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Abstract—Erasure codes are an integral part of many dis-
tributed storage systems aimed at Big Data, since they provide
high fault-tolerance for low overheads. However, traditional
erasure codes are inefficient on replenishing lost data (vital
for long term resilience) and on reading stored data in
degraded environments (when nodes might be unavailable).
Consequently, novel codes optimized to cope with distributed
storage system nuances are vigorously being researched.

In this paper, we take an engineering alternative, exploring
the use of simple and mature techniques – juxtaposing a
standard erasure code with RAID-4 like parity to realize cross
object redundancy (CORE), and integrate it with HDFS. We
benchmark the implementation in a proprietary cluster and
in EC2. Our experiments show that for an extra 20% storage
overhead (compared to traditional erasure codes) CORE yields
up to 58% saving in bandwidth and is up to 76% faster while
recovering a single failed node. The gains are respectively 16%
and 64% for double node failures.

I. INTRODUCTION

In order to meet the conflicting needs of high fault-
tolerance and low storage overhead, erasure codes are in-
creasingly being embraced for distributed storage systems
aimed to store high volumes of data. Traditional erasure
codes have mostly been designed to optimize the perfor-
mance of communication-centric applications, and are not
necessarily amenable to the needs of storage systems. Some
such desirable properties include efficient replenishment
of lost redundancy (repair) following the failure of some
system components; and efficient access of data while the
system is yet to complete remedial actions following such
failures (degraded reads/access). To that end, there has
been tremendous interest in both coding theory and storage
systems research communities to build new erasure codes
with good repairability properties, as well as building robust
storage systems leveraging on the novel codes (for instance,
Windows Azure Storage using Local Reconstruction Codes).
In this paper we explore an alternate design, looking at an in-
stance of product codes [1]. A traditional erasure code is first
applied on individual data objects, followed by the creation
of RAID-4 like parity over erasure encoded pieces of differ-
ent objects, creating cross-object redundancy. This results in
high fault tolerance (provided by the traditional code) and
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cheap repairs (provided by the parity code). The approach is
simple, and based on mature techniques that have long been
used as stand-alone approaches (these are desirable for prac-
tical and implementation considerations), yet it achieves very
good (less communication and computation) repairability
and degraded data access under many fault-conditions. We
accordingly build the CORE storage primitive as a general
purpose, block level, fault-tolerant, data storage layer that
can be readily integrated into distributed file systems relying
on an underlying block level storage, providing significant
performance boost. We integrate CORE into Hadoop Dis-
tributed File System (HDFS), and benchmark it over a wide
range of system configurations, comparing it with state-of-
the-art alternatives [2], [3] to demonstrate its efficacy. CORE
builds upon our recent theoretical study [4] where we made
a simple observation - by introducing a RAID-4 like parity
over a small set of erasure encoded pieces, it is possible to
achieve significant reduction in the expected cost to repair
lost redundancy. Moreover, since these extra parities are
relatively-small, the fault tolerance of the resulting system
is only marginally lower than what is achieved with optimal
(maximum distance separable, or MDS) codes –i.e. Reed-
Solomon codes. This suboptimal fault-tolerance is expected
from any code aiming to reduce the costs of repairs. Gopalan
et al. studies the involved trade-offs [5] .

In Figure 1 we show an example to elaborate the basic
idea on which CORE is built. Consider three objects (a,
b, c), each comprising of 6 blocks. Each of these objects
are first individually encoded using a (9,6) Reed-Solomon
code. Note that each row represents an object along with its
three parity blocks (depicted in gray). Additionally, a simple
parity check (i.e. an XOR) is computed over each column’s
blocks and thereby a new row is added at the bottom of the
matrix. In this example, this extra row increases the storage
overhead by 33%. In the general case, the overhead is 1/t
more than MDS codes, where t is the number of objects
cross-coded together. As shown in our technical report [6],
CORE’s parameters can be adjusted to operate at reasonable
overheads, even while achieving very good fault-tolerance
as well as repairability. In particular, for equivalent storage
overhead, CORE’s performance benefit is significantly better
than the state-of-the-art Locally Reconstruction Codes used
in Azure [3], while, CORE achieves fault-tolerance (ignoring
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Figure 1: An example illustrating the basic idea of CORE

repairs) comparable to optimal MDS erasure codes for an
acceptable 20% more storage overhead.

The main advantage that the vertical parities introduce in
CORE is the increased efficiency of repairs. Fewer blocks
are needed to carry out a repair. Furthermore, repair related
computation is cheap (a simple XOR operation, compared
to the expensive RS decoding procedure). In the example of
Figure 1, repairing any single failure would require XORing
3 blocks. Apart from the repairability benefits, CORE’s
vertical parities also improve fault tolerance. For instance, in
Figure 1, an object (i.e. a row) with more than three failures
can be still recovered with the help of vertical parities.
This improvement is however, not optimal in terms of the
additional storage overhead, as the primary purpose of the
vertical parities is to enhance the repairability aspect. The
low repair cost in CORE also naturally translates into better
degraded reads.

The main contributions of this work are as follows:

• Design and implementation of a general purpose, (effi-
ciently) repairable block level storage primitive CORE,
and its integration with a popular distributed file sys-
tem, HDFS (our implementation is available at [7]).

• In the process, we identify a few ways to optimize the
existing HDFS-RAID [2] implementation, on which we
build CORE.

• We design novel algorithms to understand the failure
patterns and adaptively exploit the better repair flex-
ibility afforded by CORE’s code design, in order to
achieve fast and cheap repairs.

To repair single failures, CORE consumes 50% less band-
width and is between 43% to 76% faster compared the
classic erasure code. In case of double failures and in the
worst case scenario –when both failed blocks belong to the
same file– it consumes 16% less bandwidth and is 13% to
59% faster. We thus hope that CORE’s design and analysis is
not only academically interesting, but the performance boost
it achieves despite a very simple design makes it a serious
candidate for wide-scale adoption. We have also carried out
analytical study of many more complex failure patterns, but
we exclude the theoretical results due to space constraint,
and they can be found in an extended version [6].

II. RELATED WORK

Erasure codes have long been explored as a storage effi-
cient alternative to replication for achieving fault-tolerance
[8] in the peer-to-peer (P2P) systems literature, and have led
to numerous prototypes, e.g., OceanStore [9] and TotalRecall
[10] to name a few. In recent years erasure codes have gained
traction [11] even in main-stream storage technologies such
as RAID [12]. The ideas from RAID systems are in turn
permeating to Cloud settings [13], [14], and erasure codes
have become an integral part of many proprietary file sys-
tems used in data-centers [15], [16], as well as open-source
variants [2].

With the proliferation of erasure codes in storage-centric
applications, there has been a corresponding rise in the ex-
ploration of novel erasure codes which cater to the nuances
of distributed storage systems. Specific aspects that have
been investigated in designing such new coding techniques
include: (i) efficient degraded data access [3], [17], (ii) good
repairability [18], [19] by either combining standard codes
[4], [20], [21], applying network coding techniques [19],
[22], [23], or designing completely new codes with lower
repair fan-in [24]–[27], and (iii) fast creation of erasure
coded redundancy [28], [29].

Despite the plethora of works investigating novel era-
sure codes, most existing distributed file systems using
erasure codes do so by adapting traditional erasure codes.
Microsoft’s Windows Azure Storage [15] is a prominent
exception which uses an optimized version of Pyramid
codes [17] called Local Reconstruction Code (LRC) [3].
Some recent academic prototypes - NCFS [30] and [31]1

likewise explore the feasibility of applying network coding
techniques for repairing lost data. The latter systems do
not address the issue of degraded reads. In contrast to
these systems based on proprietary and novel erasure coding
techniques with significant system design complexity, CORE
combines two mature techniques (standard erasure codes and
RAID-4 like parity) while achieving very good repairability
and degraded read performance. This makes CORE suitable
for ready integration with many block based storage/file
systems, and its simple design makes it amenable to third
party reimplementations.

III. BACKGROUND

We next provide some background on what erasure codes
are and how they are used in distributed storage systems,
followed by a discussion on local repairability which has
come to the fore in the design of novel storage-centric
erasure codes. Finally, we discuss the code used in Azure
system, which, to the best of our knowledge, was the first
deployment of repairable codes in a large-scale commercial
cloud storage system.

1Coincidentally, [31] uses the same name, CORE, for collaborative
regeneration.
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A. Classic Erasure Codes
Traditionally, large data objects have been stored by

splitting them into blocks of (say) size q bits, which are
then replicated across multiple storage nodes. In contrast,
an (n, k) erasure code takes k different data blocks of size
q, and computes m = n − k parity blocks of the same
size, each to be stored in a different storage node. Then,
in the event of disk failures, the k original blocks can be
reconstructed by collecting and decoding a subset of k′ ≥ k
blocks out of the total n stored blocks.

Consider that the vector o = (o1, . . . , ok) denotes a data
object composed of k blocks of q bits each. That is, each
block oi is a string of q bits. The encoding operations are
performed using finite field arithmetic where the two bits
{0, 1} form a finite field F2 of two elements, while oi
likewise belongs to the binary extension field F2q containing
2q elements. Then, the encoding of the object o is a
linear transformation defined by a k × n generator matrix
G such that we can obtain an n-dimensional codeword
c = (c1, . . . , cn) of size n × q bits by applying the linear
transformation c = o · G. A code with such a generator
matrix G is usually referred to as an (n, k)-code. When the
generator matrix G has the form G = [Ik, G′] where Ik is
the identity matrix and G′ is a k ×m matrix (m = n− k),
the codeword c becomes c = [o,p] where o is the original
object, and p is a parity vector containing m × q parity
bits. The code is then said to be systematic, in which case
the k parts of the original object remain unaltered after the
coding process. We want to note that the main advantage of
systematic codes is that the original data o can be accessed
without requiring a decoding process, by just reading the
systematic blocks of c.

The above encoding process stretches the original data by
a factor of n/k (ratio known as the stretch factor), occupying
n/k times more storage space than the size of the original
object. By choosing a suitable code with a stretch factor
satisfying n/k < r, significant storage space savings can be
achieved in comparison to a system using r replicas. Finally,
an optimal erasure code in terms of the trade-off between
storage overhead and fault tolerance is called a maximum
distance separable (MDS) code, and has the property that
the original object o can be reconstructed from any k out of
the total n = k+m stored blocks (i.e., k′ = k), tolerating the
loss of any arbitrary m = n− k blocks. The fault-tolerance
of MDS erasure codes has been previously analyzed and
compared with replication [8], [10], providing guidelines to
choose suitable code parameters n and k for a desired level
of resilience under an expected level of failures of individual
storage nodes.

B. Locally Repairable Codes
A critical drawback of MDS codes is their high re-

construction cost. Repairing/reading a single failed block
requires to download an amount of information equivalent to

the size of the whole data object o, which is k times larger
than the amount of data being repaired/read.

Since repairs and degraded reads are frequent in storage
systems, several recent works [3], [17], [24]–[26] have
looked at reducing the number of blocks needed to carry
out the repair/reconstruction of an inaccessible block (which
is needed for both repair and access). Such a property is
achieved by introducing ‘local dependencies’ among en-
coded blocks, and can be called repair locality.

Local repairability is achieved when a block ci can be
expressed as a linear combination of d (d < k) other blocks,
ci = α1c′1 + α2c′2 + · · · + αdc′d, where c′j ∈ c s.t. c′j ̸= ci,
and αj ∈ F2q for all j = 1, . . . d. This local repairability
property allows to reduce the number of blocks accessed
and transferred during degraded reads or repairs from k to d,
where d can be as small as d = 2 [24], [25]. Unfortunately,
achieving such code locality leads to poorer fault-tolerance
for a given storage overhead in comparison to MDS codes
[5]. Hence, the design of such codes poses a trade-off
between three important desirable system properties: (i) high
fault-tolerance, (ii) low storage overhead, and (iii) efficient
repairs and degraded reads. For example, Pyramid codes [17]
(the code behind Azure) were not originally conceived
for efficient repairs per se, but to provide degraded read
capabilities. In this case the code cannot obtain efficient
repairs for all encoded blocks.

IV. CROSS-OBJECT REDUNDANCY

We next explore how product codes [1] can achieve good
repairability without compromising either the degraded read
performance or the fault-tolerance of the code. Specifically,
by combining a long and a short linear erasure code, we
realize a product code with high fault tolerance (mainly
provided by the long code) and high repair locality (provided
by the short code). This is achieved by encoding multiple
already-encoded objects together (or cross-object encoding),
thus reusing existing encoding/decoding/repair mechanisms
already deployed in a distributed storage system, facilitating
an organic integration of the approach.

Example 1: Suppose that we have two different data
objects o1 = (o11, o12, o13) and o2 = (o21, o22, o23) to be
encoded with a (5,3) systematic MDS erasure code (with a
generator matrix Go). Then, we obtain the codewords:

c1 = o1 ·Go = (o11, o12, o13, p11, p12),

c2 = o2 ·Go = (o21, o22, o23, p21, p22).

By grouping symbols from c1 and c2 in a per-column
basis, we obtain the set of vectors

P = {(o11, o21), (o12, o22), (o13, o23), (p11, p21), (p12, p22)}.

We encode then each vector xi ∈ P (cross-object encoding)
with a (3,2) systematic code (a simple parity check code,
or SPC), with generator matrix Gg = [I2,12]), where I2 is
the identity matrix, and 12 is a vector with two ones. For
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Figure 2: Example of a simple product code. The blue parity blocks
are generated using a horizontal (5,3) MDS code whereas the red
block is a simple parity check of the column (or a (3,2) code).

each xi ∈ P we obtain pg,i = xi · Gg = [xi,pg,i], where
pg,i = (

∑
xi). The vector with all the cross-object parity

blocks, pg = (pg,1, . . . ,pg,5), contains:
pg = (o11+o21, o12+o22, o13+o23, p11+p21, p12+p22).

In Fig. 2 we depict this two-phase encoding process. Note
that pg can be viewed as the Reed Solomon encoding of
the respective parities of the systematic symbols. We refer
to a code with a generator matrix G that takes a composed
data object o = (o1,o2) and encodes it to a codeword c =
o · G = [c1, c2,pg], as the product code of Gg and Go. It
is easy to see how this example product code repairs any
single missing block by using the outer erasure code Gg,
e.g., we can repair o1,1 using o1,1 = o2,1+pg,1. In addition,
in case of more than one failure per “column”, the code still
has the opportunity to repair up to two failures per codeword
ci, and up to two failures within the extra parity vector pg .
Definition of CORE’s Product Code: Let Gc and Go

respectively be the generator matrices of an (nc, kc) and
an (no, ko) code. Then, the product code of Gc and Go

is a (ncno, kcko) linear code with generator matrix G =
Gc ⊗ Go, where the operator ⊗ represents the Kronecker
product. In the case of the product code used in CORE,
we will consider that the single parity check (SPC) with
generator matrix Gc = [It,1t], i.e., a (t + 1, t) MDS
erasure code over F2q is the vertical code. For an input
o = (o1, . . . , ot), oi ∈ Fq , this code generates a systematic
codeword c = (c1, . . . , ct+1) = (o1, . . . , ot, ct+1), where
ct+1 =

∑t
i=1 oi. Since F2q is a binary extension field the

last symbol in the codeword corresponds to the exclusive-or
(XOR) of the t original symbols. It can repair any single
erasure in the codeword by xoring the remaining t symbols.
The inner (horizontal) code Go used in CORE is a MDS
(n, k) erasure code. For the sake of simplicity, we will
consider that it is a (n, k) Reed-Solomon code with generator
matrix Go = [Ik, H], where H is a k × m Vandermonde
matrix (recall that m = n− k),

H =

⎛

⎜⎝
α0
1 . . . αm−1

1
...

. . .
...

α0
k . . . αm−1

k

⎞

⎟⎠ ,

for any αi ∈ F2q . Then, the CORE’s product code is a
linear code that cross-encodes t different data objects using
a generator matrix G = Gc ⊗ Go. We will refer to such a
code as a (n, k, t) CORE product code.

Lastly, it is worth noting that by varying the value of
t, CORE allows for tuning the trade-off between good
repairability (small t) and good storage overhead (large t).
In our analytical study [6] as well as in our experiments we
have chosen t ≈ k/2, in order to strike a balance between
the two criteria.

V. CORE’S ALGORITHMIC ASPECTS

One of the new aspects of CORE is its higher level of
granularity, i.e., instead of working with individual indepen-
dent objects, it works with a matrix of t objects. This higher
granularity provides new opportunities (e.g., in a CORE
scheme of (n, k, t) it is possible to repair an object that has
more than n−k failed blocks) and also poses new challenges
(e.g., given a pattern of failures, is it possible to recover –
i.e. repair all the failed blocks – the CORE matrix? or what
is the best schedule for repairing a set of failures?).

In this section we look at these algorithmic problems and
provide solutions for them. We adopt a divide-and-conquer
approach to tackle these issues. Specifically, given a matrix
representing the available and failed nodes (subsequently
called the CORE matrix), we first split the failures into
independent clusters (defined below). Other algorithms, i.e.,
recoverability-checking and repair scheduling, can be per-
formed within each cluster. We discuss these next.

A. Identifying Independent Clusters

We define disjoint subsets of failed nodes that can be
handled without interference as independent clusters.2 Es-
sentially, two different clusters must not share any common
row or column containing failed nodes. Two important
benefits of such clusters are (i) they allow parallel repairs,
(ii) they may allow partial recovery when the full CORE
matrix in not recoverable.

A naive way to create the clusters is as follows. Initially,
each single failure is considered a cluster. Two clusters are
then merged if there exists at least one common row or
column on which both clusters have a failure. The process
is continued until there are no mergeable clusters left. The
number of clusters in a CORE matrix is between 0 and
t (number of rows). To investigate the distribution of the
number of clusters based on the number of failures, we
ran our clustering algorithm on 10M randomly-generated
CORE matrices for code parameters (14,12,5) and varied
the number of random failures from 1 to 20. The results,
depicted in Figure 3, show that after an initial increase, the

2In other parts of this paper, we also use the term computer/node cluster
in the common sense of the word, which should not be confused with the
failure clusters in the CORE matrix
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Figure 3: The average number of clusters versus the number of
failures for CORE’s code parameters (14,12,5)

number of clusters begins to drop for failure numbers greater
than 6.

B. Recoverability-Checking Algorithm
For coding schemes that work at the level of single

objects, given the number of failures, one can directly infer
whether an object is recoverable or not. In the case of
CORE, however, this is more subtle. For instance, objects
may still be recoverable even if there are more than n − k
failed blocks within a single CORE row. We first identify
two bounds and then introduce an algorithm to determine
an object’s recoverability.

The (Ir)Recoverability Bounds. For a (n, k, t) code:
• the lower bound of irrecoverability, L, is:

2× (n− k + 1)

It occurs if two3 rows are minimally irrecoverable (each has
n− k+ 1 failures) and the column indexes of their failures
are identical (i.e., no vertical repair possible).
• the upper bound of recoverability, U , is:

t× (n− k) + (2k − n)× 1

This occurs when all rows are maximally recoverable (each
has n−k failures) and have identical failure column indexes
(i.e., the remaining k− (n− k) = 2k−n columns can each
tolerate a single failure).

These two bounds define an interval. For any failure
number outside of this interval, the ir/recoverability can
be immediately decided. More precisely, if the number of
failures is smaller than L then the pattern is recoverable
– although, as we will see later, this is a very pessimistic
bound – likewise, if the number is greater than U , then it is
certainly not recoverable.

For all the values within the above interval (inclusive),
the outcome depends on the distribution of the failures.
We propose a recursive algorithm which is able to decide
whether a given CORE matrix with a specific failure pattern
is recoverable or not. At each step of the algorithm, all
the repaired and repairable rows/columns are removed and
the algorithm restarts with the reduced matrix as the new

3Any single-row failure pattern is always recoverable.
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Figure 4: The recoverability likelihood of the scheme (14,12,5)
based on the number of failures.

input. If it results in an empty matrix, then the patterns is
recoverable, otherwise it is not.

We implemented this algorithm and used it to carry out an
analysis on the recoverability likelihood of different patterns.
Figure 4, obtained from 10M random runs, shows the recov-
erability likelihood of the CORE matrix of size (14,12,5) for
failure numbers between the lower bound of irrecoverability
(L = 6) and the upper bound of recoverability (U = 20).
It clearly illustrates the fact that CORE’s lower bound of
irrecoverability is too strict.

For a detailed and more rigorous study of fault-tolerance
and recoverability, we refer the reader to our technical
report [6].

C. Repair Scheduling Algorithms
Many different repair schedules may exist for a given fault

pattern. Here, we first investigate two straw man approaches,
namely column-first and row-first, then propose an algorithm
called Recursively Generated Schedule (RGS). Analytical
and experimental studies show that RGS outperforms the
baseline approaches.

The column-first algorithm always gives higher priority
to vertical repairs and applies horizontal repair when
no further vertical repairs are possible. The row-first
analogously prefers horizontal repairs. In both algorithms,
while doing horizontal repairs, always the best candidate
(the one with maximum number of failures but still
repairable) is prioritized over the other ones.

Recursively Generated Schedule (RGS) algorithm:. This
algorithm first identifies the critical set of failures (failures
that decrease the minimum number of required vertical
or horizontal repairs) and repairs them first, along the
call chain of a recursive cost function c. All other repairs
(non-critical ones) are then scheduled using c′, a simple,
non-recursive cost function.

In order to identify the critical failures, we define two
variables, v and h, as follows:

v =
t∑

i=1

minV (Rowi) ; h =
k∑

j=1

minH(Colj)

in which, minV (Rowi) returns the minimum number of
vertical repairs required by row Rowi, and minH(Colj)
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returns the minimum number of horizontal repairs required
by column Colj , more precisely:

minV (Rowi) =

{
0 if |X| ≤ (n − k)
|X| − (n − k) otherwise

minH(Colj) =

{
0 if |X| ≤ 1
|X| − 1 otherwise

The most important element of RGS is the recursive cost
function c(h, v) defined as:

c(h, v) =

⎧
⎪⎪⎨

⎪⎪⎩

c(h, dec(v)) + t if v > 0

c(dec(h), v) + k if v = 0
or dec(v) is not applicable

in which dec(v) and dec(h) reflect the decreases in the
values of v and h after a single repair is performed.

The cost function c decreases the values of first v and
then h by at least one unit at each recursion step until we
reach c(0, 0), which is the base case4. The notable property
of the base case is that any remaining repair can be done
either vertically or horizontally. In other words, there is at
most one failure per column, and at most n− k failures per
row. Therefore, all remaining repair decisions can be safely
made using the static cost function c′ defined below:

c′(r) =

{
k if repaired horizontally
r × t if repaired vertically

in which r denotes the number of remaining repairs for a
given row.

To demonstrate the differences between the repair sched-
ules generated by the above three algorithms, we use
two failure pattern examples in the CORE matrix of size
(14,12,5): a 3-failure step-shaped pattern and a 5-failure
plus-shaped one. These examples are shown in Table I.

⎛

⎜⎜⎜⎜⎜⎝

. . . 0 0 . . .

. . . 0 0 . . .

. . . X 0 . . .

. . . X X . . .

. . . 0 0 . . .

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

. . . 0 0 0 . . .

. . . 0 X 0 . . .

. . . X X X . . .

. . . 0 X 0 . . .

. . . 0 0 0 . . .

⎞

⎟⎟⎟⎟⎟⎠

Table I: The step-shaped and the plus-shaped failure pattern exam-
ples representing two classes of failure patterns.

It should be noted that since swapping any two rows or any
two columns in the CORE matrix results in an equivalent
failure matrix, each of these patterns represents a class of
failure patterns and not singular instances. Table II presents
the schedules generated by each algorithm for each failure
pattern along with its calculated cost in terms of repair
traffic. The corresponding experimental results are reported
in Section VII.

Finally, we generalized our analytical study of the above
three algorithms to include failure patterns of size 1 to
20. The results for 10,000 randomly-generated recoverable
failure patterns are depicted in Figure 5. Four conclusions

4If the failure pattern is recoverable, the base case will always be reached.

Row-First Column-First RGS

St
ep Schedule R3, R2 C1, R2, C0 c(1, 0)

R3→ c(0, 0) → C1

Cost 2k = 24 2t + k = 22 k + t = 17

Pl
us Schedule R1, R3, C0, R2 C0, C2, R1, R2, C1

c(2, 1)
C0→ c(2, 0)

R2→
c(1, 0)

R1→ c(0, 0)→C1

Cost 3k + t = 41 3t + 2k = 39 2t + 2k = 34

Table II: The analytical cost (number of blocks read ) of repairing
the Step and Plus failure patterns using Row-First, Column-First,
and RGS algorithms where k = 12 and t = 5.
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Figure 5: Comparing the Column-First, Row-First, and RGS algo-
rithms w.r.t number of blocks required to carry out the repair on
the scheme (14,12,5).

can be drawn from this figure: (i) RGS and column-first
perform better than row-first and this is especially noticeable
when the number of failures is very small (which is, in
essence, the MDS code vs. CORE comparison); (ii) as the
number of failures and consequently the number of choices
to make increases, the benefits of RGS over column-first
become more pronounced; (iii) for the large failure num-
bers, distinct schedule possibilities are limited, and all the
algorithms perform similarly; and finally (iv) a more general
conclusion is that if one wishes to avoid the relatively
complex scheduling algorithms, then the naive column-first
approach nevertheless delivers significant benefits w.r.to the
row-first (which is roughly like for MDS codes), highlighting
the immediate benefits of CORE’s product code.

VI. IMPLEMENTATION

To implement the CORE primitive, we used HDFS-
RAID [2], an open-source module inspired by DiskRe-
duce [14], and developed at Facebook. It wraps around
Apache Hadoop’s distributed file system (HDFS) and pro-
vides HDFS with basic erasure coding capabilities (encoding
and decoding). Below, we first introduce HDFS-RAID, then
explain two optimizations that we did on HDFS-RAID to
improve its performance, and finally give an overview of
our implementation of CORE.

A. HDFS-RAID

HDFS-RAID embeds the Apache HDFS inside an erasure
code-supporting wrapper file system named Distributed Raid
File System (DRFS). DRFS supports both Reed-Solomon
coding as well as simple XOR parity files. These two coding
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alternatives are orthogonal and used separately based on user
preference. Furthermore, both provide two basic features:
encoding (a.k.a RAIDing) data blocks and repairing the
corrupt/missing blocks.

The two main components of HDFS-RAID are RaidNode
and BlockFixer. RaidNode is a daemon responsible for the
creation (only once, following the initial file write) and
maintenance (re-creating periodically or on demand the
corrupt/missing parities and purging “orphan” ones) of parity
files for all data files. Since the default block policy of
HDFS is not aware of the dependency relation between
the data and parity blocks of a given file, HDFS-RAID
manages the placement of parity blocks to avoid co-location
of data blocks and parity blocks. The BlockFixer component
reconstructs missing or corrupt blocks by retrieving the
necessary blocks, encoding/decoding them, and sending the
reconstructed blocks to new hosts.

B. HDFS-RAID Optimizations
In our experiments with HDFS-RAID, we noticed two

common performance inefficiencies, and optimized them:

Opt1: The HDFS-RAID implementation uses the
generator polynomial (and not the more well-known
generator matrix [32]) representation of Reed-Solomon
codes. In this representation, typically and as is in the
HDFS-RAID implementation, always all the remaining
blocks of a given row (which can be more than k) are
fetched and used to repair the missing ones. Generally,
this use of extra blocks results in faster decoding, since
there will be fewer equations to solve. However, for cases
in which network is a bottleneck, this trade-off (fetching
extra blocks versus faster decoding) does not pay off. Our
optimized version retrieves exactly k blocks and “pretends”
that all other n − k blocks are missing. As confirmed by
our experimental results, the bandwidth-scarce clusters can
greatly benefit from this optimization.

Opt2: The HDFS-RAID implementation implicitly as-
sumes that there is only a single failure per row (stripe). In
case there are more failures, they are discovered only when
the read access attempts fail. These newly-detected failed
blocks are then added to the list of failed blocks, and the
repair process starts again. Our optimized implementation
checks for multiple failures beforehand, and repairs them
simultaneously, amortizing the repair costs.

C. CORE Implementation
The CORE storage primitive has been organically inte-

grated with HDFS-RAID by extending its two main func-
tionalities as described below.

RAIDing: The CORE implementation allows vertical
coding across files in a given directory. The cross-object size
parameter (t) can be configured similar to the row (stripe)

size parameter of HDFS-RAID. The vertical encoding is
reused in the full matrix RAIDing (first row-by-row, then
column-by-column, for both data and parity blocks).

Repair: An additional vertical repair option is intro-
duced. The 2-dimensional repair feature implements all the
algorithms discussed in Section V: (i) failure detection
and failure matrix population, (ii) failure clustering, (iii)
recoverability-checking, and (iv) repair scheduling.

The correctness of our implementation was verified
through multiple test cases in which the MD5 hash values of
the repaired files were compared against those of the original
files. Moreover, since all changes have been made within
the RAID subdirectory of the HDFS’s code, replacing the
corresponding Java library is sufficient to upgrade HDFS-
RAID to CORE. The source codes, binary distribution,
and documentations of our implementation are available at
http://sands.sce.ntu.edu.sg/StorageCORE.

VII. EXPERIMENTS

We benchmarked the implementation with experiments
run on two different HDFS clusters of 20 nodes each:
• Network-Critical cluster: A university cluster which has
one powerful PC (4×3.2GHz Xeon Processors with 4GB of
RAM) hosting the NameNode/RaidNode and 19 HP t5745
ThinClients acting as DataNodes. The average bandwidth of
this cluster is 12MB/s.
• Computation-Critical cluster: An Amazon EC2 cluster
of 20 homogeneous nodes of type m1.small (approximately,
1.2 GHz 2007 Xeon Processor with 1.8GB of RAM). In this
cluster one node is hosting the NameNode/RaidNode and
the rest are used as DataNodes. The maximum bandwidth
between EC2 m1.small instances is 250MB/s.

The block size (q) used was 64MB. Files were added to
HDFS and encoded horizontally first, and then the vertical
parity was computed.

We ran two sets of experiments, one set to compare
the performance of CORE with that of HDFS-RAID, and
another set to study the repair scheduling algorithms. In both
sets, we primarily use the completion time of the repair
process as the main comparison measure. However, we also
measured the amount of transferred data in each experi-
ment (as repair traffic). The data transfer numbers serve two
purposes: (i) to verify the correctness of our implementation
–they must match the analytical numbers– and (ii) to use as
a reference point in analyzing the completion time numbers
– since the amount of transferred data is independent of the
type of cluster used.

Finally, in all experiments the reported numbers are the
average of 10 runs. Since the variations were small (up to
few percents), they are omitted from the graphs.

A. CORE vs. HDFS-RAID
In these experiments, we compared three methods

(namely, HDFS-RAID, HDFS-RAID-Optimized and CORE)
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Figure 6: Comparing the repair performance of HDFS-RAID,
HDFS-RAID-Optimized, and CORE

using two different sets of coding parameters: (9,6,3) and
(14,12,5), inspired respectively by the code length and
storage overheads of Google’s GFS and Microsoft Azure.
In these schemes, the overhead of CORE’s extra parities are
1/3 = 33% and 1/5 = 20% accordingly.

In each case two different failure patterns were enforced:
a one-failure pattern represented by X and a two-failures
pattern represented by XX. For the two-failures pattern, both
are set to happen in the same object (i.e., on the row). The
reason for this setting is two-fold: (i) it favors the HDFS-
RAID since at almost the same cost it can repair two failures
instead of one; (ii) if two failures happen on different rows,
the experiment will be, in effect, a variation of the one-
failure pattern.

From the results shown in Figure 6, we can draw several
conclusions:
• For single failure, the overhead of CORE is less than 50%

of HDFS-RAID. This is quite significant, since in real-world
clusters, e.g., in the Facebook cluster [33], single failures
(per stripe) are by far the most common type of failures.
This improvement results from two inherent advantages of
CORE: (i) single failure can be repaired vertically, using
far fewer blocks, and (ii) it uses a much cheaper XOR
operation instead of expensive decoding/re-encoding (this is
particularly significant in the computation-critical cluster).
• The impact of our first HDFS-RAID optimization (Opt1
in Section VI-B) can be seen in the results (the difference
between the 2nd and the 3rd chart bars). As explained before,
this optimization is targeted specifically for the clusters in
which the network is a scarce resource (part b in Figure 6).
The improvements are particularly pronounced in cases
where the number of avoided block retrievals are higher
(e.g., one failure in the scheme (9,6,3)).
• The gains from our second HDFS-RAID optimization
(Op2 in Section VI-B) are also noticeable (the 5th and the
6th chart bars in all setups).
• Growth in the CORE matrix size, from (9,6,3) to (14,12,5),
results in even higher gains, especially in clusters where
computation power is scarce.

B. Repair Scheduling Algorithms
In this set of experiments, the three repair scheduling

algorithms of Section V-C were compared using the Step
and Plus failure patterns. HDFS-RAID has neither a notion
of repair scheduling – it treats objects independently – nor
can it fully recover from the Plus failure pattern, so it was
not considered in the following experiments.

These experiments were run for CORE matrix of size
(14,12,5). The results are shown in Figure 7 and as expected,
the data part of this figure (part a) mirrors the analytical
results presented in Table II. Moreover, the completion time
numbers (parts b and c) are also, to large extent, in-line with
the data results. The only two discrepancies are explained
below:
• Completion time of the Column-First algorithm on the
Plus pattern in the network-critical cluster (part b) is longer
than expected. This is caused by the last repair which uses
two other freshly-repaired blocks. Accessing those blocks is
delayed until NameNode’s heartbeat-driven mapping tables
are updated.
• Completion time of the RGS algorithm in the computation-
critical cluster (part c) is only slightly better than that of
Column-First, despite applying one vertical repair less (see
Table II for the schedules). This is due to the fact that for
these patterns the RGS and Column-First apply the same
number of horizontal repairs and these are the main driving
factor of the cost in the computation-critical cluster.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we demonstrated that some simple and stan-
dard techniques (and thus easy to implement and organically
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Figure 7: Performances of the repair scheduling algorithms on two different failure patterns.

integrate) can provide significant data repair and access
boost in erasure coded distributed storage systems. Specif-
ically, we studied our approach of introducing cross-object
coding on top of normal erasure coding. The ideas were
implemented and integrated with HDFS-RAID (available at
[7]), and benchmarked over a proprietary cluster and EC2.
Experiments with the implementation (as well as accompa-
nying analytical studies [6] comparing the approach with not
only MDS codes but also with the very recently proposed
Local Reconstruction Codes used in Azure) demonstrate
the superior performance of CORE over state-of-the-art
techniques for data reads and repairs. While naive solutions
can be readily used, in future we will like to explore the
CORE code properties to achieve better performance also
during data insertion/updates. The current evaluations are
static, based on snapshots of the system state. We speculate
that CORE’s better repair properties will yield a system in
a better state over time. We will thus carry out trace driven
experiments to study the system’s dynamics better.
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