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INTRODUCTION  

Traditional statistical machine 
learning operates with a table 
of data and a prediction goal.

row ——>independent observation 

columns—>hand crafted features of 
underlying data set

Unfortunately  

hard AI tasks :speech recognition or visual object 
classification

Deep learning  

additionally learning hierarchical  features from the 
raw input data  

using these features to make predictions  

deep neural networks(DNN)



INTRODUCTION  

Deep learning’s recent success : 
advances in computing capability for training these models  
the core algorithms and models are mostly unchanged from the eighties and nineties

learning hierarchical  features requires significantly more training data and 
computing power to be successful. 

prevent over-fitting poor generalization performance on unseen test data
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While this works well when the model fits within 2-4 GPU cards attached to a 
single server, it limits the size of models that can be trained. 

researchers recently built 

a scalable distributed deep learning training system called Adam comprised of commodity servers 

Commodity computing (also known as commodity cluster computing) involves the 
use of large numbers of already-available computing components for parallel 
computing, to get the greatest amount of useful computation at low cost.



 Optimizing and balancing both computation and communication for this 
application through whole system co-design.

main contributions 

‣ they partition large models across machines so as to minimize 
memory bandwidth and cross- machine communication 
requirements.  

‣ they restructure the computation across machines to reduce 
communication requirements.  

  Achieving high performance and scalability by exploiting the ability of machine 
learning training to tolerate inconsistencies well. 

INTRODUCTION  

‣multi- threaded model parameter updates without locks 
‣ asynchronous batched parameter updates 

Demonstrating that system efficiency, scaling, and asynchrony all contribute to 
improvements in trained model accuracy. 
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2.1 Deep Neural Networks for Vision 

Artificial neural networks neurons
consist of

neurons: multiple inputs and a single output

activation : The output of a neuron i in layer l 

wij : the weight associated with the connection between 
neurons i and j 

bi : a bias term associated with neuron i 

F: associated with all neurons in the network is a pre- defined 
non-linear function, typically sigmoid or hyperbolic tangent. 



BACKGROUND

Convolutional neural netswork

only connected to spatially local neurons in the next layer

share weights reduces the number of free parameters

max-pooling layer

a type of nonlinear down-sampling by 
outputting the maximum value from 
non- overlapping sub-regions

provides the network with 
robustness to small translations in 
the input
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softmax function
The last layer of a neural network

the logistic function that "squashes" a K-dimensional vector  of arbitrary real 
values to a K-dimensional vector  of real values in the range [0, 1] that add up to 1.

https://en.wikipedia.org/wiki/Logistic_function


2.1 Neural Network Training

BACKGROUND

Neural networks are typically trained by back- propagation using gradient descent. 

In stochastic gradient descent the training inputs are processed in a random order 

Feed-forward evaluation: 

Back-propagation: 

Weight updates: 

The inputs are processed one at a time with the following steps performed for 
each input to update the model weights. 

{



Feed-forward evaluation: 

activation : The output of a neuron i in layer l 

BACKGROUND

Back-propagation: 
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Weight updates: 

is the learning rate parameter 

repeated for each input until the entire training datasethas been 
processed, which constitutes a training epoch. 

At the end of a training epoch, the model prediction error is computed 
on a held out validation set. Typically, training continues for multiple 
epochs, reprocessing the training data set each time, until the validation 
set error converges to a desired (low) value.
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3.1 Fast Data Serving

Training large DNNs requires vast quantities of training data (10-100 TBs).

avoid over-fitting data transformations

data serving machines 
offload the 
computational 
requirements

ensure high 
throughput data 
delivery

augmented by randomly 

in advance  

utilizing the entire system 
memory as a image cache 

use asynchronous IO 

request images in advance in 
batches using a background 
thread
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3.2 Model Training

3.2.1 Multi-Threaded Training 

3.2.2 Fast Weight Updates 

3.2.3 Reducing Memory Copies 

3.2.4 Memory System Optimizations 

3.2.5 Mitigating the Impact of Slow 
Machines 

3.2.6 Parameter Server Communication 
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3.2.1 Multi-Threaded Training 

different images threads that share the model weightsassigned to

training contexteach thread
allocate

context: the activations and weight update values computed during back-
propagation for each layer

The context is pre-allocated to avoid heap locks while training

Both the context and per-thread scratch buffer for 
intermediate results use NUMA- aware allocations to reduce 
cross-memory bus traffic as these structures are frequently 
accessed.
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3.2.2 Fast Weight Updates 

access and update the shared model weights locally without using locks

the weight updates are associative and commutative and because 
neural networks are resilient and can overcome the small amount of 
noise that this introduces

some races and modifying weights based on stale weight values

time



3.2.3 Reducing Memory Copies 

ADAM SYSTEM ARCHITECTURE

communication is non local.

memory copies are expensive

use a uniform optimized interface

pass a pointer to the relevant block of neurons

built network library on top of the Windows socket API with IO completion ports

This library is compatible with our data transfer mechanism and accepts a 
pointer to a block of neurons whose output values need to be 
communicated across the network.

the static model partitioning optimize communication

use reference counting ensure safety in the presence of 
asynchronous network IO

reduce the memory bandwidth and CPU requirements for model training
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3.2.4 Memory System Optimizations 

partition models across multiple machines such that the working 
sets for the model layers fit in the L3 cache.

optimize computation for cache locality

created two custom hand-tuned assembly kernels that appropriately 
pack and block the data such that the vector units are fully utilized 
for the matrix multiply operations

The forward evaluation and back-propagation computation have 
competing locality requirements in terms of preferring a row major 
or column major layout for the layer weight matrix
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3.2.5 Mitigating the Impact of Slow Machines 

We use a dataflow framework to trigger progress on individual images based 
on arrival of data from remote machines.

To avoid stalling threads on faster machines that are waiting for data values 
to arrive from slower machines, we allow threads to process multiple 
images in parallel

because we need to wait for all training images to be processed to compute 
the model prediction error on the validation data set and determine 
whether an additional training epoch is necessary

We have empirically determined that waiting for 75% of the model 
replicas to complete processing all their images before declaring 
the training epoch complete can speed training by up to 20% with 
no impact on the trained model’s prediction accuracy.
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3.2.6 Parameter Server Communication 

two different communication protocols for updating parameter weights

For the convolutional layers
locally computes and accumulates the weight updates in a buffer that is 
periodically sent to the parameter server machines when k (which is typically 
in the hundreds) images have been processed. The parameter server 
machines then directly apply these accumulated updates to the stored 
weights. 

For the fully connected layers

Rather than directly send the weight updates we send the 
activation and error gradient vectors to the parameter server 
machines where the matrix multiply can be performed locally to 
compute and apply the weight updates.
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3.3 Global Parameter Server 

The parameter server is in constant communication with the model training 
machines receiving updates to model parameters and sending the current weight 
values. The rate of updates is far too high for the parameter server to be modeled 
as a conventional distributed key value store. 
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3.3.1 Throughput Optimizations 

The model parameters

1 MB sized shards 1 MB sized shards

divided intodivided into

hashed intohashed into

storage buckets storage buckets

(storage buckets are distributed equally 
among the parameter server machines)

This improves temporal locality and relieves pressure 
on the L3 cache by applying all updates in a batch to a 
block of parameters before moving to next block in 
the shard.
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Shards are allocated on a specific NUMA 
node and all update processing for the 
shard is localized to that NUMA node by 
assigning tasks to threads bound to the 
processors for the NUMA node by setting 
the appropriate processor masks.

lock free data structures

queues and hash tables in high 
traffic execution paths to speed 
up network, update, and disk IO 
processing

lock free memory allocation where 
buffers are allocated from pools of 
specified size that vary in powers of 2 
from 4KB all the way to 32MB. Small 
object allocations are satisfied by our 
global lock free pool for the object. 



ADAM SYSTEM ARCHITECTURE

3.3.3 Fault Tolerant Operation 

three copies of each parameter shard in the system

primary version actively served

two other copies fault tolerance

The parameter servers

parameter server (PS) controller machines

controll

determine request routing for parameter shards
model training machines

contact

bucket assignments 
primary role via a lease, secondary 
roles with primary lease information

replicated state

persists the lease information
heart beats

relocates

other active machines
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Parameter server machines have two 10Gb NICs. Since parameter update 
processing from a client (training) perspective is decoupled from persistence, the 
2 paths are isolated into their own NICs to maximize network bandwidth and 
minimize interference as shown in Figure 7. In addition, we isolate administrative 
traffic from the controller to the 1Gb NIC.

3.3.4 Communication Isolation 
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4.1 Visual Object Recognition Tasks 

two popular benchmarks for image recognition tasks 

MNIST :
a digit classification task where the input data is composed of 
28x28 images of the 10 handwritten digits. This is a very small 
benchmark with 60,000 training images and 10,000 test images that 
we use to characterize the baseline system performance and 
accuracy of trained models. 

 
ImageNet :

a large dataset that contains over  15 million labeled high-
resolution images belonging to around 22,000 different 
categories. The images were gathered from a variety of sources 
on the web and labeled by humans using Mechanical Turk. 

 We use this benchmark to characterize Adam’s performance and 
scaling, and the accuracy of trained models. 
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4.2 SystemHardware 

Adam is currently comprised of a cluster of 120 identical 
machines organized as three equally sized racks connected by 
IBM G8264 switches. Each machine is a HP Proliant server 
with dual Intel Xeon E5-2450L processors for a total of 16 cores 
running at 1.8Ghz with 98GB of main memory, two 10 Gb NICs 
and one 1 Gb NIC. All machines have four 7200 rpm HDDs. A 
1TB drive hosts the operating system (Windows 2012 server) 
and the other three HDDs are 3TB each and are configured as a 
RAID array. This set of machines can be configured slightly 
differently based on the experiment but model training machines 
are selected from a pool of 90 machines, parameter servers from 
a pool of 20 machines and image servers from a pool of 10 
machines. These pools include standby machines for fault 
tolerance in case of machine failure. 
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4.3 Baseline Performance and Accuracy 

We first evaluate Adam’s baseline performance by focusing on single model 
training and parameter server machines. In addition, we evaluate baseline training 
accuracy by training a small model on the MNIST digit classification task. 

4.3.1 Model Training System 

 Adam shows excellent scaling as we increase the number of cores since we 
allow parameters to be updated without locking. The scaling is super-linear 
up to 4 cores due to caching effects and linear afterwards.
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4.3.2 Parameter Server 
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4.3.3 Trained Model Accuracy 

2 convolutional layers (5x5 kernels and each is followed by a 2x2 max-pooling 
layer.The first convolutional layer has 10 feature maps and the second has 20.) 

2 fully connected layers (Both fully connected layers use 400 hidden units.) 

a final ten class softmax output layer.  

The resulting model is small and has around 2.5 million connections. 

We believe that our accuracy improvement arises from the asynchrony 
in Adam which adds a form of stochastic noise while training that helps 
the models generalize better when presented with unseen data. In 
addition, it is possible that the asynchrony helps the model escape from 
unstable local minima to potentially find a better local minimum. 

a fairly standard model 
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4.4 System Scaling and Accuracy 

We evaluate our system performance and scalability across multiple dimensions and 
evaluate its ability to train large DNNs for the ImageNet 22K classification task. 

4.4.1 Scaling with Model Workers 

Our 16 machine configuration is capable of training a 36 Bn 
connection model. More importantly, the size of models we can 
train efficiently increases super-linearly as we partition the model 
across more machines. 
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4.4.2 Scaling with Model Replicas 

we evaluated configurations comprising 4, 10, 12, 16, and 22 replicas. All experiments 
used the same parameter server configuration comprised of 20 machines. 

The results indicate that Adam scales well with additional replicas. 
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4.4.3 Trained Model Accuracy 

previous best top-1 result

supplemented the ImageNet training 
data with 10 million unlabeled images 
sampled from Youtube videos 

To better understand the reasons for this accuracy 
improvement, we used Adam to train a couple of 
smaller models to convergence for this task. 

training larger models increases task accuracy 
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Adam achieves high multi-threaded scalability on a single 
machine by permitting threads to update local parameter 
weights without locks. It achieves good multi-machine 
scalability through minimizing communication traffic by 
performing the weight update computation on the 
parameter server machines and performing asynchronous 
batched updates to parameter values that take advantage 
of these updates being associative and commutative. 
Finally, Adam enables training models to high accuracy by 
exploiting its efficiency to train very large models and 
leveraging asynchrony to further improve accuracy. 

4.4.4 Discussion 
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CONCLUSION

We show that large-scale commodity distributed systems 
can be used to efficiently train very large DNNs to world-
record accuracy on hard vision tasks using current training 
algorithms by using Adam to train a large DNN model 
that achieves world-record classification performance on 
the ImageNet 22K category task. While we have 
implemented and evaluated Adam using a 120 machine 
cluster, the scaling results indicate that much larger 
systems can likely be effectively utilized for training large 
DNNs. 
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