
Grid Computing

2012/1/30

金光浩(11D37060 松岡研究室)

PATUS: A Code Generation and Auto-Tuning
Framework For Parallel Stencil Computations

Shoaib Kamilyz, Cy Chany, Leonid Olikery,
J h Sh lf S l Willi

In Parallel & Distributed Processing Symposium (IPDPS) 2010

John Shalfy, Samuel Williamsy

In Parallel & Distributed Processing Symposium (IPDPS), 2010
IEEE International

松岡研究室
金光浩 11D37060

Overview
PATUS is a code generation and auto-tuning framework

for stencil computations targeted at modern multi- and
h lti CPU d GPUmany-core processors, such as multi-core CPUs and GPUs.

User input makefile
code.cu

Using a small domain specific language (DSL)Using a small domain specific language (DSL),
the user defines the stencil kernel using a C-like syntax.
The framework generates the code for a compute kernel from a specification of
the stencil operation and a Strategy:

They leverage the auto-tuning methodology to find the optimal

3

They leverage the auto tuning methodology to find the optimal
hardware architecture-specific and Strategy-specific parameter configuration.

Process

input

Select

4

Examples-Input

1.A rectangular domain

2.Define Initial condition by user

3.Working on boundary conditiong y

5

Strategy

6

Strategy-1

The parameter chunk to the schedule keyword
defines how many consecutive blocks one thread is given.

7

Strategy-2

D fi th bl k i [f h di i] d d [h d l]Define the block size[of each dimension] and access order[schedule].

blocks v of size cb over the root domain u
The cb will be interfaced with the auto tuner

8

The cb will be interfaced with the auto tuner.
values for cb= (c1; c2; : : : ; cd), where d is the dimensionality of the stencil.

Strategy-3

1-dimensional thread blocks and grids,
3-dimensional thread blocks and a 2-dimensional grid,
3-dimensional thread blocks and grids

9

GPU-Platform

10

Makefile

11

Driver.cu

Exchange this part for input

or predefined

* Not pre-treatment of C languagep g g

12

Java interface

13

Experiment

The Anelastic Wave Propagation code AWP-ODC
of the Southern California Earthquake Center (SCEC)of the Southern California Earthquake Center (SCEC)

AMD Opteron “24 Cours” and an NVIDIA C2050 Fermi GPU

GNU gfortran/gcc 4.5.2 compilers
CUDA 4.0 and NVIDIA’s nvcc compiler

a 188×188×152 domain, single precision

u(i,j,k)=u(i,j,k)+(dth/d)*((,j,) (,j,) () (
+c1*(xx(i,j,k)-xx(i-1,j,k))+
+c2*(xx(i+1,j,k)-xx(i-2,j,k))+
+c1*(xy(i,j,k)-xy(i,j-1,k))+(y(j) y(j))
+c2*(xy(i,j+1,k)-xy(i,j-2,k))+
+c1*(xz(i,j,k)-xz(i,j,k-1))+
+c2*(xz(i,j,k+1)-xz(i,j,k-2)))

14

CPU-result

15

SSE
The Intel Streaming SIMD Extensions technology enhances the performance of floati

ng-point operations. Intel C\C++, Microsoft’s Macro Assembler support SSE. Pentium II
I and Pentium III Xeon SIMD instructions can greatly increase performance when exactI and Pentium III Xeon SIMD instructions can greatly increase performance when exact
ly the same operations are to be performed on multiple data objects.

Intel's first IA-32 SIMD effort was the MMX instruction set. MMX had two main problep
ms: it re-used existing floating point registers making the CPU unable to work on both fl
oating point and SIMD data at the same time, and it only worked on integers.

SSE floating point instructions operate on a new independent register set (the XMM g p p p g (
registers), and it adds a few integer instructions that work on MMX registers.

Arithmetic Instructions
#include <xmmintrin.h>
__m128 a, b, c;
a = mm set ps(4, 3, 2, 1)

Arithmetic Instructions
addps, addss
subps, subss
mulps, mulssa _mm_set_ps(4, 3, 2, 1)

b = _mm_set_ps(4, 3, 2, 1)
c = _mm_set_ps(0, 0, 0, 0)

l (b)

p ,
divps, divss
sqrtps, sqrtss
maxps, maxss

16

c = _mm_mul_ps(a, b);
p

minps, minss

Loop unrolling
for (i = 0; i < 100; i++)

A[i] = A[i] + B[i] * C

You can unroll the loop, as we have below, giving you the same operations in fewer
iterations with less loop overhead. You can imagine how this would help on any computer. p g p y p
Because the computations in one iteration do not depend on the computations in other
iterations, calculations from different iterations can be executed together. On a superscalar
processor portions of these four statements may actually execute in parallel:processor, portions of these four statements may actually execute in parallel:

for (i = 0; i < 100; i += 4)
{

A[i] = A[i] + B[i] * C;
A[i+1] = A[i+1] + B[i+1] * C;A[i+1] = A[i+1] + B[i+1] C;
A[i+2] = A[i+2] + B[i+2] * C;
A[i+3] = A[i+3] + B[i+3] * C

17

}

GPU

1-dimensional thread blocks and grids,
3-dimensional thread blocks and a 2-dimensional grid,

18

3-dimensional thread blocks and grids

Conclusion

PATUS, a code generation and
f fauto-tuning framework for general stencil computations.

It is for both programmers in need of an efficient implementation of a stencil
k l f i h d hit t b t h d t t tkernel for a given hardware architecture, but who do not want to care
about hardware-specific tuning, and for domain experts who want to
experiment.

The framework still has limitations (restriction to shared memory architectures,
no special boundary treatment, lacking support for temporal blocking
schemes) which we intend to overcome in the futureschemes),which we intend to overcome in the future.

PATUS is open source software and licensed under
the GNU Lesser GPL It can be obtained fromthe GNU Lesser GPL. It can be obtained from
http://code.google.com/p/patus/.

19

question?

Auto-tuning

Panorama [8], [9] was a research compiler for tiling iterative
stencil computations in order to minimize cache misses. 2008

Berkeley stencil auto-tuner [10] seeks to substitute an annotatedy []
stencil computation in Fortran95 automatically by an optimized version. 2007

Th P h i t il il [11] li th h bli i id i iti llThe Pochoir stencil compiler [11] applies the cache oblivious ideas initially
formulated by Frigo and Strumpen [12] to stencil codes with ideally many time steps.
2008

Mint [14] targets NVIDIA GPUs as hardware platforms
and translates traditional but annotated C code to CUDAand translates traditional, but annotated, C code to CUDA
C and applies hardware-specific optimizations specifically
tailored for stencil computations.2007

21

