
グリッドコンピューティング

2011/10/17

福田圭祐 (11M37264 松岡研究室)

1

紹介論文：
“An Execution Strategy and Optimized

Runtime Support for Parallelizing Irregular
Reductions on Modern GPUs”

著者：Xing Hue, Vignette T. Ravi, Wending Ma and Gagman
Angara

(Ohio State University)

 ICS’11

2

発表者：福田圭祐

Abstract

• Strategy & runtime support for reduction problems on
unstructured grid (fluid dynamics & molecular dynamics) on
NVIDIA GPUs

• Based on mesh partitioning in reduction space to achieve
effective use of GPU’s shared memory.

• Achieved up to 11.6x speedup compared to serial CPU
execution

3

Agenda

• Overview of GPU’s architecture and CUDA programing model

• Unstructured grid and Motif

• Background

• Execution Strategy

• Runtime Support

• Evaluation

• Conclusion

• Discussion

• Reference
4

Agenda

• Overview of GPU’s architecture and CUDA programing model

• Unstructured grid and Motif

• Background

• Execution Strategy

• Runtime Support

• Evaluation

• Conclusion

• Discussion

• Reference
5

Overview of GPU’s architecture

http://pc.watch.impress.co.jp/docs/news/event/20091001_318660.html 6

http://pc.watch.impress.co.jp/docs/news/event/20091001_318660.html

Overview of GPU architecture

• 16(14) SMs (Streaming Multiprocessors)

• 32 CUDA cores / SM

• 512(448) CUDA cores per socket

• 144GBytes/sec memory bandwidth
 (CPU’s bandwidth : ex. 36GBytes/s)

• L1 cache & shared memory / SM

• (16kB/48kB configurable)

• Connected to a host through
 PCI express bus

• SIMD execution in a single “Warp”

7

Advantages of GPU architectures

• High memory bandwidth

• Fast context switching

 (hardware thread management)

• Execute large number of threads

 (～ tens of thousands)

• Hiding memory latency

 (switch thread context when a warp

 is waiting for memory access)

8

Difficulty of GPU programming

• Needs massive parallelism

 “GPU-friendly” algorithm is required

• Irregular execution path

• Irregular memory access

• Efficient use of fast memory (shared memory)

• Relatively small memory (ex. 3GB / 6GB)

• No global synchronization

9

CUDA programming model

• Developed by nVidia

• Extension of C++ language & library functions

• Hierarchical grouping of threads (Grid & Thread Block)

 Grid : 2-dim, Thread Block : 3-dim

• 16kB shared memory per Thread Block

• Synchronization can be done

only within a thread block

Image from [1]

10

Agenda

• Overview of GPU’s architecture and CUDA programing model

• Unstructured grid and “Motif”

• Background

• Execution Strategy

• Runtime Support

• Evaluation

• Conclusion

• Discussion

• Reference
11

Motif

• A models of typical parallel program structures (formally
called “Dwarfs”)

• Types of parallelism and memory access patterns

• Proposed in “Berkley View Report” [2]

 Dense Linear Algebra BLAS level1,2,3 VxV, MxV, MxM

Sparse Linear Algebra SpMV

Spectral Methods FFT, All-to-all communication

N-body Methods 𝑂 𝑁2 calculation

Structured Grids

Unstructured Grids Often includes indirect memory
reference

Monte Carlo Repeated random trials
12

Motif

• A models of typical parallel program structures (formally
called “Dwarfs”)

• Types of parallelism and memory access patterns

• Proposed in “Berkley View Report” [2]

 Dense Linear Algebra BLAS level1,2,3 VxV, MxV, MxM

Sparse Linear Algebra SpMV

Spectral Methods FFT, All-to-all communication

N-body Methods 𝑂 𝑁2 calculation

Structured Grids

Unstructured Grids Often includes indirect memory
reference

Monte Carlo Repeated random trials
13

Agenda

• Overview of GPU’s architecture and CUDA programing model

• Unstructured grid and “Motif”

• Background

• Execution Strategy

• Runtime Support

• Evaluation

• Conclusion

• Discussion

• Reference

14

Background: Irregular reduction

• Irregular problems : unstructured gird

• Irregular reduction

15

Background: Irregular reduction

• Irregular problems : unstructured gird

• Irregular reduction
RA X IA

16

Background: Irregular reduction

• Irregular problems : unstructured gird

• Irregular reduction

Reduction Space : Output

Computation Space : Read-only
 X : accessed via Indirect array “IA”
 Y : accessed via loop counter “i”

17

Background: Irregular reduction

• Irregular problems : unstructured gird

• Irregular reduction

Reduction Space : Output

Computation Space : Read-only
 X : accessed via Indirect array “IA”
 Y : accessed via loop counter “i”

Challenges:
Datasets are typically extremely large,
And global memory is very slow
 Needs to utilize shared memory

18

Agenda

• Overview of GPU’s architecture and CUDA programing model

• Unstructured grid and “Motif”

• Background

• Execution Strategy

• Runtime Support

• Evaluation

• Conclusion

• Discussion

• Reference

19

Naïve use of shared memory

• Copy the reduction array for each thread block

• Summation of reduction array is required

• What if RA is larger than shared memory (16KB) ?

• Significant memory overhead

20

Solution:
Partitioning-based Locking Scheme

• Partition the reduction space such that each portion fits
shared memory

• Reorder the RA and X to achieve coalescing access to global
memory

• Completely eliminate the requirement for RA array reduction

21

Two strategies for partitioning

• (1) Computation Space-based Partitioning

RA X

22

Two strategies for partitioning

• (1) Computation Space-based Partitioning

– A reduction point can belong to several partitions

– A # of reduction points that corresponds to a
partition varies,
 difficult to optimally use shared memory

RA X

23

Two strategies for partitioning

• (1) Computation Space-based Partitioning

24

Two strategies for partitioning

• (2) Reduction Space-based Partitioning

– Only one copy of the reduction array

– More edges than method (1)

– We employ this method here

RA X

25

Two strategies for partitioning

• (2) Reduction Space-based Partitioning

– We employ this method here

– Computation size increases, but memory is more precious

26

Agenda

• Overview of GPU’s architecture and CUDA programing model

• Unstructured grid and “Motif”

• Background

• Execution Strategy

• Runtime Support

• Evaluation

• Conclusion

• Discussion

• Reference

27

3 Runtime supports for partitioning

• METIS partitioning (MP)

• GPU-based (trivial) partitioning (GP)

• Multi-dimensional partitioning (MD)

28

3 Runtime supports for partitioning

• METIS partitioning (MP)

– Widely used partitioner for graphs and finite element meshes

– Executes serially on a CPU

– Initialization cost is very high

29

3 Runtime supports for partitioning

• GPU-based (trivial) partitioning (GP)

– Very simple and implemented on a GPU

– Divide reduction space simply on the order of inputs

– Has a significantly larger number of edges

– O(n) , n = # of particles

30

3 Runtime supports for partitioning

• Multi-dimensional partitioning (MD)

– Based on node coordinates and finding the k-th smallest value

– O(np) , p = # of partitions

– Practically the # of particles is much smaller than # of particles

– Implemented on CPU

31

Agenda

• Overview of GPU’s architecture and CUDA programing model

• Unstructured grid and “Motif”

• Background

• Execution Strategy

• Runtime Support

• Evaluation

• Conclusion

• Discussion

• Reference

32

Evaluation settings & applications

• Evaluation settings
– CPU : Xeon E5520, 48GB memory

– GPU : NVIDIA C2050, 2.68GB memory

• Applications
– Fluid dynamics application “Euler”

• 20,000 nodes, 120,000 edges, 12,000 faces

• 50,000 nodes, 300,000 edges, 29,000 faces

• 10,000 time step iterations

– Molecular Dynamics application
• 37,000 molecules, 4,600,000 interactions

• 131,000 molecules, 16,200,000 interactions

• 100 time step

• In adaptive version, indirection array is modified every 20 interactions

33

Comparison between partitioning
schemes

34

Impact of number of partitions
on partitioning efficiency

• “GP has the shortest running time, across varying number of partitions”

• “MP is around 2.8 times faster than MD when 14 partitions are desired.
 However, MP increases sharply with the increasing number of partitions”

• “MD is not influenced by the number of partitions significantly”

35

Computation time components

36

Impact of shared memory preference

37

Comparison of MP,GP,MD
(adaptive)

38

Agenda

• Overview of GPU’s architecture and CUDA programing model

• Unstructured grid and “Motif”

• Background

• Execution Strategy

• Runtime Support

• Evaluation

• Conclusion

• Discussion

• Reference

39

Conclusion
• To execute irregular reduction problem on GPU, shared-

memory-aware partitioning scheme is proposed

• For efficient mesh partitioning, METIS partitioning, GPU
simple partitioning and multi dimension partitioning are
compared.

• METIS achieves good partitioning, but has significant
initialization overhead.

• GPU simple partitioning has the shortest partitioning time,
but the partitioning quality is low.

• Multi dimension partitioning achieves good time-quality
balance and best overall performance.

40

Agenda

• Overview of GPU’s architecture and CUDA programing model

• Unstructured grid and “Motif”

• Background

• Execution Strategy

• Runtime Support

• Evaluation

• Conclusion

• Discussion

• Reference

41

Discussion

• Other multi-threaded parallel graph partitioning software ?

– (ParMETIS is MPI-based parallelization)

– SCOTCH[3], PARTY[4], Chaco[5], JOSTLE[6],…

• GPU ‘trivial’ partitioning can be faster ?

– Partitioning times of GP(on GPU) and MP(on CPU) are nearly equal

– GP seems to have room to further optimization

– Any challenge on implementing GP on GPU?

• What about if the total amount of data > 3GB ?

– “Partition-aware” data management is required ?

42

Agenda

• Overview of GPU’s architecture and CUDA programing model

• Unstructured grid and “Motif”

• Background

• Execution Strategy

• Runtime Support

• Evaluation

• Conclusion

• Reference

43

References

• [1] http://www.resultsovercoffee.com/2011/02/cuda-blocks-
and-grids.html

• [2] “The Landscape of Parallel Computing Research: A View
from Berkeley” Electrical Engineering and Computer Sciences
University of California at Berkeley, Technical Report No.
UCB/EECS-2006-183

• [3] SCOTCH http://www.labri.fr/perso/pelegrin/scotch

• [4] PARTY http://www2.cs.uni-paderborn.de/cs/ag-
monien/PERSONAL/ROBSY/party.html

• [5] Chaco http://www.sandia.gov/~bahendr/chaco.html

• [6] JOSTLE
http://www.cs.sunysb.edu/~algorithm/implement/jostle/impl
ement.shtml

44

http://www.resultsovercoffee.com/2011/02/cuda-blocks-and-grids.html
http://www.resultsovercoffee.com/2011/02/cuda-blocks-and-grids.html
http://www.resultsovercoffee.com/2011/02/cuda-blocks-and-grids.html
http://www.resultsovercoffee.com/2011/02/cuda-blocks-and-grids.html
http://www.resultsovercoffee.com/2011/02/cuda-blocks-and-grids.html
http://www.resultsovercoffee.com/2011/02/cuda-blocks-and-grids.html
http://www.resultsovercoffee.com/2011/02/cuda-blocks-and-grids.html
http://www.labri.fr/perso/pelegrin/scotch
http://www2.cs.uni-paderborn.de/cs/ag-monien/PERSONAL/ROBSY/party.html
http://www2.cs.uni-paderborn.de/cs/ag-monien/PERSONAL/ROBSY/party.html
http://www2.cs.uni-paderborn.de/cs/ag-monien/PERSONAL/ROBSY/party.html
http://www2.cs.uni-paderborn.de/cs/ag-monien/PERSONAL/ROBSY/party.html
http://www2.cs.uni-paderborn.de/cs/ag-monien/PERSONAL/ROBSY/party.html
http://www.sandia.gov/~bahendr/chaco.html
http://www.cs.sunysb.edu/~algorithm/implement/jostle/implement.shtml
http://www.cs.sunysb.edu/~algorithm/implement/jostle/implement.shtml

Thank you.

45

