Size Matters: Space/Time Tradeofts
to Improve GPGPU Applications
Performance

Outline

Background
— Read Alignment Problem
— Suffix Tree & Suffix Array

Offloading read alignment

— Previous research: MUMmerGPU
— MUMmerGPU++

— Analysis of Space [Time Trade-off

Experiments
Discussion
Conclusion

Read Alignment Problem

 Problem definition

Find all maximal matches of query g on the
reference sequence.

* parameter: minimum match length

 Workload characteristics

— Both of number of queries and reference sequence

length are large
— queries are short

Workload / Species Reference |# of queries | Sequencing technology
sequence length (read length)
HS1 - Homo sapiens chromosome 2 238,202,930 | 78,310,972 454 (~200)
HS2 - Homo sapiens chromosome 3 100,537,107 2,622,728 Sanger (~700)
MONO - L. monocytogenes 2,944,528 6,620,471 454 (~120)
SUIS - S. suis 2,007,491 26,592,500 Illumina (~36)

Suffix Tree

{1 b))
e trie-like structure... TACACA

* Time complexity: o —

— search: O(m) =
— suffix link /
. (A" TACACA$ CA
* Space complexity: V
— # of nodes: O(n) 5 0 B /
: ~
— practically 20 * n Bytes /$ CA$ R ~ /CA$.
5 —_— — y X
2
m: query length $ CA$
n : reference length 4 |
Q: queryset 3 1

Suffix Array

* similar matching operations to suffix tree, but less
space complexity

* Time complexity: “TACACA”
— search: O(m + log n) —“=
— LCP Array Index Suffix ,S;lf:; Ifrf:y (Sl:;,:;k :r';;ayy_l)
. 0 (smallest) |A 5 0 5
* Space complexity: I lack R 2
ACACA 1
_ 3 CA 4 0 1
O(n) 4 CACA 2 2 3
5 (largest) |TACACA 0 0 0

— in practice, 3~5x less

space than suffix tree m: query length
n : reference length
Q: queryset

GPGPU Programming

* three stages:

1. transfer input data to the GPU’s internal memory
2. launch the processing “kernel”
3. transfer output

* GPU has no direct access to the host’s memory nor
to its i/o devices.

— need to allocate i/o buffers on local memory

Challenges

1. Limited onboard GPU memory
— 60GB data (3Gbp DNA, suffix tree) >> 1.5GB memory
(GeForce GTX 480)

2. Limited access to other I/O devices

— needi/o buffers on GPU local memory

— output size is unpredictable because of multiple
alignments (max O(mn|Q]))

Previous Effort: MUMmerGPU

* use suffix tree

* Divide
— dividing the long reference string into shorter overlapping

segments.

— dividing the query set into smaller sized subsets.
— reporting a complressed representation of the results

* 4-step
— Copy in: transfer the query subset and suffix tree to the GPU
— Matching : queries of a query subset are aligned to the tree.
— Copy out: transfer back.

— Post-Processing: decompress the results and find other
matches.

MUMmerGPU++

e almost the same as
the MUMmerGPU,
1X array

but using su
* Matching:

/I

}

procedure Match(g,

procedure ScanUp(s,

LCP and 1 global variables
glen) {

Assumes SA,

i1=20
while i £ glen - 1 do {
(si, ml) = BinarySearch(qg:)
RecordResult (q:, si, ml)
while si != NULL and 1 <
/* phase 1: cut the search space */
i =141
s =ml -1
51 = Rank[SA[si] + 1]
j = SA[si] + s
(r, ml) = Comp(S, q;-:;)
/* phase 2: find the longest */
if r > 0 then {
(si, ml) = ScanUp(s+ml,
} else {
(si,

q:)

ml) = ScanDown(s+ml, si,

}
RecordResult (q:,
i=1+1

ml)

si,

si, q:) {
r=1
while LCP[si] » s and r > 0
s1 = 51 -1
j = SA[si] + s
(r, ml) = Comp(S;,
s = 5 + ml

do {
Qi-s)

return (si, s)

o

glen — 1 do {

q:)

MUMmerGPU++

* Post-Processing:

/* Assumes SA, LCP and 1 global variables */
procedure PrintSubQueryAlignments (i, si, ml) {
/* print the longest one */
PRINT(SA[si], 1, ml)
/* Scan up */
v = si
m = ml
while v > 0 and m 2 1 do {
/* the lcp could be longer than the
match length, hence the minimum */
m = MIN(m, LCP[v])
vev -1
PRINT (SA[v], 1, m)

}
/* Scan down */
v = 51 + 1
m = MIN(ml, LCP[v])
while v < reflen and m 2 1 do {
PRINT(SA[si], 1, ml)
v e=v + 1
m = MIN(m, LCP[si])

Analysis of Space/Time Tradeoffs(1)

* Matching Stage
— Time complexity is expressed as follows:
T; = kcytyo
— suffix tree
Itree = kCtree(XO(m)
— suffix array
Tarray — kcarra)--’aO((m + 10g(n / Carray)) / F array)
* r: efficiency of calculating the subqueries of a query

t: time complexity of each query

k: # of query subsets

c: # of segments

a: ratio (# of queries [# of SIMD processors)

Analysis of Space/Time Tradeoffs(1)

* Matching Stage

Tvtree Ctree O(m)
Speedup = = X
Tarray carray 0((m + log(n / Carray))'/ F array)

t: time complexity of each query
— thee main factors k: # of query subsets
c: # of segments
a: ratio (# of queries [# of SIMD processors)

* query to segment length ratio(1/2 — 1)

* space ratio (3)

— depends on workload

Analysis of Space/Time Tradeoffs(2)

* Post-Processing Stage
— MUMmerGPU [Suffix tree
* using GPU

* need to know the result size
— using additional information on suffix tree

e stackless DFS

— MUMmerGPU++ [Suffix array
* scan the LCP array directly

— latter approach is more efficient!

Analysis of Space/Time Tradeoffs(3)

e Data Transfer
— 20 % of total exec. time on MUMmerGPU

— suffix array reduces the cost because of better
space efficiency

— extra data transfer in suffix tree based
approach.

Experiment

machine characteristics:
— Intel Core 2 Quad (Q6700 2.66GHz)
— host’s memory: 8GB

— NVIDIA GeForce 9800GX2

 dual gpu, 128 core x 2, 1500MHz , 1GB memory
* PCle 2.0 x16 bus

memory division strategy: maximizing segments
Size
MUMmerGPU++ does not aggressively optimize

— focus on core data structure

Overall Speedup

B configl
B config2
) config3

HS1 HS2 MONO SuUIS
Workloads

* achieve 1.52~3.43x speedup (config2)
* lower speedup in longer minimum-match length (config3)
— number of alignment is decreasing, and matching st

absolute computation time

8_

B Matching

B Post.Processing

O Data.Structure.Construction
6 - O Data.Transfer.from.to.GPU

I l

Hours

MUMmerGPU++ MUMmerGPU

Tool

* Matching stage: MUMmerGPU = MUMmerGPU++
* Post-Processing stage: MUMmerGPU > MUMmerGPU++
* Data Transfer: MUMmerGPU >> MUMmerGPU++

percentage of execution time in each stage

100 7 23min 1.3min 2.6sec 1.3sec
80
S 60
o B Matching
§ @ Post.Processing
b O Data.Structure.Construction
CQLJ 40 - O Data.Transfer.from.to.GPU
20 0
O -
HS1 HS2 MONO SUIS

Workloads

e i/oreduction on MUMmerGPU++
* allow optimizations on matching stage only ?

Discussion(1)

* Are the speedup offered by MUMmerGPU++
significant?

— YES::

e |sitfair to use MUMmerGPU as a baseline to
evaluate the advantages of the suffix array?

— the analysis is solely based on the characteristics
of data structure

— MUMmerGPU is well optimized
— MUMmerGPU++ is not specifically optimized

Discussion(2)

e Can the data transfer overheads be hidden
by overlapping the transfers with the GPU
kernel execution?

— NO: because data transfer requires i/o buffers.

Energy comsumption

Tool kWh Runn.mg fime Watt
(minutes)

MUMmerGPU++ 0.07 21 200

MUMmerGPU 0.12 36 200

MUMmer 0.76 256 178

workload: HS2 / config2

* energy comsumption is linearly proportional to the
computation time

* CPU-based tool uses energy at a lower rate

 (only 13% better performance on the hybrid
architecture)

Comparison with high-end GPU

HS1
HS2
MONO
SUIS

Speedup

MUMmerGPU++ on GeForce

MUMmerGPU on Tesla
Comparison Base

Conclusion

e GPUs have different characteristics

— high memory access bandwidth, computational
bower

— low internal memory space

* so we need to reconsider the choice of the
data structures on GPU-supported
platforms.

