)y ROA>Ea—F4>70

2011/10/31
INIESSFE (11M37123 HEAZTE)

] Tam X

Dynamic Load Balancing on
Single- and Multi-GPU Systems

IPDPS 2010

(International Parallel and Distributed Processing Symposium)
Long Chen 1, Oreste Villa ¥, Sriram Krishnamoorthy #, Guang R. Gao T

T Department of Electrical & Computer Engineering University of Delaware
¥ High Performance Computing Pacific Northwest National Laboratory

Abstract

The GPUs computational power for many applications.

The current programming techniques are not sufficient for
irregular, and unbalanced workload.

The serious performance problem with concurrent multiple
GPUs execution.

Task-based dynamic load-balancing solution for single and
multi-GPU systems.

A Finer granularity than current GPU programming APIs
Micro-benchmarks, Molecular dynamics application

On single- GPU systems, the solution is more efficiently than
the CUDA scheduler for unbalanced workload.

On multi- GPU systems, the solution achieves near-linear
speedup, load balance, and significant performance
improvement over techniques based on standard CUDA APIs.

N AW

Agenda

Introduction

Related Work

CUDA Architecture

System Design

Implementation and Microbenchmarks
Case Study: Molecular Dynamics
Conclusion and Future Work
References

Agenda

1. Introduction

Introduction

Problem

e |Load balancing and GPU resource utilization are not
enough, with the current GPU programming paradigm.

e Conventional GPU programming does not provide sufficient
mechanisms to exploit task parallelism in applications

Introduction

Solution

e Task-based fine-grained execution scheme

- Dynamically balance workload on individual GPUs and
among GPUs

— Utilize the underlying hardware more efficiently

e Mechanisms to enable correct and efficient CPU-GPU
interactions while the GPU is computing, based on the current
CUDA technology.

e Task queue scheme enables dynamic load balancing at a finer
granularity than what is supported in existing CUDA
programming paradigm.

e Optimal memory sub-system locations for the queue data
structures.

e Implementation of the queue scheme with CUDA.
— Concurrent host enqueue and device dequeue
- Wait-free dequeue operations on the device.

Introduction

Result

e Case study: molecular dynamics application

- Single-GPU: effective utilization of the hardware than the
CUDA scheduler, for unbalanced problems

- Multi-GPU: nearly linear speedup, load balance, and
significant performance improvement over alternative
implementations based on the canonical CUDA paradigm

Agenda

2. Related Work

Related Work

T. Foley and J. Sugerman. Kd-tree acceleration structures for a gpu
raytracer. In HWWS'05, pages 15-22, New York, NY, USA, 2005.

M. Mller, C.and Strengert and T. Ertl. Adaptive load balancing for
raycasting of non-unitormly bricked volumes. Parallel Computing,
33(6):406 - 419, 2007. Parallel Graphics and Visualization.

D. Cederman and P. T. On Dynamic Load Balancing on Graphics
Processors. In GH 2008, pages 57-64, 2008.

M. Guevara, C. Gregg, and S. K. Enabling task parallelism in the
cuda scheduler. In PEMA 2009, 2009.

M. D. Linderman, J. D. Collins, H. Wang, and T. H. M. Merge: a
programming model for heterogeneous multi-core systems.
SIGPLAN Not., 43(3):287-296, 2008.

C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU:
A Unifled Platform for Task Scheduling on Heterogeneous Multicore
é(r)cohgitectures. In Euro-Par 2009, pages 863-874, Delft, Netherlands,

Agenda

3. CUDA Architecture

CUDA Architecture!!!

Host Interface

GigaThead

CUDA Core

Dispatch Pon
Dperand Collector

Fermi Streaming Multiprocessor (SM)

Agenda

4. System Design

System Design

Host process g

Host process Task Persistent kernel

Kernel 1 queue(s)

180 || ™81 || B2 | TB-(B1)

Host process

() I P L S Y I

Kernel 2

Figure 1: CUDA programming paradigm Figure 2: Task queue paradigm

System Design

Algorithm 1

Enqueue

Data: atask object task, a task quene quewe of a capacity of size
Result: task is inserted into gueue

l1: repeat

2: [+— (end — start + size) (mod size)

3: until [< (size — 1)

4 gqueue[end] — task

3. end — (end + 1) (mod size)
Dequeue

Data: atask queve gueue of a capacity of size
Result: a task object is removed from gueue into task
1: repeat
2: [+— (end — start 4+ size) (mod size)
3 until [> 0
4: task «— queue[start]

5: start «+— (start+ 1) (mod size)

System Design

Algorithm 2 Host Enqueue

Data: n task objects tasks, n_gueue task queues g , each of a capacity of
size, 1 NeXt queue to insert
Result: host process engueues tasks into g
I: noremaining +— n

2: ifn_remaining > size then
3: ntowrite «— size
4: else
3: nto.write +— n-remaining
6: end if
T: repeat
8: if g[i].hconsumed = g[i].howritten then
9: gli].dtasks-gm + {tasks[n — noremaining : n —
n-remaining + nito.write — 1]
10: g[i].dongm «— n_to_write
11: host_write_fence()
12: qli]. howritten «— q[i].howritten + n_to_write
13: gli].dewritten.gm +— gq[i].h-written
14: i+— (i+ 1) (mod n_queues)
15: N.remaining +— n.oremaining — nto_write
16: if n_remaining > size then
17: n_towrite «— size
135: else
19: n_to_wrile +— n_remaining
20: end if
21: else
22: t+— (t+ 1) (mod n_gueues)

23: end if
24: until n_to_write = 0

System Design

Algorithm 3 Device Dequeue

Data: n-gueue (ask queues g, ¢ next queuve to work on
Result: TB fetches a task object from g into task-sm
1: done «— false

2: if localid = 0 then
3 repeat
4: if g[i].deconsumed-gm = q[i].dewritien-gm then
5 i+— (i+ 1) (mod ngueues)
6: else
T j + fetch.and_add(qi].dngm, —1) —1
8: if 5 = 0 then
0: task.sm +— q[i].d-tasks_.gm][j]
10: block_write_fence()
11: done +«— true
12: ij + fetch_and_add(q[i].d_.consumed_gm, 1)
13: if 77 = g[i]. dewritten.gm then
14: g[i].h-consumed + g[i].d-consumed.gm
15: i+— (i+ 1) (mod ngueues)
16: end if
17: else
18: i+— (i+ 1) (mod nogueues)
19: end if
20: end if
21: until done
22: end if

23: block_barrier()

System Design

Problems

e Copies between the host memory and device memory
without interrupting the kernel execution

e Where to keep the queue and associated index variables

e How to guarantee the correctness of the queue operations in
this host-device situation

e How to guarantee the correctness on accessing shared
objects, if we allow dynamic load balance on the device

System Design

Solutions

[2]
Asynchronous concurrent execution: overlap the host-device
data transfer with kernel execution

Mapped host memory: enable the light-weight queue polling
without generating host-device traffic

Event: asynchronously monitor the device’s progress

Atomic instructions: enable the non-blocking synchronization

Agenda

5. Implementation and Microbenchmarks

System Environment

®q quad-core AMD Phenom II X4 940 processor
® 4 NVIDIA Tesla C1060 GPUs

® 64-bit Ubuntu version 8.10

® NVIDIA driver version 190.10

® CUDA Toolkit version 2.3

® CUDA SDK version 2.3

® Gcc version 4.3.2

Implementation and Microbenchmarks

Host-device data transfer

120

~-Memcpy + zero Stream (H->D)
-=»Memcpy + zero Stream (D->H) 3
100 «~MemcpyAsync + zero Stream (H->D) /
==MemcpyAsync + zero Stream (D->H) /
q 80 ««~MemcpyAsync + nonzero Stream (H->D) /
=S ~>~MemcpyAsync + nonzero Stream (D->H) /
:-E_, 60 ~~Mapped host memory (D->H) /
s o - ———- ® ————— e
k2 /
c 40
£ 4

N
Q
\

8 16 32 64 128 256 512 1024 2048 40%6
Data size (bytes)

Figure 3: Data transfer time

Implementation and Microbenchmarks

Barrier and fence

1000

900

- V\/\/\
700 -

600
500 -
400
300
200

100
0

-

Time (ns)

-=-block_fence (one T/B)

i -o-bl;;k_barrier
block_fence (all Ts)

1 2 4 8 16 32 64 128 240
Number of thread blocks

Figure 4: Barrier and fence functions (128Ts/B)

Implementation and Microbenchmarks

Atomic Iinstructions

e One thread in each TB

— A large number of fetch-and-add function
-(access)— Global memory address

327 [ns]

Implementation and Microbenchmarks

Task queue operations

e Average enqueue time: 114.3 [pus]

2 PCle transactions: 110 [ps] (95%)
(120 tasks)

e Average dequeue time: 0.4 [ps]
(128 threads/TB, 120 TBs)

Agenda

6. Case Study: Molecular Dynamics

Case Study: Molecular Dynamics

Molecular Dynamics

Newtonian dynamics of
molecule/atom behavior

Gaussian distribution of
helium atoms in a 3D box

Case Study: Molecular Dynamics

%
o

g —— — - —— —Q
".‘5 1 ﬁ - ~:- o -2
E el
§ 0.8
- 0.6 [— il
g e ——————————
® oa --Solution 1
& --Solution 2
L2 Solution 3
=2 ~e-Solution TQ
& 0
312K 6aK 128K 256K 512K M

System size (number of atoms)

Figure 5: Relative speedup over Solution 1 versus system
size (1 GPU)

Case Study: Molecular Dynamics

. CO I - _
Pl B computation block

ps: (IO IO T I I - L nullfied block

Figure 6: Workload patterns

25
® Solution 1
® Solution TQ

zo I l
0 l L
PO Pl P2 P3 Pa

Figure 7: Runtime for different load patterns

Time (s)
&

-
=)

w

Case Study: Molecular Dynamics

—

S ,ec =+=Solution 1
3 «“»Solution 2
S «Solution 3
g T -2-Solution TQ
©

& 1

(=%

w

g 05

w

< 0

@

32K 64K 128K 256K 512K 1M
Sytem size (number of atoms)

Figure 8: Relative speedup over Solution 1 versus system
size (4 GPUs)

Speedup

Case Study: Molecular Dynamics

4
o =+=Solution 1
» -#-Solution 2
25 | *Solution 3
, |*®SolutionTQ|
)
1.5 plp—
1
0.5 System size = 512K
0 ' T
1 2 3 4
Number of GPUs &0

50 System size = 512K

Figure 9: Speedup versus number of GPUs

Time (s)

Solution 1 Solution 2 Solution3 Solution TQ

Figure 10: Dynamic load on GPUs

Agenda

/. Conclusion and Future Work

Conclusion and Future Work

Conclution

e the design of a dynamical load balance task queue
scheme on single- and multi-GPU systems

o excellent speedup and performance improvement at a
molecular dynamics application.

Future Work

e beneficial to other load imbalanced problems on GPU-
enabled systems.

Comments

e Solution TQ have no defect ?
What are the points we should consider ?

e How about the multi-CPU, multi-GPU situation ?

e OSS queue library should be available for
further researches.

e Does CUDA have any plans to support these
kind of queue schema ?

Agenda

8. References

References

[1] Whitepaper NVIDIA's Next Generation
CUDA Compute Architecture Fermi
http://www.nvidia.com/content/PDF/fermi

white papers/NVIDIA Fermi Compute Arc
hitecture Whitepaper.pdf

[2] NVIDIA CUDA C Programming Guide
http://developer.download.nvidia.com/compu

te/cuda/3 1/toolkit/docs/NVIDIA CUDA C

ProgrammingGuide 3.1.pdf

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_ProgrammingGuide_3.1.pdf
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_ProgrammingGuide_3.1.pdf
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_ProgrammingGuide_3.1.pdf

