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Abstract

The GPUs computational power for many applications.

The current programming techniques are not sufficient for
irregular, and unbalanced workload.

The serious performance problem with concurrent multiple
GPUs execution.

Task-based dynamic load-balancing solution for single and
multi-GPU systems.

A Finer granularity than current GPU programming APIs
Micro-benchmarks, Molecular dynamics application

On single- GPU systems, the solution is more efficiently than
the CUDA scheduler for unbalanced workload.

On multi- GPU systems, the solution achieves near-linear
speedup, load balance, and significant performance
improvement over techniques based on standard CUDA APIs.
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Introduction

Problem

e |Load balancing and GPU resource utilization are not
enough, with the current GPU programming paradigm.

e Conventional GPU programming does not provide sufficient
mechanisms to exploit task parallelism in applications



Introduction

Solution

e Task-based fine-grained execution scheme

- Dynamically balance workload on individual GPUs and
among GPUs

— Utilize the underlying hardware more efficiently

e Mechanisms to enable correct and efficient CPU-GPU
interactions while the GPU is computing, based on the current
CUDA technology.

e Task queue scheme enables dynamic load balancing at a finer
granularity than what is supported in existing CUDA
programming paradigm.

e Optimal memory sub-system locations for the queue data
structures.

e Implementation of the queue scheme with CUDA.
— Concurrent host enqueue and device dequeue
- Wait-free dequeue operations on the device.



Introduction

Result

e Case study: molecular dynamics application

- Single-GPU: effective utilization of the hardware than the
CUDA scheduler, for unbalanced problems

- Multi-GPU: nearly linear speedup, load balance, and
significant performance improvement over alternative
implementations based on the canonical CUDA paradigm
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CUDA Architecture!!!

Host Interface

GigaThead

CUDA Core

Dispatch Pon
Dperand Collector

Fermi Streaming Multiprocessor (SM)



Agenda

4. System Design



System Design

Host process g

Host process Task Persistent kernel

Kernel 1 queue(s)
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Figure 1: CUDA programming paradigm Figure 2: Task queue paradigm



System Design

Algorithm 1

Enqueue

Data: atask object task, a task quene quewe of a capacity of size
Result: task is inserted into gueue

l1: repeat

2: [ +— (end — start + size) (mod size)

3: until [ < (size — 1)

4 gqueue[end] — task

3. end — (end + 1) (mod size)
Dequeue

Data: atask queve gueue of a capacity of size
Result: a task object is removed from gueue into task
1: repeat
2: [ +— (end — start 4+ size) (mod size)
3 until [ > 0
4: task «— queue[start]

5: start «+— (start+ 1) (mod size)




System Design

Algorithm 2 Host Enqueue

Data: n task objects tasks, n_gueue task queues g , each of a capacity of
size, 1 NeXt queue to insert
Result: host process engueues tasks into g
I: noremaining +— n

2: ifn_remaining > size then
3: ntowrite «— size
4: else
3: nto.write +— n-remaining
6: end if
T: repeat
8: if g[i].hconsumed = g[i].howritten then
9: gli].dtasks-gm + {tasks[n — noremaining : n —
n-remaining + nito.write — 1]
10: g[i].dongm «— n_to_write
11: host_write_fence()
12: qli]. howritten «— q[i].howritten + n_to_write
13: gli].dewritten.gm +— gq[i].h-written
14: i+— (i+ 1) (mod n_queues)
15: N.remaining +— n.oremaining — nto_write
16: if n_remaining > size then
17: n_towrite «— size
135: else
19: n_to_wrile +— n_remaining
20: end if
21: else
22: t+— (t+ 1) (mod n_gueues)

23: end if
24: until n_to_write = 0




System Design

Algorithm 3 Device Dequeue

Data: n-gueue (ask queues g, ¢ next queuve to work on
Result: TB fetches a task object from g into task-sm
1: done «— false

2: if localid = 0 then
3 repeat
4: if g[i].deconsumed-gm = q[i].dewritien-gm then
5 i+— (i+ 1) (mod ngueues)
6: else
T j + fetch.and_add(qi].dngm, —1) —1
8: if 5 = 0 then
0: task.sm +— q[i].d-tasks_.gm][j]
10: block_write_fence()
11: done +«— true
12: ij + fetch_and_add(q[i].d_.consumed_gm, 1)
13: if 77 = g[i]. dewritten.gm then
14: g[i].h-consumed + g[i].d-consumed.gm
15: i+— (i+ 1) (mod ngueues)
16: end if
17: else
18: i+— (i+ 1) (mod nogueues)
19: end if
20: end if
21: until done
22: end if

23: block_barrier()
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Problems

e Copies between the host memory and device memory
without interrupting the kernel execution

e Where to keep the queue and associated index variables

e How to guarantee the correctness of the queue operations in
this host-device situation

e How to guarantee the correctness on accessing shared
objects, if we allow dynamic load balance on the device



System Design

Solutions

[2]
Asynchronous concurrent execution: overlap the host-device
data transfer with kernel execution

Mapped host memory: enable the light-weight queue polling
without generating host-device traffic

Event: asynchronously monitor the device’s progress

Atomic instructions: enable the non-blocking synchronization
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System Environment

®q quad-core AMD Phenom II X4 940 processor
® 4 NVIDIA Tesla C1060 GPUs

® 64-bit Ubuntu version 8.10

® NVIDIA driver version 190.10

® CUDA Toolkit version 2.3

® CUDA SDK version 2.3

® Gcc version 4.3.2



Implementation and Microbenchmarks

Host-device data transfer

120

~-Memcpy + zero Stream (H->D)
-=»Memcpy + zero Stream (D->H) 3
100 «~MemcpyAsync + zero Stream (H->D) /
==MemcpyAsync + zero Stream (D->H) /
q 80 ««~MemcpyAsync + nonzero Stream (H->D) /
=S ~>~MemcpyAsync + nonzero Stream (D->H) /
:-E_, 60 ~~Mapped host memory (D->H) /
s o - ———- ® ————— e
k2 /
c 40
£ 4

N
Q
\

8 16 32 64 128 256 512 1024 2048 40%6
Data size (bytes)

Figure 3: Data transfer time



Implementation and Microbenchmarks

Barrier and fence
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Figure 4: Barrier and fence functions (128Ts/B)



Implementation and Microbenchmarks

Atomic Iinstructions

e One thread in each TB

— A large number of fetch-and-add function
-(access)— Global memory address

327 [ns]



Implementation and Microbenchmarks

Task queue operations

e Average enqueue time: 114.3 [pus]

2 PCle transactions: 110 [ps] (95%)
(120 tasks)

e Average dequeue time: 0.4 [ps]
(128 threads/TB, 120 TBs)
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Case Study: Molecular Dynamics

Molecular Dynamics

Newtonian dynamics of
molecule/atom behavior

Gaussian distribution of
helium atoms in a 3D box




Case Study: Molecular Dynamics
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Figure 5: Relative speedup over Solution 1 versus system
size (1 GPU)



Case Study: Molecular Dynamics
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Case Study: Molecular Dynamics

—

S ,ec =+=Solution 1
3 «“»Solution 2
S «Solution 3
g T -2-Solution TQ
©

& 1

(=%

w

g 05

w

< 0

@

32K 64K 128K 256K 512K 1M
Sytem size (number of atoms)

Figure 8: Relative speedup over Solution 1 versus system
size (4 GPUs)



Speedup

Case Study: Molecular Dynamics
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Conclusion and Future Work

Conclution

e the design of a dynamical load balance task queue
scheme on single- and multi-GPU systems

o excellent speedup and performance improvement at a
molecular dynamics application.

Future Work

e beneficial to other load imbalanced problems on GPU-
enabled systems.



Comments

e Solution TQ have no defect ?
What are the points we should consider ?

e How about the multi-CPU, multi-GPU situation ?

e OSS queue library should be available for
further researches.

e Does CUDA have any plans to support these
kind of queue schema ?
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