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Abstract—The increasing size and complexity of High-
Performance Computing systems is making it increasingly likely
that individual circuits will produce erroneous results, especially
when operated in a low energy mode. Previous techniques for
Algorithm - Based Fault Tolerance (ABFT) [20] have been
proposed for detecting errors in dense linear operations, but have
high overhead in the context of sparse problems. In this paper,
we propose a set of algorithmic techniques that minimize the
overhead of fault detection for sparse problems. The techniques
are based on two insights. First, many sparse problems are well
structured (e.g. diagonal, banded diagonal, block diagonal), which
allows for sampling techniques to produce good approximations
of the checks used for fault detection. These approximate checks
may be acceptable for many sparse linear algebra applications.
Second, many linear applications have enough reuse that pre-
conditioning techniques can be used to make these applications
more amenable to low-cost algorithmic checks. The proposed
techniques are shown to yield up to 2x reductions in performance
overhead over traditional ABFT checks for a spectrum of sparse
problems. A case study using common linear solvers further
illustrates the benefits of the proposed algorithmic techniques.

Index Terms—ABFT, sparse linear algebra, numerical meth-
ods, error detection I. INTRODUCTION

As High-Performance Computing (HPC) systems grow
more capable, they also grow larger and more complex. This
means that as the number of components in the systems rises,
so does the probability that one of them will suffer from a fault.
Soft faults in chip circuitry are among the most worrying for
system designers and application developers because they can
corrupt the application’s computations and produce incorrect
output. Tera-scale systems are already vulnerable to soft errors,
with ASCI Q experiencing 26.1 CPU failures per week [18]
and a L1 cache soft error occurring about once every five hours
on the 104K node BlueGene/L system at Lawrence Livermore
National Laboratory [8]. Looking into the future, according to
the International Technology Roadmap for Semiconductors,
the soft error rates (SER) will grow with smaller chip sizes,
with SRAM SER growing exponentially with chip size [1].
This and the fact that Exascale systems in 2020 will have
a total of 4 million electronic chips with feature sizes as
low as 12nm [1] has led the DARPA Exascale Computing
study [6] to warn that “traditional resiliency solutions will not
be sufficient”. Hardware-based approaches for fault detection
have been proposed for many computing systems. However,
their reliance on redundancy makes them impractical for future
HPC systems which will be increasingly power-constrained.

In fact, evolutionary extensions of today’s high performance
computing (HPC) systems (CrayXT, BlueGene) will be unable
to reach exaFLOP performance by 2020 within a power budget
of 20MW, the typical limit of modern computing centers [6].
As such, fault detection for exascale systems will need to
increasingly rely on software or algorithmic approaches, a fact
that motivated the Exascale study to identify “Algorithmic-
level Fault Checking and Fault Resiliency” as a key research
thrust. This paper focuses on algorithmic low overhead fault
detection for sparse linear algebra applications. Sparse linear
algebra forms the core of a large class of high performance
computing (HPC) applications such as linear solvers, differen-
tial equation solvers, and graph analysis problems [11, 19]. It
also forms the core of a large number of emerging recognition,
mining, and synthesis (RMS) applications [5]. Algorithmic
approaches to fault detection for sparse linear algebra will
eliminate the need for high overhead hardware approaches to
fault detection for exascale systems and systems running RMS
applications.

Our algorithmic approach builds upon ABFT-based ap-
proaches that encode computations using linear error cor-
recting codes [20, 2]. Such approaches have been proposed
previously for dense linear algebra [20]. Unfortunately, these
traditional ABFT approaches cannot be used directly for sparse
linear algebra problems as sparse linear algebra problems
have lower algorithmic time complexity than equivalent dense
problems. A direct use of the previously proposed approaches
can result in high overheads for sparse linear algebra prob-
lems (Section V). In this paper, we propose algorithmic
optimizations focused on low overhead checksum-based fault
detection for sparse linear algebra-based applications. Our
fault detection techniques rely on two insights. First, many
sparse applications have inherent structure within the data and
computation (e.g. diagonal, banded diagonal, block diagonal).
These structures may be exploited to improve the performance
of traditional ABFT checks (dense checks) by checking a
representative, randomly sampled, subset of the computation at
the cost of a minor reduction in fault coverage. Second, linear
applications have significant reuse. This makes it possible to
precondition the linear problem to be more amenable to low
cost algorithmic checks (Section III).

This paper focuses on fault detection for sparse matrix-
vector multiplication (MVM), the most common operation in
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sparse linear algebra. We make the following contributions:
• We demonstrate that previous algorithm-based techniques

for fault detection in MVM are expensive for sparse
matrices.

• We observe that enough structure exists in many sparse
problems that simple sampling techniques provide almost
the same coverage as exact techniques with reduced per-
formance overhead. We present two sampling techniques:

– Approximate Random (AR) checking - randomly
samples the problem

– Approximate Clustered (AC) checking - samples
based on the problem’s structure

• We show that there exists sufficient reuse for many sparse
linear applications that performance can be improved
by preconditioning the problem to reduce the cost of
detection for similar coverage, in spite of increased setup
cost. We propose two preconditioning techniques:

– Identity Conditioning (IC) - computes a code that
creates additional structure for a given problem

– Null Conditioning (NC) - creates structure by finding
a code which lies in the null space of the sparse
problem

• We quantify the benefits of the proposed techniques in
the context of MVM itself and as a subroutine of linear
solvers. For MVM, the dense checks are shown to have
high overheads (up to 100%, 32% on average) for sparse
problems. The proposed sparse techniques are shown
to reduce the detection overhead by up to 2x (average
overhead is 17%) for the same fault detection accuracy.
Our linear solver implementations with sparse techniques
are 20% faster than the corresponding implementations
using traditional ABFT (dense checks).

The paper is organized as follows. Section II describes
related work and explains the limitations of prior checksum-
based techniques when applied to sparse linear algebra prob-
lems. Section III describes the opportunities for exploiting
the structure of sparse linear problems for reducing fault
detection overhead and introduces our approach. Section IV
discusses the methodology for evaluating the effectiveness
of the techniques. Section V presents the results. SectionVI
concludes.

II. RELATED WORK

There exists a large body of work on different aspects of
sparse linear algebra-based applications. In particular iterative
solvers for sparse linear systems are an important tool for
scientific computing and research [26, 9, 28, 19]. Common
examples include conjugate gradient and multigrid solvers.
While the majority of the research on sparse linear algebra
addresses parallelization and performance, this paper focuses
on making them resilient to soft faults.

There has been prior work on checksum-based algorithmic
approaches to fault-tolerance of linear algebra-based appli-
cations. Algorithm-Based Fault Tolerance (ABFT) [20] was
proposed to detect and correct errors in matrix multiplication
operations. It has more recently been generalized [2] and

extended to more general linear algebra algorithms [23, 25, 3]
such as the multi-grid solver [24] as well as to multiproces-
sors [3].

The traditional ABFT check works by encoding a linear
operation using linear error correcting codes. For example, the
check for MVM (Ax: matrix A, vector x) works by verifying
the identity:

cT (Ax) = (cTA)x

Intuitively, the check computes the projection of the result
Ax onto the vector c in two different ways. If there are any
computation errors, the two projections will very likely be
unequal (e.g. the difference between projections surpasses a
given threshold, τ )

In the common case where c = 1̄ (a vector of all 1’s), the
projection is equivalent to multiplying x by the vector contain-
ing the sums of matrix A’s columns. Because the dense check
focuses on the projection of the result onto a specific vector, it
requires only three operations: (i) a matrix-vector product that
must be done for each matrix A and (ii) two dot-products that
must be performed on every MVM. This check is therefore
very efficient for dense matrices, requiring O(n2) setup time
and O(n) time for each MVM operation, compared to the
O(n2) time required for the original multiplication. However,
the check becomes very expensive for sparse matrices, where
MVM takes only O(n) time, meaning that both the original
operation and the check have equal asymptotic complexity.
In this paper, we address this problem by exploiting the
properties of sparse linear algebra applications to reduce the
constant factor of the the ABFT check, making it significantly
cheaper than the original operation. Indeed, to the best of our
knowledge, it is the first work to address application-level fault
tolerance in the context of general sparse linear algebra.

III. ALGORITHMIC FAULT DETECTION

In this section, we discuss two opportunities for sparse linear
algebra applications that can be exploited to reduce the over-
head of algorithmic fault detection for such applications. We
then describe four techniques that exploit these opportunities.

A. Motivation
Sparse problems frequently have well defined structures.

Common examples of structure are diagonal, banded diagonal,
and block diagonal matrices. For example, qpband (Figure 1),
which represents a canonical indefinite optimization problem,
illustrates a typical banded diagonal structure (the nonzero
pattern is on the left). Similarly, the matrix bcsstm37 (Figure
3), which represents a track ball stiffness matrix [4] and the
matrix msc00726 (Figure 2), representing a structural engi-
neering problems from the Boeing test matrix group [4], also
contain banded diagonal type structures. The matrix Oregon-
1 (Figure 4), representing an undirected graph based on the
network included in a portion of the Internet, shows a block
diagonal type structure.

Such structures in sparse problems commonly translate into
fairly uniform distributions of the column sums. Since, as
described in Section II, the traditional check for c = 1̄ is
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Fig. 1. qpband (Variance = 1.6071) The matrix has a well defined and low
variance (< 1e3) column sum distribution and is a good candidate for both
Approximate Random and Approximate Clustering.
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Fig. 2. msc00726 (Variance = 9.4724e14) The matrix has high variance
(> 1e3) column sums. This matrix is a good candidate for clustering given the
finite sets of unique values shown above.
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Fig. 3. bcsstm37 (Variance= = 6.1668e− 10). The matrix has a well defined
column distribution with low variance (< 1e3) and is particularly well suited
for Approximate Random Technique
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Fig. 4. Oregon-1 (Variance = 1065.5). The matrix has column sums that
are less well defined and have high variance (> 1e3). Conditioning is a good
candidate for this particular problem.

equivalent to multiplying x by the sums of columns, matrices
with well-defined distributions of column sums present an
opportunity to use a sparse check that samples only a fraction
of the columns. Such a sampled check would give up a
small degree of coverage (some errors may be missed) for a
significant reduction in overhead. This flexibility can be very
valuable in contexts where some errors can be tolerated (e.g.
iterative methods that converge to accurate solutions) or where
even the reduced fault coverage results in a very high mean
time to failure. When the fault detection computation itself is
susceptible, note that by reducing the number of operations in
the check, we may also be improving the accuracy under a
given set of conditions (discussed later in Section V-A).

The second opportunity for reducing algorithmic detection
overhead for sparse linear algebra applications is that many
such applications typically use the same matrix as part of
many individual operations. For example, iterative solvers for
linear systems (Ax = b) use MVM multiple times during
each iteration, and solvers such as conjugate gradient (CG) or
iterative refinement (IR) (see Section V), can take thousands of
iterations to converge to an acceptable solution. This property
of frequent data reuse makes it possible to analyze the structure
of a given matrix or precondition the matrix to have a more
favorable structure, thus amortizing the setup cost by using
lower overhead checks for subsequent MVM operations.

The following algorithmic fault detection techniques exploit
the above opportunities.

B. Approximate Random

The traditional check verifies the identity

cT (Ax) = (cTA)x

If c = 1̄, this computation is equivalent to computing the
vector of A’s column sums (i.e. cTA) and multiplying it
by x. Thus, if a matrix’s column sums have a relatively
simple structure, it may be possible to perform the check
over a randomly sampled subset of columns. For example,
the variance in column sums is only 1.6 in matrix Qpband
(Figure 1) and 6e−10 in bcsstm37 (Figure 3). This technique,
called Approximate Random (AR), works by setting c to be
a binary vector, with 1’s in a some random locations and 0’s
everywhere else. The detection overhead is therefore reduced
by avoiding computations associated with dimensions of the
check containing 0’s. It is further refined by observing that the
primary cost of the check is the sparse matrix-vector product
on the right-hand side, while the left-hand side is a dense
dot-product, which is faster due to its much better memory
behavior. Moreover, sampling the left-hand side will cause the
check to incur a more significant loss in fault coverage since
the left-hand side is a function of the faulty MVM output
directly. As such, this check only uses the sampled c on the
right-hand side, uses c = 1̄ on the left-hand side and then
normalizes the left-hand side to adjust for the difference.

The accuracy of AR depends on the distribution of the
values in x, in addition to depending on the distribution of
the matrix columns. In the context of computational science,
x typically corresponds to the state of a physical system. Since
different regions of the physical space will have similar states,
x will have a regular structure, which enables AR to work well.
However, in cases where the physical system is chaotic (high
variance) or x comes from a non-physical system, the sampling
technique may need to take the distribution of x into account
as well (e.g. a scaling factor related to the input variance).



C. Approximate Clustering

For matrices with more variable column sums that still
have some structure it is possible to improve the quality of
the sampled columns by clustering their sums. Instead of
computing c by randomly sampling 1̄, Approximate Clustering
(AC) runs a clustering algorithm on the set of column sums
and randomly samples the clusters to ensure that all the major
types of column sums are appropriately represented. This
approach trades off additional setup overhead for improved
accuracy and is thus applicable for applications with more
reuse. Further, it works with a broader range of matrices than
AR since it only requires column sums to be homogeneous
within local regions, rather than globally similar.

Matrix msc00726 (Figure 2) is an example of a structured
problem (it is banded diagonal) that is too complex for AR
because it contains one set of values that are orders of
magnitude larger than another set of values. However, because
this matrix has only a small set of unique column sums (20
unique values or about 1% of columns are unique), clustering
can be used to identify these different classes of columns and
evenly sample among these classes. As such, even though the
structure of a problem may not be well suited for random
sampling, there may exist enough structure that can still be
exploited by using clustering to represent each subgroup of
similar values equally in the sampled distribution.

A variety of methods, with varying complexities, can be
used to cluster the column sums. We use an agglomerative
clustering algorithm [21], modified to ensure that (i) only those
clusters are formed which are sufficiently different from other
values (i.e. a distance threshold of 1e−6) and (ii) the number
of clusters identified do not exceed the total number of samples
dictated by the sampling rate specified to the algorithm. This
algorithm is run over the entire set of column sums.

In some cases, the sparse problem may not be amenable to
either AR or AC, such as the matrix Oregon-1 (Figure 4).
Oregon-1 has high column sum variance (> 1e3) and a large
dissimilarity between a majority of its’ sums. Therefore, the
efficiency of AR and AC for this problem will be limited. We
may need to first precondition the problem in order to yield a
more uniform distribution of column sums.

D. Identity Conditioning

In situations where sparse linear algebra applications have
reuse, but also have matrices that are not directly amenable to
sampling or clustering (i.e. the column sums are too variable
to produce an accurate check), preconditioning can be used
to transform the check into a form more amenable for low
overhead algorithmic fault detection.

Identity conditioning (IC) transforms the high variance
column sum distribution of the original matrix (A) into a more
uniform set of values by using a check vector tailored to the
given problem, instead of the traditional checksum: c = 1̄. IC
finds such a tailored check vector by solving the system:

cTA = 1̄T (identity equation)

When the identity equation is solved exactly, the effect of A
and the variance of the column sums is eliminated entirely:

cT y = (cTA)x = 1̄Tx =
∑

x (IC)

This makes the problem directly amenable to low-cost
sampling as the variance in A now has a smaller effect on
the product cTA, making the sampling in AR and AC more
representative than when sampling the check vector c = 1̄. We
denote as ICAR the algorithm that preconditions the problem
with IC and checks individual MVM operations using AR.
Similarly, ICAC is the combination of IC and AC. Also, in
many scenarios, the sum of the elements of x may be known
or can be inferred in advance (e.g. when

∑
x is used to

check prior linear operations). In such scenarios, the runtime
overhead of the check may be reduced significantly.

While IC can be highly effective, it has two major lim-
itations. First, the exact solution to the identity equation
does not exist for all matrices (e.g. symmetric or over-
determined matrices). Second, computing this equation can
be very expensive. We resolve these issues by computing
the equation approximately, solving min∥AT c − 1̄∥ with a
relaxed accuracy tolerance. In practice we find that that the
iterative least squares algorithm in LAPACK [7] provides a
good approximation of c (residual < 100) in 1− 2 iterations.
Still, given that computing this approximation is equivalent
to multiple MVMs, it is primarily useful for applications that
reuse the same matrix in many MVMs, amortizing the cost of
computing the conditioned vector c over many checks.

E. Null Conditioning
While Identity Conditioning eliminates the influence of A

on the check, additional conditioning can also eliminate the
influence of x. The Null Conditioning (NC) algorithm finds
a check vector in the null space of the matrix A, solving the
equation

cT y = (cTA)x = 0 (NC)

This significantly reduces the runtime overhead of the check,
since the right side of the check requires no additional com-
putation (e.g. the sum equals zero) and the memory locality
is improved since the input is no longer read in the check.

Finding a vector in (or near) the null space of A is done
by computing its smallest singular value using singular value
decomposition (SVD). A singular value (σ) of a problem
satisfies:

Ac = σu and A∗u = σc

where u and c are unit length vectors. The singular vector
associated with the smallest singular value is used in the check
as: cTA ≈ 0.

The accuracy of fault detection for NC depends on the size
of the problem’s smallest singular value. In our experiments,
singular values below 1e-6 are more than sufficient to provide
high accuracy fault detection. However, problems with larger
singular values may still use the associated singular vector
to improve the efficiency of the sampling based techniques,
since the conditioned column sums (cTA) still contain fairly



uniform distributions. We observe that the conditioned column
sums slowly become less uniform as the size of the singular
values increase (e.g. variance is less than1e-4 as the singular
values increase up to 1-100).We call the strategy of initially
using NC to precondition a sparse problem, and AR during the
runtime, NCAR. Similarly, the strategy of using AC during the
runtime, NCAC.

Note that this check can be used for dense algebra problems
as well. For square symmetric matrices, which are common in
practice, SVD reduces to the eigenvalue problem. SVD/Eigen
decomposition can be implemented in various ways depending
on properties of the data and goals. In particular, our SVD
implementation does not need to compute all the singular
values , but instead only computes the smallest singular value
and the associated vector [16]. This feature, along with the
possibility of relaxing the tolerance of the required singular
value, allows us to reduce the overall cost of computing the
complete SVD by several factors. I.e. by finding only the
smallest singular value and reducing the input and output
tolerance by 3-5 orders of magnitude, there was a 2X to 10X
speedup in execution time, with a minimal increase in variance
of the column sums.

IV. METHODOLOGY

A. Fault Model
Our evaluation focuses on transient faults that affect the

outputs of numerical computations. Other manifestations of
transient faults, such as memory corruption, deviations of con-
trol flow or memory access errors are assumed to be accounted
for by using simple low overhead techniques [12, 14], unless
they manifest as numerical data errors which the proposed
techniques cover. This is a widely addressed fault model
[20, 15, 10].

Our evaluations are done for MVM. MVM is composed
of a series of multiply and accumulate operations. Faults are
injected into MVM by adding a random numeric error to the
output of individual multiply/addition operations. Since the
timing of each fault is assumed to be independent, fault times
are sampled from an exponential distribution with a rate λ. 1

λ
is the expected the number of arithmetic operations between
consecutive faults. Faults are also similarly injected into the
arithmetic operations that compose the checks themselves.

Our experiments examine different fault rates that model
phenomena ranging from physical faults arising from infre-
quent particle strikes (3-4 soft errors per day) to frequent errors
arising from the use of aggressively designed (error-prone)
technologies at large scales (multiple errors per second).

When a fault occurs, it is modeled by drawing a value
from one of the fault distributions below and adding it to the
target operation. These distributions are selected to model the
arithmetic effects of circuit-level faults at a high level, making
it possible to parameterize them to represent multiple low-level
fault models:
Symmetric Faults: The following distributions model faults
that affect the output of circuits, and that have equal prob-
ability of being positive or negative

• 1: Distribution with two Gaussian modes. The modes are
centered at 1e5 and −1e5 and have variance 1e2;

• 2: Distribution with two Gaussian modes centered at
±1e10, each with variance 1e5;

• 3: Gaussian distribution with mean 0 and variance 100.
Memory Faults:

• 4: An exponential distribution represents a single bit flip
in the binary representation of a floating point number.

Non-Symmetric Faults:
• 5: Gaussian distribution centered at 1e5 and with variance

100 - represents a one sided error distribution (e.g.
unsigned representation);

• 6: Mixture of models 1 and 2, each sampled half the time
- models timing errors in functional circuit units, which
are biased toward most and least significant digits [22].

B. Benchmarks
The algorithmic fault detection techniques were imple-

mented within the SparseLib library [9] of core sparse lin-
ear algebra operations, including MVM. To understand the
effectiveness of our technique in a wide range of practical
contexts, we evaluated them on 100 randomly chosen square
linear systems from the University of Florida Sparse Matrix
Collection and Matrix Market [4, 17] with the following
properties: matrix size ∈ [100, 40000] and sparsity < 10
(i.e. number of non-zero elements in each matrix divided by
size is less than 10). These represent a variety of physical
phenomena and real algorithms, including model reductions,
computational fluid dynamics, and circuit simulation.

We evaluate our fault detection techniques both in the
context of individual MVM operations as well as larger
applications that use MVM as a subroutine. The applications
we have focused on in this study are sparse linear solvers since
they are very common in computational science and make
extensive use of MVM. We consider two linear solvers: the
Iterative Refinement (IR) method and the Conjugate Gradient
(CG) method.

IR, also called the Richardson Iteration, is relatively simple
and easily parallelizable. In each iteration it computes the
residual of the system (b − Ax) and adds this to current
approximate solution (xi) with a scaling factor to generate
the next approximation (xi+1). Convergence is achieved by
carefully selecting each step’s scaling factor.

CG is a popular solver well suited for very large and
sparse problems. It expresses x as a linear function of n
vectors p1, p2, ...pn, with each pair of vectors conjugate in
A (piApj = 0). Although the pi’s can be computed directly,
in practice a small subset of the pi’s is needed to achieve
accuracy within machine precision. As such, CG approximates
the solution x = q1p1+...+qnpn with only a few vectors. The
initial approximation is x0; the residual r0 = b−Ax0, which
is the direction of the error in x0, serves as the first conjugate
vector, p0. Subsequent iterations compute the residual rk and
use it to compute the next conjugate vector pk. To ensure
that pk is conjugate to prior pi’s, pk = rk − rTk−1−rk−1

rTk−2rk−2
pk−1.



The coefficients αk are computed as rTk rk
pT
k Apk

. This process is
repeated until rk falls below some threshold.

Depending on the problem, preconditioning techniques (e.g.
Jacobi, Incomplete Choleksy, and LU factorizations) may also
be used to improve the performance of the linear solvers [9].
In Section V-B, we study both non-preconditioned solvers
(CG & IR) and the preconditioned solvers (CG-pre & IR-pre,
which use incomplete LU factorization and a simple diagonal
preconditioner respectively [9])

Our fault detectors are applied by comparing the difference
between both sides of the identity cT (Ax) = (cTA)x, If
these values differ by more than a given threshold τ a fault
is declared and otherwise, the results of the computation are
considered valid. Since MVM operations in linear solvers
are applied to vectors of different magnitudes during the
course of the run, the detection threshold used in our linear
solver experiments is computed as τ = τ0∥x∥. Here x is the
algorithm’s current estimate of the solution and τ0 is a scaling
factor fixed throughout the solver’s execution.

C. Exploring Solver/Parameter Space

The performance of the proposed techniques can vary signif-
icantly depending on the parameters of the fault detector (e.g.
detection threshold τ and sampling rate), system properties
(fault model and rate) and characteristics of the sparse problem
(e.g. amount of reuse and matrix structure). Table I list all
the parameters that are relevant to the effectiveness of fault
detection. Our experiments with MVM and linear solvers
sweep this entire space. For each combination of parameters,
we run MVM with 50 different input vectors, the values of
which are chosen uniformly at random from the range [−1, 1].
Also, for each vector, we perform 50 separate fault injection
runs. Thus, for each parameter configuration, we run 2,500
runs of MVM on each of the 100 example matrices, for total
of over 600 million runs. Further, for each configuration we
run 50 runs of each linear solver (total of over 20 million runs
each).

Different techniques work best in different scenarios and
indeed, not every technique is even applicable to all linear
systems. For example, Null Conditioning only works for
systems that have small singular values. Since it is thus critical
to choose the best technique for a given scenario, we evaluate
two ways to make this selection. The “Oracle” algorithm
chooses the technique and combination of parameters that
maximizes the effectiveness of our techniques (it may choose
the dense check or any sparse check), using the evaluation
metrics described in Section IV-D; it represents the optimal
solution. We also evaluate a realistic solution by using our
parameter sweep experiments to train a statistical classifier,
the J48 decision tree, as implemented in WEKA [13]. This
”Decision Tree” selects for each linear system, fault model and
rate the fault detection algorithm along with its parameters. An
example of a decision tree used to predict the best technique
and configuration is shown in Figure 5.

MVM and Solver Parameters Values
Techniques Dense,AR,AC,NC,IC,

ICAR,ICAC,NCAR,NCAC
Fault rates 0, 1e-6, 1e-5, 1e-4,1e-3,1e-2,1e-1
LSQ tolerance (IC) 1e-10,1e-6,1e-3,1e-1,1,

1e1,1e3,1e6,1e10
LSQ input condition num. (IC) 1e15
Eigen solver tolerance (NC) 1e-10,1e-6, 1e-1 1
Sample rate (AR,AC) 0.001, 0.01, 0.05,0.1,0.2,0.3, ... 1.0
Other Solver Parameters Values
Linear Solver CG, IR, CG-pre, IR-pre
Detection Threshold Factor(τ0) 1e-5, .1,1,10,1e3,1e5,1e7

TABLE I
MVM AND LINEAR SOLVER PARAMETERS

D. Metrics
To evaluate the effectiveness of our detectors with MVM we

compute the following metrics for all the 2,500 runs associated
with a given detector configuration, system parameters and
input matrix:

• The number of true positives (TP )/false negatives (FN )
- experiments where a fault was injected and was de-
tected/not detected, and

• The number of false positives(FP )/true negatives (TN ) -
experiments where no fault was injected and the detector
did/did not signal a fault.

From these we compute the F-Score, a metric commonly used
to summarize an algorithm’s overall effectiveness [27], defined
as:

F-Score =
2 ∗ TP

2 ∗ TP + FP + FN

The F-Score ranges between 0 and 1 and values closer to
1 indicate a more accurate and useful detector. Further, we
discuss detector effectiveness in terms of the false positive
rate (FPR) FP

TP+FP and true positive rates (TPR) TP
TP+FP .

In the context of linear solvers the effectiveness of our
detectors is only meaningful in terms of how it affects the
solver’s performance. Specifically, there can be two types of
issues. Mistaken error detections cause unnecessary recovery
actions, which can be expensive. In our experiments we
assume that the linear solver is rolled back to its starting
point and re-executed on an error detection. Conversely, errors
that are not detected affect the solver’s convergence properties,
with errors that have larger numeric magnitude having a more
significant effect.
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Fig. 5. Decision Tree showing the basic decisions and features when
considering which techniques to utilize when protecting sparse operations.

V. RESULTS AND ANALYSIS

This section evaluates the accuracy of our detectors in the
context of individual MVM operations (Section V-A) and
linear solver applications with rollback-restart (Section V-B).



A. Algorithmic Fault Detection for MVM

We compare each detection technique when applied to
a single MVM operation over a set 100 problems from
the University of Florida Sparse Matrix Collection [4]. Our
analysis includes the overhead incurred during the execution
of the MVM operation and excludes the set-up cost, such
as clustering and conditioning. Experiments in Section V-B,
which focus on linear solvers, take set-up overhead into
account and measure the degree to which this cost is amortized
in practice, by repeated execution of MVM operations.

The utility of our fault detection algorithms depends on both
their detection accuracy and performance overhead. Because
practical uses of fault detection require that most faults are
detected and most alerts correspond to real faults, our analysis
focuses on configurations of the fault detectors that achieve
an F-Score greater than 0.9. Figure 6 shows the overhead
of all our techniques using parameters that achieve this F-
Score on each matrix. The eight columns on the right-hand
side correspond to each base technique, highlighting their
individual capabilities. Recall that the four techniques on the
far right are combinations of the others (e.g. ICAR is IC
+ AR, while NCAR is NC + AR). For a given technique
and input problem, we choose the configuration parameters
(detection threshold, sampling rate, conditioning quality) that
minimize its overhead while meeting the F-Score bound. The
three columns on the left-hand side correspond to the three
full algorithms we’re evaluating: the traditional dense check,
the Oracle algorithm, and the Decision Tree algorithm. The
threshold parameter of the dense check is selected optimally as
above and the same is true of the Oracle, which always picks
the optimal algorithm (recall, Oracle may choose the dense
check or any sparse check). In contrast, the Decision Tree
algorithm chooses, for every given input problem, a detection
algorithm and a setting of its parameters based on the tree
that was trained on the initial experimental runs. If the chosen
algorithm/configuration does not produce an F-Score > 0.9,
the Decision Tree counted as failing for this system even if
there was another algorithm/parameter setting that could have
achieved this F-Score.

Figure 6 shows the overhead of all our techniques when
MVM is injected with faults from model 1 and the fault rate
is 1e-3. The boxed ranges within each column represent the
25th, 50th, and 75th percentiles of the detector’s overhead
across all of the problems (roughly the mean ± one standard
deviation). The lines within each column indicate the lowest
and largest overhead within 1.5 Interquartile Range (IQR)
of the lower and upper quartiles respectively. The detector
overheads outside this range are represented as outliers with
circles. The bars in Figure 7 show the fraction of problems on
which each detection technique achieved the target F-Score.

These results show that the traditional dense check has an
average overhead of 32%, ranging from 5% for denser prob-
lems to 80% for larger sparse problems with poor locality (e.g.
m3plates and bcsstm11). While the fault detection overhead
depends strongly on the size, sparsity, and locality of the

problem, Figure 6 and 7 illustrate that, in general, a direct
application of the dense check to sparse linear algebra can
be expensive. This motivates the need for other algorithmic
fault detection techniques that exploit the structure of sparse
problems.

0

20

40

60

80

Dense Oracle D−Tree AR AC IC NC NCAC NCAR ICAC ICAR
Detection Techniques

Pe
rfo

rm
an

ce
 O

ve
rh

ea
d 

(%
)

Fig. 6. Runtime overhead of each technique. F-Score target=0.9, Fault
Rate=1e− 3, FaultModel=1
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Fig. 7. Number of problems meeting F-Score target. F-Score target=0.9,
Fault Rate=1e− 3, FaultModel=1

In contrast, the overhead of AR was 16% on average, over
the same set of sparse problems (i.e. 50% lower than the
traditional dense check). This reflects the fact that AR’s sparse
samples are representative of these problems as a whole, which
is most pronounced on problems with low sparsity and column
sum variance such as such as poli large and t3dl e. Where this
is not true, AR shows little improvement (e.g. less than 5%
improvement for qpband and impcol d) and the AC technique
is needed exploit more complex structure.

The average overhead of AC is 17%, although the overhead
in some problems (e.g. impcol d, big, tols2000, and chem97tz)
was reduced nearly in half relative to AR. AC was particularly
useful for problems like these that contain low variance
patterns within segments of their column sum distribution.
The setup overhead of AC is considered in Section V-B in
the context of linear solvers.



IC featured 18% average overhead and its effectiveness
depends on the accuracy of the solution found for the identity
equation (cTA = 1T ). For many problems it was only
necessary to run the least squares algorithm on cTA = 1T to
a tolerance of 1e-1, which corresponds to only 1-3 iterations
of the algorithm.

NC had an average overhead of 29%. While this result may
seem surprising, considering that the NC check does not need
to compute (cTA)x, since it is very close to 0, the reason
for this was that the smallest singular value in most problems
is too large (greater than 1e − 6), making (cTA)x too far
from 0 to produce an accurate check. Another problem is
that the eigenvectors associated with small singular values
often have many zeros, which may cause faults to be masked.
Indeed, NC achieved F-Score above 0.9 for less than 10%,
in contrast to ≥ 80% for the other techniques. For problems
netz4504, mimo28x28 system, and zeros nopss 13k, that do
contain small singular values, the overheads were actually the
least (11%) of any of the techniques. Therefore, NC is the best
choice in certain scenarios.

The techniques combining sampling and conditioning had
an average overhead of 17%. Note that the NCAC and NCAR
were able to achieve larger success rates than NC (i.e. 82%
rather than 8%), since NCAC/NCAR used sampling with the
smallest eigenvector, instead of assuming that the smallest
eigenvector was also near the null space and that the resulting
check was zero.

The data shows that to achieve good performance and
accuracy it is necessary to choose the detection technique
and its parameters based upon the properties of the given
problem. In particular, the diversity in the strengths of the
different fault detectors provides significant power to leverage
problem structure to optimize overhead and accuracy. The
Oracle technique, which makes this choice optimally, achieves
15% overhead and reaches the F-Score of 0.9 with 92% of the
problems, compared to only 81% for the individual techniques.
The more practical Decision Tree algorithm is close to this
optimum with providing 16% overhead, with an F-Score above
0.9 on 81% of problems. Such decision trees can be used by
developers to pick the best check for their problem.

The benefits from the proposed checks are not only in
terms of performance. Figure 8 and 9 illustrate a scenario
(i.e. the same data, fault model, and F-Score as Figure 6
and 7, but with a less frequent fault rate of 1e-6), where the
dense check becomes significantly more brittle, meeting the
F-Score target with only 10% of the problems. In contrast,
the Oracle can combine checks to cover 94% of the problems
and the Decision Tree succeeds with 77%. This is because
faults directly in the check are more likely to occur with the
traditional dense check, which performs more operations than
the proposed techniques. These errors can significantly distort
the accuracy of the check to detect faults. This is primarily
an issue at error rate=1e-6 because there is a high probability
that an error occurs in the dense check but not in the main
computations. When fault rates are significantly higher, the
odds are high that both the main computation and the check
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Fig. 8. Runtime overhead of each technique. F-Score target=0.9, Fault
Rate=1e-6, FaultModel=1
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Fig. 9. Number of problems meeting F-Score target. F-Score target=0.9,
Fault Rate=1e-6, FaultModel=1

will be hit. For significantly smaller fault rates, it is likely that
neither will be hit.

Figures 11 and 12 generalize our results further, showing
that they hold across different F-Score targets, fault models
and fault rates. Figure 11 displays the average performance
overhead of each technique and Figure 12 shows the fraction
of matrices for which a given F-Score target is met. The left-
most graphs in each figure plot these results for F-Score targets
of 0.5, 0.75 and 0.9, showing that the results are not sensitive
to the detector accuracy target. The middle graphs vary the
fault models used to generate the faults, demonstrating that
the detectors are equally capable of detecting all the different
fault types discussed in Section IV. Finally, the right-most
graphs vary the fault rate. Fault detection is easiest for large
(≥ 1e-4) and small (≤ 1e-7) fault rates. When errors are
common, signaling a fault on even slight signals is usually
safe. Similarly, when errors are rare, it is safe to reserve the
fault signal for only the most obvious faults. Detection is most
difficult in the middle (1e-6 to 1e-5) where only finely-tuned
detectors do well. This is visible in the right-most graph of
Figure 12, which shows that detectors are most likely to miss
their F-Score target in this range. Further, Figure 11 shows that



the performance of the detectors is most erratic in this region.
Importantly, the Decision Tree algorithm is largely resilient
to the effect of this complexity, showing consistently better
overhead and accuracy than the dense check across all the
fault rates.

Figure 10 compares the different detection techniques to
each other by showing how often each one is useful for
different linear problems and under different fault models and
rates. It shows the fraction of problem/fault scenario combi-
nations for which each algorithm is chosen to be the best by
both the Oracle and the Decision Tree algorithms. While each
technique was useful in some cases, the sampling techniques
were by far the most useful. AC works best for problems that
have large column sum variances (∈ [5,1e6]) and are not well-
conditioned (condition number >1e6). NC performed well for
problems with small singular values (smallest is <1e-6), high
column sum variance (> 10), and a large condition number
(>1e6). Problems that have a high column sum variance but
a small condition number (<1e6) were best served by IC.
IC was also useful for problems with high condition number
when paired with sampling, since the overhead reduction of
sampling more than made up for the less accurate solution
to the identity equation. Similarly, NC often performed better
for problems with large singular values when combined with
sampling. High F-score targets and mid-range fault rates
make more stringent demands on detection accuracy, which
favors the clustering and conditioning techniques. The top
level variables used by the Decision Tree to choose the best
technique were the matrix condition number, matrix size, fault
rate, column sum variance, and matrix sparsity.
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technique is the best choice.

B. Algorithmic Fault Detection for Linear Solvers

To evaluate MVM fault detection techniques in the context
of real applications, we focus on the CG and IR sparse
linear solvers described in Section IV-B. These solvers make
extensive use of MVM, calling it in every iteration. This
makes it possible to evaluate the impact of each detector’s
setup overhead, runtime overhead and detection accuracy in a

realistic context, to determine how these properties ultimately
affect each technique’s utility.

Errors affect linear solvers in two ways. First, since iterative
algorithms converge from a poor solution to an accurate one,
undetected errors are likely to slow down the algorithm’s
convergence or even cause it to diverge. Further, detected
errors are managed using the classic rollback-restart technique,
where the application is rolled back to some prior point in its
execution and its execution is resumed. Our experiments use
the simplest variant of this technique where the solver rolls
back to the start of the current iteration every detected fault.
In order to insure forward progress, after several consecutive
failed rollbacks, the most recent result is taken as the result
and allowed to continue. In our experiments, each solver is
executed until it reaches an error residual of 1e-6, meaning
that if errors are detected, they may restart many iterations
multiple times before they reach this goal.

We observed that although iterative solvers have some
ability to recover from errors, in practice, non-trivial error
rates can cause these algorithms to make little to no progress
in many of the application runs. This means that the only way
to run a linear solver, in face of many types of faults, is with
some type of additional fault tolerance/check. Therefore, our
experiments compared the performance of the linear solvers
when using the sparse techniques to the solver performance
when using the traditional dense checks.

Figures 13 and 14 make this comparison between the exe-
cution time of the solver implementations employing a sparse
check (on the x-axis) and the corresponding implementation
employing the traditional dense check, via a sequence of
graphs. The difference is measured as

overhead =
Timesparse check − Timedense check

Timedense check

which means that a difference of -50% corresponds to the
linear solver executing twice as fast with the sparse detector
than with the traditional dense detector. The left two columns
of graphs in both Figures 13 and 14 show the performance
difference for CG and the right two columns for IR. Figure 13
shows results for basic CG and IR and Figure 14 focuses on
their preconditioned variants. The first and the third column
focus on the difference in just the time these algorithms
spend on MVM operations. While the second and fourth
column show the difference in overall execution times of the
linear solvers. From top to bottom of Figures 13 and 14, the
graphs show results for varying fault rates that range from
0 to 1e-4. Each detector and linear solver combination is
evaluated on 5 different linear problems (separate sets for basic
and preconditioned solvers). The average overhead over these
matrices, for each detector, is shown in the middle of the boxed
ranges. The upper and lower portions of boxed ranges within
each column represent the mean ± one standard deviation
of the overhead. The lines within each column indicate the
maximum and minimum overheads. The set of problems, for
use with the basic solvers, were chosen randomly from those
used in Section V-A, such that the matrix showed little to
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Fig. 11. Performance overheads with varying F-Score targets (left), Fault Models (center), and Fault Rates (right).
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Fig. 12. The success rate or frequency at which problems meet the given F-Score target with varying F-Score targets (left), Fault Models (center), and Fault
Rates (right).

no benefit with preconditioning (< 10%). A different set of
problems, used with the preconditioned solvers, were chosen
randomly from the same set such that they achieved significant
benefits with preconditioning (> 2x). Of the 5 problems solved
successfully with CG-pre, only 1 of those same problems met
the accuracy target successfully with IR-pre.

The results also show that in the context of linear solvers the
dense checks can have fairly large performance overheads (30-
50%). For CG, the sparse check based implementation spent
17% less time in MVM operations on average than the tradi-
tional dense check-based implementations. This corresponds
to a total execution time that is 9% lower on average. For IR,
the sparse check based implementations spent 10% less time in
MVM operations than the dense check-based implementations
on average. This corresponds to 5% lower total execution time
on average.

The results show that the impact of larger setup overheads
for some of the techniques (e.g. clustering and precondition-
ing), in the context of both the IR and CG, is fairly negligible
(< 0.01%), since the amount of reuse is high. We observed
that the absolute amount of reuse in the context of CG is
dependent on the conditioning of the problem which impacts
the number of iterations required to reach the desired solution.
The error rate can also have an impact on the number of
iterations and hence the amount of reuse within the algorithm

Upon analyzing the performance of the techniques in the
different scenarios shown in Figure 13, we observed that
the overall overhead can vary greatly across different error
rates. For example, with a fault rate of zero (first row of
Figure 13), the impact of recovery overheads is reduced and

the reduction in runtime overhead provided by the sparse fault
detection techniques can be more fully utilized. As the error
rate increases, the detection accuracy requirements become
more stringent and the total overhead from missed faults
and false positives must be properly balanced to provide the
lowest performance overhead. By configuring the techniques to
minimize the overhead from missed faults and false positives,
the runtime benefits for many of the sparse techniques is also
reduced to < 5%.

When the error rate is sufficiently large, the impact of recov-
ery overheads is again reduced allowing the sparse techniques
to reduce the runtime and total overheads further. In many of
the scenarios with smaller error rates, the NC based techniques
do poorly due to the larger time required to find the smallest
singular value for many of the sparse problems.

When using the solvers with preconditioning, Figure 14
shows that the total benefits from the sparse checks with
CG-pre were relatively small on average (5% − 10%). For
IR-pre, the sparse check based implementations spent about
30% − 40% less time overall than the dense check-based
implementations. CG-pre, IR-pre, CG, and IR are four real ap-
plication contexts that demonstrate that the sparse techniques
are frequently able to exploit structure and reuse in sparse
problems to reduce the overall overhead of algorithmic fault
tolerance compared to the traditional dense checks.

VI. CONCLUSIONS

Future Exascale computing system will be prone to errors
and severely energy constrained. On these systems it will
be critical to detect and correct applications to ensure that
applications can use them productively. This paper focuses



on low overhead fault detection for sparse linear algebra
algorithms which represents the core of a large class of HPC
and emerging applications.

Previously proposed techniques for detecting errors in dense
linear operations have high overhead (up to 100%, 32% on
average). In this paper, we propose a set of algorithmic
techniques that minimize the overhead of fault detection for
sparse problems. The techniques are based on two insights.
First, many sparse problems are well structured (e.g. diago-
nal, banded diagonal, block diagonal, etc.), which allows for
sampling techniques to produce good approximations of the
checks used for fault detection. These approximate checks are
acceptable for many sparse linear algebra applications. Second,
many linear applications have enough reuse that clustering
and preconditioning techniques can be used to make these
applications more amenable to algorithmic checks. We show
that the proposed techniques exploit these opportunities to
reduce overhead by up to 2x over traditional dense checks
and maintain high error detection accuracy over a larger set
of problems than the dense check. Further, the techniques also
reduce overhead in the context of larger algorithms that use
matrix-vector multiplications. Our experiments, which focus
on the iterative linear solvers CG and IR show that the benefits
were up to 40% when considering only the MVM operations,
and up to 20% when considering non-MVM operations as
well.
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Fig. 13. Percent difference between the execution time of the sparse techniques vs. dense check applied to CG & IR. Columns 1− 2 are for CG and 3− 4
are for IR. Columns 2 and 4 show the total execution time overhead, and columns 1 and 3 show the MV execution time overhead.
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Fig. 14. Percent difference between the total execution time of the sparse techniques versus dense check applied to the CG & IR algorithms with
preconditioning.


