
Trishul Chilimbi Yutaka Suzue Johnson Apacible
Karthik Kalyanaraman Microsoft Research

PROJECT ADAM:
BUILDING AN EFFICIENT AND SCALABLE
DEEP LEARNING TRAINING SYSTEM 

Presented by:

LU YI 17R50002

OUTLINE

1 Introduction

2 Background

3 ADAM system architecture

4 Evaluation

5 Related work

INTRODUCTION

INTRODUCTION

Traditional statistical machine
learning operates with a table
of data and a prediction goal.

row ——>independent observation

columns—>hand crafted features of
underlying data set

Unfortunately

hard AI tasks :speech recognition or visual object
classification

Deep learning

additionally learning hierarchical features from the
raw input data

using these features to make predictions

deep neural networks(DNN)

INTRODUCTION

Deep learning’s recent success :
advances in computing capability for training these models
the core algorithms and models are mostly unchanged from the eighties and nineties

learning hierarchical features requires significantly more training data and
computing power to be successful.

prevent over-fitting poor generalization performance on unseen test data

INTRODUCTION

While this works well when the model fits within 2-4 GPU cards attached to a
single server, it limits the size of models that can be trained.

researchers recently built

a scalable distributed deep learning training system called Adam comprised of commodity servers

Commodity computing (also known as commodity cluster computing) involves the
use of large numbers of already-available computing components for parallel
computing, to get the greatest amount of useful computation at low cost.

 Optimizing and balancing both computation and communication for this
application through whole system co-design.

main contributions

‣ they partition large models across machines so as to minimize
memory bandwidth and cross- machine communication
requirements.

‣ they restructure the computation across machines to reduce
communication requirements.  

 Achieving high performance and scalability by exploiting the ability of machine
learning training to tolerate inconsistencies well.

INTRODUCTION

‣multi- threaded model parameter updates without locks
‣ asynchronous batched parameter updates

Demonstrating that system efficiency, scaling, and asynchrony all contribute to
improvements in trained model accuracy.

BACKGROUND

BACKGROUND

2.1 Deep Neural Networks for Vision

Artificial neural networks neurons
consist of

neurons: multiple inputs and a single output

activation : The output of a neuron i in layer l

wij : the weight associated with the connection between
neurons i and j

bi : a bias term associated with neuron i

F: associated with all neurons in the network is a pre- defined
non-linear function, typically sigmoid or hyperbolic tangent.

BACKGROUND

Convolutional neural netswork

only connected to spatially local neurons in the next layer

share weights reduces the number of free parameters

max-pooling layer

a type of nonlinear down-sampling by
outputting the maximum value from
non- overlapping sub-regions

provides the network with
robustness to small translations in
the input

BACKGROUND

softmax function
The last layer of a neural network

the logistic function that "squashes" a K-dimensional vector of arbitrary real
values to a K-dimensional vector of real values in the range [0, 1] that add up to 1.

https://en.wikipedia.org/wiki/Logistic_function

2.1 Neural Network Training

BACKGROUND

Neural networks are typically trained by back- propagation using gradient descent.

In stochastic gradient descent the training inputs are processed in a random order

Feed-forward evaluation:

Back-propagation:

Weight updates:

The inputs are processed one at a time with the following steps performed for
each input to update the model weights.

{

Feed-forward evaluation:

activation : The output of a neuron i in layer l

BACKGROUND

Back-propagation:

BACKGROUND

Weight updates:

is the learning rate parameter

repeated for each input until the entire training datasethas been
processed, which constitutes a training epoch.

At the end of a training epoch, the model prediction error is computed
on a held out validation set. Typically, training continues for multiple
epochs, reprocessing the training data set each time, until the validation
set error converges to a desired (low) value.

ADAM SYSTEM
ARCHITECTURE

ADAM SYSTEM ARCHITECTURE

3.1 Fast Data Serving

Training large DNNs requires vast quantities of training data (10-100 TBs).

avoid over-fitting data transformations

data serving machines
offload the
computational
requirements

ensure high
throughput data
delivery

augmented by randomly

in advance

utilizing the entire system
memory as a image cache

use asynchronous IO

request images in advance in
batches using a background
thread

ADAM SYSTEM ARCHITECTURE

3.2 Model Training

3.2.1 Multi-Threaded Training

3.2.2 Fast Weight Updates

3.2.3 Reducing Memory Copies

3.2.4 Memory System Optimizations

3.2.5 Mitigating the Impact of Slow
Machines

3.2.6 Parameter Server Communication

ADAM SYSTEM ARCHITECTURE

3.2.1 Multi-Threaded Training

different images threads that share the model weightsassigned to

training contexteach thread
allocate

context: the activations and weight update values computed during back-
propagation for each layer

The context is pre-allocated to avoid heap locks while training

Both the context and per-thread scratch buffer for
intermediate results use NUMA- aware allocations to reduce
cross-memory bus traffic as these structures are frequently
accessed.

ADAM SYSTEM ARCHITECTURE

3.2.2 Fast Weight Updates

access and update the shared model weights locally without using locks

the weight updates are associative and commutative and because
neural networks are resilient and can overcome the small amount of
noise that this introduces

some races and modifying weights based on stale weight values

time

3.2.3 Reducing Memory Copies

ADAM SYSTEM ARCHITECTURE

communication is non local.

memory copies are expensive

use a uniform optimized interface

pass a pointer to the relevant block of neurons

built network library on top of the Windows socket API with IO completion ports

This library is compatible with our data transfer mechanism and accepts a
pointer to a block of neurons whose output values need to be
communicated across the network.

the static model partitioning optimize communication

use reference counting ensure safety in the presence of
asynchronous network IO

reduce the memory bandwidth and CPU requirements for model training

ADAM SYSTEM ARCHITECTURE

3.2.4 Memory System Optimizations

partition models across multiple machines such that the working
sets for the model layers fit in the L3 cache.

optimize computation for cache locality

created two custom hand-tuned assembly kernels that appropriately
pack and block the data such that the vector units are fully utilized
for the matrix multiply operations

The forward evaluation and back-propagation computation have
competing locality requirements in terms of preferring a row major
or column major layout for the layer weight matrix

ADAM SYSTEM ARCHITECTURE

3.2.5 Mitigating the Impact of Slow Machines

We use a dataflow framework to trigger progress on individual images based
on arrival of data from remote machines.

To avoid stalling threads on faster machines that are waiting for data values
to arrive from slower machines, we allow threads to process multiple
images in parallel

because we need to wait for all training images to be processed to compute
the model prediction error on the validation data set and determine
whether an additional training epoch is necessary

We have empirically determined that waiting for 75% of the model
replicas to complete processing all their images before declaring
the training epoch complete can speed training by up to 20% with
no impact on the trained model’s prediction accuracy.

ADAM SYSTEM ARCHITECTURE

3.2.6 Parameter Server Communication

two different communication protocols for updating parameter weights

For the convolutional layers
locally computes and accumulates the weight updates in a buffer that is
periodically sent to the parameter server machines when k (which is typically
in the hundreds) images have been processed. The parameter server
machines then directly apply these accumulated updates to the stored
weights.

For the fully connected layers

Rather than directly send the weight updates we send the
activation and error gradient vectors to the parameter server
machines where the matrix multiply can be performed locally to
compute and apply the weight updates.

ADAM SYSTEM ARCHITECTURE

3.3 Global Parameter Server

The parameter server is in constant communication with the model training
machines receiving updates to model parameters and sending the current weight
values. The rate of updates is far too high for the parameter server to be modeled
as a conventional distributed key value store.

ADAM SYSTEM ARCHITECTURE

3.3.1 Throughput Optimizations

The model parameters

1 MB sized shards 1 MB sized shards

divided intodivided into

hashed intohashed into

storage buckets storage buckets

(storage buckets are distributed equally
among the parameter server machines)

This improves temporal locality and relieves pressure
on the L3 cache by applying all updates in a batch to a
block of parameters before moving to next block in
the shard.

ADAM SYSTEM ARCHITECTURE

Shards are allocated on a specific NUMA
node and all update processing for the
shard is localized to that NUMA node by
assigning tasks to threads bound to the
processors for the NUMA node by setting
the appropriate processor masks.

lock free data structures

queues and hash tables in high
traffic execution paths to speed
up network, update, and disk IO
processing

lock free memory allocation where
buffers are allocated from pools of
specified size that vary in powers of 2
from 4KB all the way to 32MB. Small
object allocations are satisfied by our
global lock free pool for the object.

ADAM SYSTEM ARCHITECTURE

3.3.3 Fault Tolerant Operation

three copies of each parameter shard in the system

primary version actively served

two other copies fault tolerance

The parameter servers

parameter server (PS) controller machines

controll

determine request routing for parameter shards
model training machines

contact

bucket assignments
primary role via a lease, secondary
roles with primary lease information

replicated state

persists the lease information
heart beats

relocates

other active machines

ADAM SYSTEM ARCHITECTURE

Parameter server machines have two 10Gb NICs. Since parameter update
processing from a client (training) perspective is decoupled from persistence, the
2 paths are isolated into their own NICs to maximize network bandwidth and
minimize interference as shown in Figure 7. In addition, we isolate administrative
traffic from the controller to the 1Gb NIC.

3.3.4 Communication Isolation

EVALUATION

EVALUATION

4.1 Visual Object Recognition Tasks

two popular benchmarks for image recognition tasks

MNIST :
a digit classification task where the input data is composed of
28x28 images of the 10 handwritten digits. This is a very small
benchmark with 60,000 training images and 10,000 test images that
we use to characterize the baseline system performance and
accuracy of trained models.

ImageNet :

a large dataset that contains over 15 million labeled high-
resolution images belonging to around 22,000 different
categories. The images were gathered from a variety of sources
on the web and labeled by humans using Mechanical Turk.

 We use this benchmark to characterize Adam’s performance and
scaling, and the accuracy of trained models.

EVALUATION

4.2 SystemHardware

Adam is currently comprised of a cluster of 120 identical
machines organized as three equally sized racks connected by
IBM G8264 switches. Each machine is a HP Proliant server
with dual Intel Xeon E5-2450L processors for a total of 16 cores
running at 1.8Ghz with 98GB of main memory, two 10 Gb NICs
and one 1 Gb NIC. All machines have four 7200 rpm HDDs. A
1TB drive hosts the operating system (Windows 2012 server)
and the other three HDDs are 3TB each and are configured as a
RAID array. This set of machines can be configured slightly
differently based on the experiment but model training machines
are selected from a pool of 90 machines, parameter servers from
a pool of 20 machines and image servers from a pool of 10
machines. These pools include standby machines for fault
tolerance in case of machine failure.

EVALUATION

4.3 Baseline Performance and Accuracy

We first evaluate Adam’s baseline performance by focusing on single model
training and parameter server machines. In addition, we evaluate baseline training
accuracy by training a small model on the MNIST digit classification task.

4.3.1 Model Training System

 Adam shows excellent scaling as we increase the number of cores since we
allow parameters to be updated without locking. The scaling is super-linear
up to 4 cores due to caching effects and linear afterwards.

EVALUATION

4.3.2 Parameter Server

EVALUATION

4.3.3 Trained Model Accuracy

2 convolutional layers (5x5 kernels and each is followed by a 2x2 max-pooling
layer.The first convolutional layer has 10 feature maps and the second has 20.)

2 fully connected layers (Both fully connected layers use 400 hidden units.)

a final ten class softmax output layer.

The resulting model is small and has around 2.5 million connections.

We believe that our accuracy improvement arises from the asynchrony
in Adam which adds a form of stochastic noise while training that helps
the models generalize better when presented with unseen data. In
addition, it is possible that the asynchrony helps the model escape from
unstable local minima to potentially find a better local minimum.

a fairly standard model

EVALUATION

4.4 System Scaling and Accuracy

We evaluate our system performance and scalability across multiple dimensions and
evaluate its ability to train large DNNs for the ImageNet 22K classification task.

4.4.1 Scaling with Model Workers

Our 16 machine configuration is capable of training a 36 Bn
connection model. More importantly, the size of models we can
train efficiently increases super-linearly as we partition the model
across more machines.

EVALUATION

4.4.2 Scaling with Model Replicas

we evaluated configurations comprising 4, 10, 12, 16, and 22 replicas. All experiments
used the same parameter server configuration comprised of 20 machines.

The results indicate that Adam scales well with additional replicas.

EVALUATION

4.4.3 Trained Model Accuracy

previous best top-1 result

supplemented the ImageNet training
data with 10 million unlabeled images
sampled from Youtube videos

To better understand the reasons for this accuracy
improvement, we used Adam to train a couple of
smaller models to convergence for this task.

training larger models increases task accuracy

EVALUATION

Adam achieves high multi-threaded scalability on a single
machine by permitting threads to update local parameter
weights without locks. It achieves good multi-machine
scalability through minimizing communication traffic by
performing the weight update computation on the
parameter server machines and performing asynchronous
batched updates to parameter values that take advantage
of these updates being associative and commutative.
Finally, Adam enables training models to high accuracy by
exploiting its efficiency to train very large models and
leveraging asynchrony to further improve accuracy.

4.4.4 Discussion

CONCLUSION

CONCLUSION

We show that large-scale commodity distributed systems
can be used to efficiently train very large DNNs to world-
record accuracy on hard vision tasks using current training
algorithms by using Adam to train a large DNN model
that achieves world-record classification performance on
the ImageNet 22K category task. While we have
implemented and evaluated Adam using a 120 machine
cluster, the scaling results indicate that much larger
systems can likely be effectively utilized for training large
DNNs.

Thank you!
Presented by:
LU YI 17R50002

