SUyykavEa—T429

2011/10/17
=2 E%h (11M37264 R =)

AT Em X :
“An Execution Strategy and Optimized
Runtime Support for Parallelizing Irregular

Reductions on Modern GPUs”

Z 38 :Xing Hue, Vignette T. Ravi, Wending Ma and Gagman
Angara

(Ohio State University)
ICS’11

RERE {eH=EH

Abstract

e Strategy & runtime support for reduction problems on
unstructured grid (fluid dynamics & molecular dynamics) on
NVIDIA GPUs

* Based on mesh partitioning in reduction space to achieve
effective use of GPU’s shared memory.

* Achieved up to 11.6x speedup compared to serial CPU
execution

Agenda

Overview of GPU’s architecture and CUDA programing model
Unstructured grid and Motif

Background

Execution Strategy

Runtime Support

Evaluation

Conclusion

Discussion

Reference

Agenda

* Overview of GPU’s architecture and CUDA programing model

Overview of GPU’s architecture

http://pc.watch.impress.co.jp/docs/news/event/20091001 318660.html .

http://pc.watch.impress.co.jp/docs/news/event/20091001_318660.html

Overview of GPU architecture

1 © 16(14) SMs (Streaming Multiprocessors)
M + 32 CUDA cores / SM
1 © 512(448) CUDA cores per socket

BE * 144GBytes/sec memory bandwidth
; (CPU’s bandwidth : ex. 36GBytes/s)

* L1 cache & shared memory /SM
* (16kB/48kB configurable)

* Connected to a host through
PCl express bus

e SIMD execution in a single “Warp”

Advantages of GPU architectures

§ © High memory bandwidth

* Fast context switching

(hardware thread management)

* Execute large number of threads

(~ tens of thousands)

* Hiding memory latency
(switch thread context when a warp

is waiting for memory access)

Difficulty of GPU programming

H © Needs massive parallelism

“GPU-friendly” algorithm is required

* Irregular execution path

* Irregular memory access
* Efficient use of fast memory (shared memory)
» Relatively small memory (ex. 3GB / 6GB)

* No global synchronization

CUDA programming model

Developed by nVidia
Extension of C++ language & library functions

Hierarchical grouping of threads (Grid & Thread Block)
Grid : 2-dim, Thread Block : 3-dim a

16kB shared memory per Thread Block -

Synchronization can be done

only within a thread block y r

Image from [1]

10

Agenda

e Unstructured grid and “Motif”

Motif

A models of typical parallel program structures (formally
called “Dwarfs”)

* Types of parallelism and memory access patterns
* Proposed in “Berkley View Report” [2]

Dense Linear Algebra BLAS levell,2,3 VxV, MxV, MxM
Sparse Linear Algebra SpMV

Spectral Methods FFT, All-to-all communication
N-body Methods O(N?) calculation

Structured Grids

Unstructured Grids Often includes indirect memory
reference

Monte Carlo Repeated random trials

Motif

A models of typical parallel program structures (formally
called “Dwarfs”)

* Types of parallelism and memory access patterns
* Proposed in “Berkley View Report” [2]

Dense Linear Algebra BLAS levell,2,3 VxV, MxV, MxM
Sparse Linear Algebra SpMV

Spectral Methods FFT, All-to-all communication

N-body Methods O(N?) calculation

Structured Grids

Unstructured Grids Often includes indirect memory
reference

Monte Carlo Repeated random trials

Agenda

* Background

Background: Irregular reduction

* Irregular problems : unstructured gird

* lIrregular reduction

Real X (numNodes), Y (numEdges); ! Data arrays
Integer I A(numEdges,2); ! Indirection array
Real R A(numNodes); ! Reduction array

for (i=1; i<numEdges; 1++) {
RA(TA(1,1)) = RA(TIA(1)) op (Y(i) op X(TA(,1) op X(1A(1,2))))

RA(TA(.2)) = RA(TA(i.,2)) op (Y(i) op X(IAG.1) op X(IA(1.2)))):

)

Figure 1: Typical Structure of Irregular Reduction

Partition 1

15

Background: Irregular reduction

* Irregular problems : unstructured gird

* lIrregular reduction

Real X (numNodes), Y (numEdges); ! Data arrays
Integer I A(numEdges,2); ! Indirection array
Real R A(numNodes); ! Reduction array

for (i=1; i<numEdges; 1++) {
RA(TA(1,1)) = RA(TIA(1)) op (Y(i) op X(TA(,1) op X(1A(1,2))))

RA(TA(.2)) = RA(TA(i.,2)) op (Y(i) op X(IAG.1) op X(IA(1.2)))):

)

Figure 1: Typical Structure of Irregular Reduction

RA

16

Background: Irregular reduction

* Irregular problems : unstructured gird
* lIrregular reduction

Computation Space : Read-only
X : accessed via Indirect array “IA”

Y : accessed via loop counter “i”
Real X (numNodes), Y (numEdges); ! Data arrays

Integer / A(numEdges,2); ! Indirection array
Real R A(numNodes); ! Reduction array
forfimt i Edaes--)-{

RA(IAGL1)) = RA(TAGL1)) lop| (Y(i) op X(IAGL1) op X(IAG.2)))
RA(TA(1.2)) = RA(TA(i,2)) lop| (Y (i) op X(IAG.1) op X(IAG.2)))):

I
Figure l&pical Structure of Irregular Reduction

\

Reduction Space : Output

17

Background: Irregular reduction

* Irregular problems : unstructured gird
* lIrregular reduction

Computation Space : Read-only
X : accessed via Indirect array “IA”

Y : accessed via loop counter “i”
Real X (numNodes), Y (numEdges); ! Data arrays

Integer / A(numEdges,2); ! Indirection array
Real R A(numNodes); ! Reduction array
forfimt i Edaes--)-{

RA(IAGL1)) = RA(TAGL1)) lop| (Y(i) op X(IAGL1) op X(IAG.2)))
RA(TA(1.2)) = RA(TA(i,2)) lop| (Y (i) op X(IAG.1) op X(IAG.2)))):

I
Figure l&pical Structure of Irregular Reduction

Challenges:
\ Datasets are typically extremely large,
Reduction Space : Output And global memory is very slow

- Needs to utilize shared memory

18

Agenda

* Execution Strategy

Naive use of shared memory

* Copy the reduction array for each thread block

 Summation of reduction array is required
 What if RAis larger than shared memory (16KB) ?
* Significant memory overhead

20

Solution:
Partitioning-based Locking Scheme

Partition the reduction space such that each portion fits
shared memory

Reorder the RA and X to achieve coalescing access to global
memory

Completely eliminate the requirement for RA array reduction

21

Two strategies for partitioning

* (1) Computation Space-based Partitioning

Real X (numNodes), Y (numEdges); ! Data arrays RA
Integer I A(numEdges,2); ! Indirection array
Real R A(numNodes); ! Reduction array

for (i=1; i<numEdges; 1++) {

RAIAG, D) = RATAG, 1)) op|(Y(i) op X(TAG,1) op X(IA(i,2))))
RA(TA(1,2)) = RA(IAG,2)) op|(Y (1) op X(TIA(1,1) op X(IA(1,2))));

}

Figure 1: Typical Structure of Irregular Reduction

Two strategies for partitioning

* (1) Computation Space-based Partitioning

Real X (numNodes), Y (numEdges); ! Data arrays RA X
Integer I A(numEdges,2); ! Indirection array
Real R A(numNodes); ! Reduction array

for (i=1; i<numEdges; 1++) {

RAIAG, D) = RATAG, 1)) op|(Y(i) op X(TAG,1) op X(IA(i,2))))
RA(TA(1,2)) = RA(IAG,2)) op|(Y (1) op X(TIA(1,1) op X(IA(1,2))));

}

Figure 1: Typical Structure of Irregular Reduction

— A reduction point can belong to several partitions

— A # of reduction points that corresponds to a
partition varies,

- difficult to optimally use shared memory

Two strategies for partitioning

* (1) Computation Space-based Partitioning

Partition 1
L]

AN

Partition 1 i Partition 2 i Partition 3 i Partition 4

(b) Reduction Size Increase in Each Partition

Figure 2: Computation Space partitioning and reduction size in
each partition

(a) Partitioning on Computation Space

24

Two strategies for partitioning

e (2) Reduction Space-based Partitioning

RA
Real X (numNodes), Y (numEdges); ! Data arrays
Integer I A(numEdges,2); ! Indirection array
Real R A(numNodes); ! Reduction array
okl Edeesi [

RA(IAG1)) = RATAG. 1) lop (Y(i) op XAA(GL1) op X(IAG.2)))
RA(IA(,2)) = RATA(1,2)) lop (Y(i) op X(IAG.1) op X(AG,2)))):

J

Figure 1: Typical Structure of Irregular Reduction

— Only one copy of the reduction array

— More edges than method (1)
— 2> We employ this method here

Two strategies for partitioning

e (2) Reduction Space-based Partitioning

Partition 1

o —

— - — . B

Partition 2
T =

= e ' 1 1

. Partition 1 I Partition 2 : Partition 3 : Parlition 4
Partition 3 . ¢ .

— — e (b) Workload Increase in Each Partition
Partition 4

Figure 3: Reduction Space partitioning and computation size in
each partition
(a) Partitioning on Reduction Space

— 2> We employ this method here

— Computation size increases, but memory is more precious
26

Agenda

* Runtime Support

3 Runtime supports for partitioning
 METIS partitioning (MP)
 GPU-based (trivial) partitioning (GP)

e Multi-dimensional partitioning (MD)

3 Runtime supports for partitioning

 METIS partitioning (MP)
— Widely used partitioner for graphs and finite element meshes
— Executes serially on a CPU

— Initialization cost is very high

3 Runtime supports for partitioning

 GPU-based (trivial) partitioning (GP)
— Very simple and implemented on a GPU
— Divide reduction space simply on the order of inputs
— Has a significantly larger number of edges

— 0O(n) , n = # of particles

3 Runtime supports for partitioning

* Multi-dimensional partitioning (MD)

— Based on node coordinates and finding the k-th smallest value

i
-~

— O(np), p=# of partitions

— Practically the # of particles is much smaller than # of particles

— Implemented on CPU

Agenda

 Evaluation

Evaluation settings & applications

* Evaluation settings
— CPU : Xeon E5520, 48GB memory
— GPU : NVIDIA C2050, 2.68GB memory

* Applications

— Fluid dynamics application “Euler”
e 20,000 nodes, 120,000 edges, 12,000 faces
e 50,000 nodes, 300,000 edges, 29,000 faces
* 10,000 time step iterations

— Molecular Dynamics application
* 37,000 molecules, 4,600,000 interactions
* 131,000 molecules, 16,200,000 interactions
* 100 time step
* |n adaptive version, indirection array is modified every 20 interactions

Comparison between partitioning
schemes

Ed

a0 7 e
frd = 2]
25 gg gﬁg
g5 7 7
i 7 |
e 2
o = B b
Fecd s i
CPU Full Locking FEL (=g 1] Full
Replicatan Replication
20K dataset 50K dataset

Figure 6: Euler: Comparison of PBL Scheme Over Conventional
Strategies and Sequential CPU Execution

15 Freen 7

14 ﬁ

L1 f{.
| W

& = 5 /

o 4 Rzt LA @ ﬁ é:

cru Full Locking PEL CPU Full Locking PEL

Replication Replication
17K dataset 131K dataset

Figure 7: Molecular Dynamics: Comparison of PBL Over Conven-
tional Strategies and Sequential CPU Execution

34

Impact of number of partitions
on partitioning efficiency

- e e
B B

B %%
G

=

Reordering Time

log] Time (ps))

Cinit Tirme

CERunning Time

%

o

-
£

g

MP

= T -,

p

MP

=
=
=

14 28 a2
Number of partitions in Euler

Figure §: Cost Components of Partitioners (Euler)

“GP has the shortest running time, across varying number of partitions”
“MP is around 2.8 times faster than MD when 14 partitions are desired.

However, MP increases sharply with the increasing number of partitions’

“MD is not influenced by the number of partitions significantly”

)

35

Computation time components

R
25 £ E
|

20 i -
E B Reardering Tirme
n 15
£ O Partition Timse
=

10 B Copy Time

o O Cormputation Time
5 3

i i

o
R
ﬂ L*

8wk

B

R i
R — -
2 [

R : p

e R

[P

1] T

ey
ey
i
ey
-y
i

$Enl2E P0G 28512 FHabd 2Ex] 28 2E2SEI8nS1E 28nkd |2Enl2E IR 5G 28512

MD GP NP |

Figure 11: Comparison of Metis, GPU and Multi-dimensional us-
ing 28 Partittons for Euler (20K)

Impact of shared memory preference

s =

o

iond 25 iond 14 Partitians 47 Partithons

=
=

arti

=3

14 Partd

Euwler20K Euiler 0¥

Figure 13: Shared Memory Preferred (14 Partitions) Vs. Cache
Preferred (28 Partitions) - (left) Shared Memory Preferred (14 Par-
titions) Vs. Cache Preferred (42 Partitions) - (right)

37

Comparison of MP,GP,MD
(adaptive)

500
+H : +H 2 b
iz ﬁ;ﬁ MAccrdering Tima
o :ﬁj Opprtition Time
ﬁ I Ciopry Thevaz
300 E P 3 : ﬁ Biamzutataon Time
A 5 e :
B s B B L ‘N
dbd | 41xl33 i!:l.!!lE-ldE‘.l:El?l Ak | 43a123 | A3 5E i!:l.‘il.!l 1wl |411]JH 43aFcn 41x5132 ‘
(] | GF | P
PBL Locking Full Rege| CPU
leahon

Figure 14: Comparison of MP, GE, and MD for Adaptive Molecular
Dynamics (37K dataset, 42 partitions)

38

Agenda

e Conclusion

Conclusion

To execute irregular reduction problem on GPU, shared-
memory-aware partitioning scheme is proposed

For efficient mesh partitioning, METIS partitioning, GPU
simple partitioning and multi dimension partitioning are
compared.

METIS achieves good partitioning, but has significant
initialization overhead.

GPU simple partitioning has the shortest partitioning time,
but the partitioning quality is low.

Multi dimension partitioning achieves good time-quality
balance and best overall performance.

Agenda

 Discussion

Discussion

* Other multi-threaded parallel graph partitioning software ?

— (ParMETIS is MPI-based parallelization)

— SCOTCHI3], PARTY[4], Chaco[5], JOSTLE[6],...

* GPU ‘trivial’ partitioning can be faster ?

— Partitioning times of GP(on GPU) and MP(on CPU) are nearly equal
— GP seems to have room to further optimization

— Any challenge on implementing GP on GPU?

e What about if the total amount of data > 3GB ?

— “Partition-aware” data management is required ?

Agenda

* Reference

References

[1] http://www.resultsovercoffee.com/2011/02/cuda-blocks-
and-grids.html

[2] “The Landscape of Parallel Computing Research: A View
from Berkeley” Electrical Engineering and Computer Sciences
University of California at Berkeley, Technical Report No.
UCB/EECS-2006-183

[3] SCOTCH http://www.labri.fr/perso/pelegrin/scotch

[4] PARTY http://www?2.cs.uni-paderborn.de/cs/ag-
monien/PERSONAL/ROBSY/party.html

[5] Chaco http://www.sandia.gov/~bahendr/chaco.html

[6] JOSTLE
http://www.cs.sunysb.edu/~algorithm/implement/jostle/impl
ement.shtml

44

http://www.resultsovercoffee.com/2011/02/cuda-blocks-and-grids.html
http://www.resultsovercoffee.com/2011/02/cuda-blocks-and-grids.html
http://www.resultsovercoffee.com/2011/02/cuda-blocks-and-grids.html
http://www.resultsovercoffee.com/2011/02/cuda-blocks-and-grids.html
http://www.resultsovercoffee.com/2011/02/cuda-blocks-and-grids.html
http://www.resultsovercoffee.com/2011/02/cuda-blocks-and-grids.html
http://www.resultsovercoffee.com/2011/02/cuda-blocks-and-grids.html
http://www.labri.fr/perso/pelegrin/scotch
http://www2.cs.uni-paderborn.de/cs/ag-monien/PERSONAL/ROBSY/party.html
http://www2.cs.uni-paderborn.de/cs/ag-monien/PERSONAL/ROBSY/party.html
http://www2.cs.uni-paderborn.de/cs/ag-monien/PERSONAL/ROBSY/party.html
http://www2.cs.uni-paderborn.de/cs/ag-monien/PERSONAL/ROBSY/party.html
http://www2.cs.uni-paderborn.de/cs/ag-monien/PERSONAL/ROBSY/party.html
http://www.sandia.gov/~bahendr/chaco.html
http://www.cs.sunysb.edu/~algorithm/implement/jostle/implement.shtml
http://www.cs.sunysb.edu/~algorithm/implement/jostle/implement.shtml

Thank you.

