 2002.

[17] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of
the grid: Enabling scalable virtual organizations. Int. J.
High Perform. Comput. Appl., 15(3):200–222, 2001.

[18] D. Gannon. Programming the grid: Distributed software
components, 2002.

[19] Google – http://www.google.com/.
[20] D. Greschler and T. Mangan. Networking lessons in deliv-

ering ‘software as a service’: part i. Int. J. Netw. Manag.,
12(5):317–321, 2002.

[21] D. Greschler and T. Mangan. Networking lessons in deliv-
ering ’software as a service’: part ii. Int. J. Netw. Manag.,
12(6):339–345, 2002.

[22] R. Hiremane. Intel Virtualization Technology for Directed
I/O (Intel VT-d). Technology@Intel Magazine, 4(10), May
2007.

[23] W. Huang, M. Koop, Q. Gao, and D. Panda. Virtual ma-
chine aware communication libraries for high performance
computing. In Proceedings of Supercomputing 2007.

[24] W. Huang, J. Liu, B. Abali, and D. K. Panda. A case for
high performance computing with virtual machines. In ICS
’06: Proceedings of the 20th annual international confer-
ence on Supercomputing, pages 125–134, New York, NY,
USA, 2006. ACM.

[25] Hyper-v home page – http://www.microsoft.
com/hyperv.

[26] Intel. Enhanced Virtualization on Intel Architecture-based
Servers. Intel Solutions White Paper, March 2005.

[27] K. Keahey, I. Foster, T. Freeman, and X. Zhang. Virtual
workspaces: Achieving quality of service and quality of
life in the grid. Sci. Program., 13(4):265–275, 2005.

[28] M. Krasnyansky. VTun-Virtual Tunnels over TCP/IP net-
works, 2003.

[29] P. Laplante, J. Zhang, and J. Voas. What’s in a name?
distinguishing between saas and soa. IT Professional,
10(3):46–50, May-June 2008.

[30] M. McNett, D. Gupta, A. Vahdat, and G. M. Voelker.
Usher: An Extensible Framework for Managing Clusters
of Virtual Machines. In Proceedings of the 21st Large
Installation System Administration Conference (LISA),
November 2007.

[31] A. Menon, A. Cox, and W. Zwaenepoel. Optimizing Net-
work Virtualization in Xen. Proc. USENIX Annual Tech-
nical Conference (USENIX 2006), pages 15–28, 2006.

[32] M. F. Mergen, V. Uhlig, O. Krieger, and J. Xenidis. Virtu-
alization for high-performance computing. SIGOPS Oper.
Syst. Rev., 40(2):8–11, 2006.

[33] NSF TeraGrid Project. http://www.teragrid.
org/.

[34] J. P. Ostriker and M. L. Norman. Cosmology of the early
universe viewed through the new infrastructure. Commun.
ACM, 40(11):84–94, 1997.

[35] oVirt home page. http://ovirt.org/.
[36] Amazon simple storage service api (2006-03-01) –

http://docs.amazonwebservices.com/
AmazonS3/2006-03-01/.

[37] Salesforce Customer Relationships Management (CRM)
system. http://www.salesforce.com/.

[38] T. Tannenbaum and M. Litzkow. The condor distributed
processing system. Dr. Dobbs Journal, February 1995.

[39] Virtual Grid Application Development Software project.
http://vgrads.rice.edu/.

[40] Vmware home page – http://www.vmware.com.
[41] L. Youseff, K. Seymour, H. You, J. Dongarra, and R. Wol-

ski. The impact of paravirtualized memory hierarchy on
linear algebra computational kernels and software. In
HPDC, pages 141–152. ACM, 2008.

4(4

