
High	 Performance	 Compu2ng	
Paper	 Review	 	

Hiroki	 Kanezashi	
13M38152	

1	

Reviewed	 Paper	 1	

“Mizan:	 A	 System	 for	 Dynamic	 Load	 Balancing	 in	
Large-‐scale	 Graph	 Processing”	

[EuroSys	 '13	 Proceedingsof	 the	 8th	 ACM	 European	
Conference	 on	 Computer	 Systems]	

	
Zuhair	 Khayyat1	 	 Karim	 Awara1	 Amani	 Alonazi1	
Hani	 Jamjoom2	 Dan	 Williams2	 Panos	 Kalnis1	 	
1King	 Abdullah	 University	 of	 Science	 and	 Technology,	 Saudi	 Arabia	

2IBM	 T.	 J.	 Watson	 Research	 Center,	 Yorktown	 Heights,	 NY	 	

	
2	

Reviewed	 Paper	 2	

“Breaking	 the	 Speed	 and	 Scalability	 Barriers	 for	
Graph	 Explora2on	 on	 Distributed-‐memory	

Machines”	
[Interna2onal	 Conference	 for	 High	 Performance	

Compu2ng,	 Networking,	 Storage	 and	 Analysis	 (SC),	 2012]	
	

Fabio	 Checconi,	 Fabrizio	 Petrini1,	
Jeremiah	 Willcock,	 Andrew	 Lumsdaine2,	

Anamitra	 Roy	 Choudhury,	 Yogish	 Sabharwal3	
1IBM	 T.	 J.	 Watson	 Research	 Center,	 Yorktown	 Heights,	 NY	 10598	

2CREST,	 Indiana	 University	 Bloomington,	 IN	 47405	
3IBM	 India	 Research,	 New	 Delhi,	 DL	 110070,	 India	

	 3	

Reviewed	 Paper	 3	

“Parallel	 Breadth-‐First	 Search	 on	 Distributed	
Memory	 Systems”	

[SC	 '11	 Proceedings	 of	 2011	 Interna2onal	 Conference	
for	 High	 Performance	 Compu2ng,	 Networking,	 Storage	

and	 Analysis]	

	
Aydın	 Buluç	 and	 Kamesh	 Madduri	

Computa2onal	 Research	 Division	 Lawrence	 Berkeley	 Na2onal	 Laboratory	 Berkeley,	 CA	

4	

Outline	

1.  Introduc2on	
2.  Dynamic	 Behavior	 of	 Algorithms	
3.  Mizan	
4.  Implementa2on	
5.  Evalua2on	
6.  Related	 Work	
7.  Future	 Work	
8.  Conclusion	
•  My	 Impressions	

5	

1.	 Introduc2on	

•  To	 make	 bejer	 use	 of	 graph	 data	 and	 mining	
algorithms,	 many	 plakorms	 are	 proposed.	
– Pregel	
– HADI	
– PEGASUS	
– X-‐RIME	

•  This	 paper	 focused	 on	 Pregel.	

6	

About	 Pregel	

•  Pregel	 is	 used	 for	 large	 graph	 minings	
recently.	
– Message	 passing-‐based	
– Performs	 bejer	 than	 MapReduce	
– Built	 on	 the	 Bulk	 Synchronous	 Parallel	 (BSP)	
model	
•  Computa2on	 is	 divided	 into	 “supersteps”.	
•  These	 supersteps	 are	 separated	 by	 global	 barrier.	

7	

Load	 balancing	

•  In	 a	 Pregel	 system,	 balanced	 computa2on	 and	
communica2on	 is	 fundamental.	

•  Pregel	 and	 other	 implemented	 plakorms	 have	
systems	 to	 do	 so.	
– Giraph	
– GoldenOrb	
– Hama	
– Surfer	

8	

Recent	 Approaches	 for	 Balancing	

•  Use	 hash-‐	 /	 range-‐based	 graph	 par22oning	
•  Entrust	 developers	 to	 use	 their	 own	
par22oning	 scheme	 or	 pre-‐par22on	 data	

•  Provide	 sophis2cated	 techniques	
•  U2lize	 distributed	 data	 stores	 and	 indexing	 on	
ver2ces	 and	 edges	

•  Perform	 coarse-‐grained	 load	 balancing	

9	

The	 Efficacy	 of	 Recent	 Methods	

•  Are	 these	 method	 effec2ve	 for	 large	 graph?	
– They	 are	 sta2c	 approaches.	
– Developers	 should	 predict	 the	 behavior.	
– Developers	 should	 know	 run2me	 characteris2cs.	

10	

2.	 Dynamic	 Behavior	 of	 Algorithms	

•  There	 are	 many	 factors	
affect	 the	 run2me	
performance	 in	 Pregel.	
– When	 ver2ces	 are	 ac2ve,	
they	 compute,	 send	 and	
receive	 messages.	

–  Some	 messages	 are	 sent	 to	
another	 workers	 (nodes).	

•  Some	 factors	 can	 be	
masked	 by	 overlapping	 or	
running	 many	 ver2ces.	

11	

All	 figures	 and	 tables	 are	 retrived	
from	 the	 reviewed	 paper.	

Figure 1. Factors that can affect the runtime in the Pregel
framework

tioning methods divide a dataset based on a simple heuristic:
to evenly distribute vertices across compute nodes, irrespec-
tive of their edge connectivity. Min-cut based partitioning,
on the other hand, considers vertex connectivity and parti-
tions the data such that it places strongly connected vertices
close to each other (i.e., on the same cluster). The result-
ing performance of these partitioning approaches is, how-
ever, graph dependent. To demonstrate this variability, we
ran a simple—and highly predictable—PageRank algorithm
on different datasets (summarized in Table 1) using the three
popular partitioning methods. Figure 2 shows that none of
the partitioning methods consistently outperforms the rest,
noting that ParMETIS [15] partitioning cannot be performed
on the arabic-2005 graph due to memory limitations.

In addition to the graph structure, the running algorithm
can also affect the workload balance across compute nodes.
Broadly speaking, graph algorithms can be divided into
two categories (based on their communication characteris-
tics across supersteps): stationary and non-stationary.

Stationary Graph Algorithms. An algorithm is stationary
if its active vertices send and receive the same distribution of
messages across supersteps. At the end of a stationary algo-
rithm, all active vertices become inactive (terminate) during
the same superstep. Usually graph algorithms represented by
a matrix-vector multiplication2 are stationary algorithms, in-
cluding PageRank, diameter estimation and finding weakly
connected components.

Non-stationary Graph Algorithms. A graph algorithm is
non-stationary if the destination or size of its outgoing mes-
sages changes across supersteps. Such variations can create
workload imbalances across supersteps. Examples of non-
stationary algorithms include distributed minimal spanning
tree construction (DMST), graph queries, and various simu-
lations on social network graphs (e.g., advertisement propa-
gation).

2 The matrix represents the graph adjacency matrix and the vector represents
the vertices’ value.

Figure 2. The difference in execution time when processing
PageRank on different graphs using hash-based, range-based
and min-cuts partitioning. Because of its size, arabic-2005
cannot be partitioned using min-cuts (ParMETIS) in our
local cluster.

Figure 3. The difference between stationary and non-
stationary graph algorithms with respect to the incoming
messages. Total represents the sum across all workers and
Max represents the maximum amount (on a single worker)
across all workers.

To illustrate the differences between the two classes of
algorithms, we compared the runtime behavior of PageRank
(stationary) against DMST (non-stationary) when process-
ing the same dataset (LiveJournal1) on a cluster of 21 ma-
chines. The input graph was partitioned using a hash func-
tion. Figure 3 shows the variability in the incoming messages
per superstep for all workers. In particular, the variability can
span over five orders of magnitude for non-stationary algo-
rithms.

The remainder of the section describes four popular graph
mining algorithms that we use throughout the paper. They
cover both stationary and non-stationary algorithms.

2.1 Example Algorithms

PageRank. PageRank [24] is a stationary algorithm that
uses matrix-vector multiplications to calculate the eigenval-

���

Workload	 imbalance	

•  It	 is	 difficult	 to	 achieve	 a	 balanced	 workload	 for	
graph	 structure	 and	 algorithms	 behavior.	

	
•  Some	 nodes	 may	 take	 a	 long	 2me	 to	 compute	
many	 nodes,	 send	 and	 receive	 many	 messages.	

	
•  As	 this	 paper	 introduced,	 many	 approaches	 are	
used	 in	 Pregel	 systems.	

12	

Evalua2on	 of	 recent	 methods	

•  At	 first,	 three	 common	
approaches	 are	
evaluated	 using	 these	
datasets.	
–  Hash-‐based	
–  Range-‐based	
– Minimum-‐cuts	

13	

Figure 1. Factors that can affect the runtime in the Pregel
framework

tioning methods divide a dataset based on a simple heuristic:
to evenly distribute vertices across compute nodes, irrespec-
tive of their edge connectivity. Min-cut based partitioning,
on the other hand, considers vertex connectivity and parti-
tions the data such that it places strongly connected vertices
close to each other (i.e., on the same cluster). The result-
ing performance of these partitioning approaches is, how-
ever, graph dependent. To demonstrate this variability, we
ran a simple—and highly predictable—PageRank algorithm
on different datasets (summarized in Table 1) using the three
popular partitioning methods. Figure 2 shows that none of
the partitioning methods consistently outperforms the rest,
noting that ParMETIS [15] partitioning cannot be performed
on the arabic-2005 graph due to memory limitations.

In addition to the graph structure, the running algorithm
can also affect the workload balance across compute nodes.
Broadly speaking, graph algorithms can be divided into
two categories (based on their communication characteris-
tics across supersteps): stationary and non-stationary.

Stationary Graph Algorithms. An algorithm is stationary
if its active vertices send and receive the same distribution of
messages across supersteps. At the end of a stationary algo-
rithm, all active vertices become inactive (terminate) during
the same superstep. Usually graph algorithms represented by
a matrix-vector multiplication2 are stationary algorithms, in-
cluding PageRank, diameter estimation and finding weakly
connected components.

Non-stationary Graph Algorithms. A graph algorithm is
non-stationary if the destination or size of its outgoing mes-
sages changes across supersteps. Such variations can create
workload imbalances across supersteps. Examples of non-
stationary algorithms include distributed minimal spanning
tree construction (DMST), graph queries, and various simu-
lations on social network graphs (e.g., advertisement propa-
gation).

2 The matrix represents the graph adjacency matrix and the vector represents
the vertices’ value.

Figure 2. The difference in execution time when processing
PageRank on different graphs using hash-based, range-based
and min-cuts partitioning. Because of its size, arabic-2005
cannot be partitioned using min-cuts (ParMETIS) in our
local cluster.

Figure 3. The difference between stationary and non-
stationary graph algorithms with respect to the incoming
messages. Total represents the sum across all workers and
Max represents the maximum amount (on a single worker)
across all workers.

To illustrate the differences between the two classes of
algorithms, we compared the runtime behavior of PageRank
(stationary) against DMST (non-stationary) when process-
ing the same dataset (LiveJournal1) on a cluster of 21 ma-
chines. The input graph was partitioned using a hash func-
tion. Figure 3 shows the variability in the incoming messages
per superstep for all workers. In particular, the variability can
span over five orders of magnitude for non-stationary algo-
rithms.

The remainder of the section describes four popular graph
mining algorithms that we use throughout the paper. They
cover both stationary and non-stationary algorithms.

2.1 Example Algorithms

PageRank. PageRank [24] is a stationary algorithm that
uses matrix-vector multiplications to calculate the eigenval-

���

Figure 10. Delayed vertex migration

G(N,E) |N | |E|
kg1 1,048,576 5,360,368
kg4m68m 4,194,304 68,671,566
web-Google 875,713 5,105,039
LiveJournal1 4,847,571 68,993,773
hollywood-2011 2,180,759 228,985,632
arabic-2005 22,744,080 639,999,458

Table 1. Datasets—N , E denote nodes and edges, respec-
tively. Graphs with prefix kg are synthetic.

ning is disabled for superstep SS

t+1 after applying delayed
migration to ensure the consistency of the migration plans.

An example is shown in Figure 10, where Vertex 7 is
migrated using delayed migration. As Vertex 7 migrates,
the ownership of Vertex 7 is moved to Worker new and
messages sent to Vertex 7 at SS

t+1 are addressed to
Worker new. At the barrier of SS

t+1, Worker old sends
the edge information and state of v to Worker new and starts
SS

t+2 with v fully migrated to Worker new.
With delayed migration, the consistency of computation

is maintained without introducing additional network cost
for vertices with large message queues. Since delayed mi-
gration uses two supersteps to complete, Mizan may need
more steps before it converges on a balanced state.

5. Evaluation
We implemented Mizan using C++ and MPI and compared
it against Giraph [8], a Pregel clone implemented in Java
on top of Hadoop. We ran our experiments on a local clus-
ter of 21 machines equipped with a mix of i5 and i7 pro-
cessors with 16GB RAM on each machine. We also used
an IBM Blue Gene/P supercomputer with 1024 PowerPC-
450 CPUs, each with 4 cores at 850MHz and 4GB RAM.
We downloaded publicly available datasets from the Stan-
ford Network Analysis Project6 and from The Laboratory for

6
http://snap.stanford.edu

Figure 11. Comparing Static Mizan vs. Giraph using
PageRank on social network and random graphs

Web Algorithmics (LAW) [2, 20]. We also generated syn-
thetic datasets using the Kronecker [21] generator that mod-
els the structure of real life networks. The details are shown
in Table 1.

To better isolate the effects of dynamic migration on
system performance, we implemented three variations of
Mizan: Static, Work Stealing (WS), and Mizan. Static Mizan
disables any dynamic migration and uses either hash-based,
range-based or min-cuts graph pre-partitioning (rendering
it similar to Giraph). Work Stealing (WS) Mizan is our
attempt to emulate Pregel’s coarse-grained dynamic load
balancing behavior (described in [23]). Finally, Mizan is our
framework that supports dynamic migration as described in
Sections 3 and 4.

We evaluated Mizan across three dimensions: partitioning
scheme, graph structure, and algorithm behavior. We par-
tition the datasets using three schemes: hash-based, range-
based, and METIS partitioning. We run our experiments
against both social and random graphs. Finally, we experi-
mented with the algorithms described in Section 2.1.

5.1 Giraph vs. Mizan
We picked Giraph for its popularity as an open source Pregel
framework with broad adoption. We only compared Giraph
to Static Mizan, which allows us to evaluate our base (non-
dynamic) implementation. Mizan’s dynamic migration is
evaluated later in this section. To further equalize Giraph and
the Static Mizan, we disabled the fault tolerance feature of
Giraph to eliminate any additional overhead resulting from
frequent snapshots during runtime. In this section, we report
the results using PageRank (a stationary and well balanced
algorithm) using different graph structures.

In Figure 11, we ran both frameworks on social network
and random graphs. As shown, Static Mizan outperforms Gi-
raph by a large margin, up to four times faster than Giraph in
kg4m68, which contains around 70M edges. We also com-
pared both systems when increasing the number of nodes
in random structure graphs. As shown in Figure 12, Static

���

Categolize	 Graph	 Algorithms	

•  Not	 only	 graph	 structure,	 but	 also	 graph	
algorithms	 can	 affect	 the	 workload	 balance.	 	

•  They	 can	 be	 categolized	 according	 to	
communica2on	 characteris2cs.	
– Sta2onary	
– Non-‐sta2onary	

14	

Categolize	 Graph	 Algorithms	

Sta$onary	
•  Distribu2ons	 of	 sent	

messages	 do	 not	 change.	
•  Example	

–  PageRank	
–  Diameter	 es2ma2on	
–  Finding	 weakly	 connected	

components	

Non-‐Sta$onary	
•  Des2na2ons	 or	 sizes	 of	

messages	 can	 change.	
•  Example	

–  Distributed	 minimal	 spanning	
tree	 construc2on	 (DMST)	

–  Graph	 queries	
–  Simula2ons	 on	 social	 network	

graphs	

15	

Categolize	 Graph	 Algorithms	

16	

•  While	 running	 two	
algorithms	 in	 21	 nodes,	
Non-‐sta2onary	
algorithms	 (DMST)	 sent	
more	 and	 more	
messages.	

Figure 1. Factors that can affect the runtime in the Pregel
framework

tioning methods divide a dataset based on a simple heuristic:
to evenly distribute vertices across compute nodes, irrespec-
tive of their edge connectivity. Min-cut based partitioning,
on the other hand, considers vertex connectivity and parti-
tions the data such that it places strongly connected vertices
close to each other (i.e., on the same cluster). The result-
ing performance of these partitioning approaches is, how-
ever, graph dependent. To demonstrate this variability, we
ran a simple—and highly predictable—PageRank algorithm
on different datasets (summarized in Table 1) using the three
popular partitioning methods. Figure 2 shows that none of
the partitioning methods consistently outperforms the rest,
noting that ParMETIS [15] partitioning cannot be performed
on the arabic-2005 graph due to memory limitations.

In addition to the graph structure, the running algorithm
can also affect the workload balance across compute nodes.
Broadly speaking, graph algorithms can be divided into
two categories (based on their communication characteris-
tics across supersteps): stationary and non-stationary.

Stationary Graph Algorithms. An algorithm is stationary
if its active vertices send and receive the same distribution of
messages across supersteps. At the end of a stationary algo-
rithm, all active vertices become inactive (terminate) during
the same superstep. Usually graph algorithms represented by
a matrix-vector multiplication2 are stationary algorithms, in-
cluding PageRank, diameter estimation and finding weakly
connected components.

Non-stationary Graph Algorithms. A graph algorithm is
non-stationary if the destination or size of its outgoing mes-
sages changes across supersteps. Such variations can create
workload imbalances across supersteps. Examples of non-
stationary algorithms include distributed minimal spanning
tree construction (DMST), graph queries, and various simu-
lations on social network graphs (e.g., advertisement propa-
gation).

2 The matrix represents the graph adjacency matrix and the vector represents
the vertices’ value.

Figure 2. The difference in execution time when processing
PageRank on different graphs using hash-based, range-based
and min-cuts partitioning. Because of its size, arabic-2005
cannot be partitioned using min-cuts (ParMETIS) in our
local cluster.

Figure 3. The difference between stationary and non-
stationary graph algorithms with respect to the incoming
messages. Total represents the sum across all workers and
Max represents the maximum amount (on a single worker)
across all workers.

To illustrate the differences between the two classes of
algorithms, we compared the runtime behavior of PageRank
(stationary) against DMST (non-stationary) when process-
ing the same dataset (LiveJournal1) on a cluster of 21 ma-
chines. The input graph was partitioned using a hash func-
tion. Figure 3 shows the variability in the incoming messages
per superstep for all workers. In particular, the variability can
span over five orders of magnitude for non-stationary algo-
rithms.

The remainder of the section describes four popular graph
mining algorithms that we use throughout the paper. They
cover both stationary and non-stationary algorithms.

2.1 Example Algorithms

PageRank. PageRank [24] is a stationary algorithm that
uses matrix-vector multiplications to calculate the eigenval-

���

3.	 Mizan	

•  Common	 point	 with	 Pregel	
– A	 BSP-‐based	 graph	 processing	 system	
– Reads	 graph	 and	 par22on	 before	 supersteps	

•  Different	 point	 with	 Pregel	
– Focuses	 on	 efficient	 dynamic	 load	 balancing	 of	
both	 computa2on	 and	 communica2on	

– Moves	 some	 ver2ces	 across	 workers	 (migra2on)	
•  Distributed	 run2me	 monitoring	
•  Distributed	 migra2on	 planner	 	

17	

Monitoring	

•  Mizan	 system	 monitors	 three	 metrics	
– The	 number	 of	 outgoing	 messages	
•  Counts	 messages	 to	 other	 ver2ces	 in	 remote	 workers.	
•  Local	 outgoing	 ones	 never	 affect	 network	 cost.	

– The	 number	 of	 total	 incoming	 messages	
•  Counts	 ones	 from	 remote	 ver2ces	 and	 locally	 generated.	

– The	 response	 2me	 (execu2on	 2me)	
•  Measured	 for	 each	 vertex	 at	 each	 superstep.	

18	

Monitoring	

Figure 4. The statistics monitored by Mizan

Figure 5. Mizan’s BSP flow with migration planning

the response time (execution time) during the current super-
step:

Outgoing Messages. Only outgoing messages to other ver-
tices in remote workers are counted since the local outgoing
messages are rerouted to the same worker and do not incur
any actual network cost.

Incoming Messages. All incoming messages are monitored,
those that are received from remote vertices and those lo-
cally generated. This is because queue size can affect the
performance of the vertex (i.e., when its buffer capacity is
exhausted, paging to disk is required).

Response Time. The response time for each vertex is mea-
sured. It is the time when a vertex starts processing its in-
coming messages until it finishes.

3.2 Migration Planning
High values for any of the three metrics above may indicate
poor vertex placement, which leads to workload imbalance.
As with many constrained optimization problems, optimiz-
ing against three objectives is non-trivial. To reduce the op-
timization search space, Mizan’s migration planner finds the
strongest cause of workload imbalance among the three met-
rics and plans the vertex migration accordingly.

By design, all workers create and execute the migration
plan in parallel, without requiring any centralized coordina-
tion. The migration planner starts on every worker at the end
of each superstep (i.e., when all workers reach the synchro-
nization barrier), after it receives summary statistics (as de-
scribed in Section 3.1) from all other workers. Additionally,
the execution of the migration planner is sandwiched be-

Figure 6. Summary of Mizan’s Migration Planner

tween a second synchronization barrier as shown in Figure 5,
which is necessary to ensure correctness of the BSP model.
Mizan’s migration planner executes the following five steps,
summarized in Figure 6:

1. Identify the source of imbalance.

2. Select the migration objective (i.e., optimize for outgoing
messages, incoming messages, or response time).

3. Pair over-utilized workers with under-utilized ones.

4. Select vertices to migrate.

5. Migrate vertices.

STEP 1: Identify the source of imbalance. Mizan detects
imbalances across supersteps by comparing the summary
statistics of all workers against a normal random distribu-
tion and flagging outliers. Specifically, at the end of a su-
perstep, Mizan computes the z-score4 for all workers. If
any worker has z-score greater than z

def

, Mizan’s migra-
tion planner flags the superstep as imbalanced. We found that
z

def

= 1.96, the commonly recommend value [26], allows
for natural workload fluctuations across workers. We have
experimented with different values of z

def

and validated the
robustness of our choice.

STEP 2: Select the migration objective. Each worker—
identically—uses the summary statistics to compute the cor-
relation between outgoing messages and response time, and
also the correlation between incoming messages and re-
sponse time. The correlation scores are used to select the
objective to optimize for: to balance outgoing messages,
balance incoming messages, or balance computation time.
The default objective is to balance the response time. If the

4 The z-score Wz

i

= |x
i

�x

max

|
standard deviation

, where x

i

is the run time of
worker i

���

19	

Migra2on	 Planning	

1.  Iden2fy	 the	 source	 of	
imbalance.	

2.  Select	 the	 migra2on	
objec2ve.	

3.  Pair	 over-‐u2lized	 and	
under-‐u2lized	 workers.	

4.  Select	 ver2ces	 to	
migrate.	

5.  Migrate	 ver2ces.	

Figure 4. The statistics monitored by Mizan

Figure 5. Mizan’s BSP flow with migration planning

the response time (execution time) during the current super-
step:

Outgoing Messages. Only outgoing messages to other ver-
tices in remote workers are counted since the local outgoing
messages are rerouted to the same worker and do not incur
any actual network cost.

Incoming Messages. All incoming messages are monitored,
those that are received from remote vertices and those lo-
cally generated. This is because queue size can affect the
performance of the vertex (i.e., when its buffer capacity is
exhausted, paging to disk is required).

Response Time. The response time for each vertex is mea-
sured. It is the time when a vertex starts processing its in-
coming messages until it finishes.

3.2 Migration Planning
High values for any of the three metrics above may indicate
poor vertex placement, which leads to workload imbalance.
As with many constrained optimization problems, optimiz-
ing against three objectives is non-trivial. To reduce the op-
timization search space, Mizan’s migration planner finds the
strongest cause of workload imbalance among the three met-
rics and plans the vertex migration accordingly.

By design, all workers create and execute the migration
plan in parallel, without requiring any centralized coordina-
tion. The migration planner starts on every worker at the end
of each superstep (i.e., when all workers reach the synchro-
nization barrier), after it receives summary statistics (as de-
scribed in Section 3.1) from all other workers. Additionally,
the execution of the migration planner is sandwiched be-

Figure 6. Summary of Mizan’s Migration Planner

tween a second synchronization barrier as shown in Figure 5,
which is necessary to ensure correctness of the BSP model.
Mizan’s migration planner executes the following five steps,
summarized in Figure 6:

1. Identify the source of imbalance.

2. Select the migration objective (i.e., optimize for outgoing
messages, incoming messages, or response time).

3. Pair over-utilized workers with under-utilized ones.

4. Select vertices to migrate.

5. Migrate vertices.

STEP 1: Identify the source of imbalance. Mizan detects
imbalances across supersteps by comparing the summary
statistics of all workers against a normal random distribu-
tion and flagging outliers. Specifically, at the end of a su-
perstep, Mizan computes the z-score4 for all workers. If
any worker has z-score greater than z

def

, Mizan’s migra-
tion planner flags the superstep as imbalanced. We found that
z

def

= 1.96, the commonly recommend value [26], allows
for natural workload fluctuations across workers. We have
experimented with different values of z

def

and validated the
robustness of our choice.

STEP 2: Select the migration objective. Each worker—
identically—uses the summary statistics to compute the cor-
relation between outgoing messages and response time, and
also the correlation between incoming messages and re-
sponse time. The correlation scores are used to select the
objective to optimize for: to balance outgoing messages,
balance incoming messages, or balance computation time.
The default objective is to balance the response time. If the

4 The z-score Wz

i

= |x
i

�x

max

|
standard deviation

, where x

i

is the run time of
worker i

���

20	

Detec2ng	 Imbalance	

1.  Check	 outlier	 workers	 comparing	 the	
summary	 sta2s2cs	 of	 all	 ones.	

2.  Select	 the	 objec2ve	 what	 it	 will	 op2mize	 with	
calcula2ng	 correla2on	 of	 the	 metrics.	
–  To	 balance	 outgoing	 messages	
–  To	 balance	 incoming	 messages	
–  To	 balance	 computa2on	 2me	 (default)	

21	

Selec2ng	 Ver2ces	

3.  Pair	 workers	 by	 metrics.	
–  If	 there	 are	 n	 workers,	
	 	 top	 n	 and	 n-‐i	 	 workers	 should	 be	 pair.	
–  Workers	 without	 enough	 memory	 are	 unavailable.	

4.  Select	 ver2ces	 to	 move	 in	 order	 to	 minimize	
the	 difference	 of	 sum	 of	 workloads	 to	 be	
migrated	 and	 sum	 of	 those	 outliers.	

22	

outgoing or incoming messages are highly correlated with
the response time, then Mizan chooses the objective with
highest correlation score. The computation of the correlation
score is described in Appendix A.

STEP 3: Pair over-utilized workers with under-utilized
ones. Each overutilized worker that needs to migrate ver-
tices out is paired with a single underutilized worker. While
complex pairings are possible, we choose a design that is ef-
ficient to execute, especially since the exact number of ver-
tices that different workers plan to migrate is not globally
known. Similar to the previous two steps in the migration
plan, this step is executed by each worker without explicit
global synchronization. Using the summary statistics for the
chosen migration objective (in Step 2), each worker creates
an ordered list of all workers. For example, if the objective is
to balance outgoing messages, then the list will order work-
ers from highest to lowest outgoing messages. The resulting
list, thus, places overutilized workers at the top and least uti-
lized workers at the bottom. The pairing function then suc-
cessively matches workers from opposite ends of the ordered
list. As depicted in Figure 7, if the list contains n elements
(one for each worker), then the worker at position i is paired
with the worker at position n � i. In cases where a worker
does not have memory to receive any vertices, the worker is
marked unavailable in the list.

STEP 4: Select vertices to migrate. The number of vertices
to be selected from an overutilized worker depends on the
difference of the selected migration objective statistics with
its paired worker. Assume that w

x

is a worker that needs
to migrate out a number of vertices, and is paired with the
receiver, w

y

. The load that should be migrated to the under-
utilized worker is defined as �

xy

, which equals to half the
difference in statistics of the migration objective between the
two workers. The selection criteria of the vertices depends
on the distribution of the statistics of the migration objective,
where the statistics of each vertex is compared against a nor-
mal distribution. A vertex is selected if it is an outlier (i.e.,
if its V z

i

stat

5). For example, if the migrating objective is to
balance the number of remote outgoing messages, vertices
with large remote outgoing messages are selected to migrate
to the underutilized worker. The sum of the statistics of the
selected vertices is denoted by

P
V

stat

which should mini-
mize |�

xy

�
P

V

stat

| to ensure the balance between w

x

and
w

y

in the next superstep. If there not enough outlier vertices
are found, a random set of vertices are selected to minimize
|�

xy

�
P

V

stat

|.
STEP 5: Migrate vertices. After the vertex selection pro-
cess, the migrating workers start sending the selected ver-
tices while other workers wait at the migration barrier. A
migrating worker starts sending the selected set of vertices
to its unique target worker, where each vertex is encoded

5 The z-score V z

i

stat

=
|x

i

�x

avg

|
standard deviation

, where x

i

is the statistics of
the migration objective of vertex i is greater than the z

def

Figure 7. Matching senders (workers with vertices to mi-
grate) with receivers using their summary statistics

into a stream that includes the vertex ID, state, edge informa-
tion and the received messages it will process. Once a ver-
tex stream is successfully sent, the sending worker deletes
the sent vertices so that it does not run them in the next su-
perstep. The receiving worker, on the other hand, receives
vertices (together with their messages) and prepares to run
them in the next superstep. The next superstep is started once
all workers finish migrating vertices and reach the migration
barrier. The complexity of the migration process is directly
related to the size of vertices being migrated.

4. Implementation
Mizan consists of four modules, shown in Figure 8: the
BSP Processor, Storage Manager, Communicator, and Mi-
gration Planner. The BSP Processor implements the Pregel
APIs, consisting primarily of the Compute class, and the
SendMessageTo, GetOutEdgeIterator and getValue

methods. The BSP Processor operates on the data struc-
tures of the graph and executes the user’s algorithm. It also
performs barrier synchronization with other workers at the
end of each superstep. The Storage Manager module main-
tains access atomicity and correctness of the graph’s data,
and maintains the data structures for message queues. Graph
data can be read and written to either HDFS or local disks,
depending on how Mizan is deployed. The Communicator
module uses MPI to enable communication between work-
ers; it also maintains distributed vertex ownership informa-
tion. Finally, the Migration Planner operates transparently
across superstep barriers to maintain the dynamic workload
balance.

Mizan allows the user’s code to manipulate the graph con-
nectivity by adding and removing vertices and edges at any
superstep. It also guarantees that all graph mutation com-
mands issued at superstep

x

are executed at the end of the
same superstep and before the BSP barrier, which is illus-
trated in Figure 5. Therefore, vertex migrations performed
by Mizan do not conflict with the user’s graph mutations and
Mizan always considers the most recent graph structure for
migration planning.

When implementing Mizan, we wanted to avoid having a
centralized controller. Overall, the BSP (Pregel) model nat-
urally lends itself to a decentralized implementation. There
were, however, three key challenges in implementing a dis-
tributed control plane that supports fine-grained vertex mi-
gration. The first challenge was in maintaining vertex own-
ership so that vertices can be freely migrated across work-

���

Migra2ng	 Ver2ces	

5.  To	 migrate	 ver2ces,	 each	 worker	 will	 do	 that	
in	 the	 migra2on	 barrier:	
–  Sending	 worker	
•  Sends	 encoded	 stream	 with	 vertex	 ID,	 state,	 edge	

informa2on	 and	 received	 messages.	
•  Ater	 the	 stream	 is	 sent,	 deletes	 the	 ver2ces.	

–  Receiving	 worker	
•  Receives	 ver2ces	 and	 messages.	
•  Prepares	 to	 run	 them	 in	 the	 next	 superstep.	

23	

4.	 Implementa2on	

•  In	 Mizan,	 each	 worker	
has	 4	 modules	
–  BSP	 Processor	

•  Implemented	 Pregel	 APIs	

–  Storage	 Manager	
•  Maintains	 the	 graph	 data	
always	 correct	

–  Communicator	
•  Uses	 MPI	 to	 communicate	
with	 other	 workers	 	

– Migra2on	 Planner	
•  Operate	 across	 barriers	

Figure 8. Architecture of Mizan

ers. This is different from existing approaches (e.g., Pregel,
Giraph, and GoldenOrb), which operate on a much coarser
granularity (clusters of vertices) to enable scalability. The
second challenge was in allowing fast updates to the vertex
ownership information as vertices get migrated. The third
challenge was in minimizing the cost of migrating vertices
with large data structures. In this section, we discuss the im-
plementation details around these three challenges, which al-
low Mizan to achieve its effectiveness and scalability.

4.1 Vertex Ownership
With huge datasets, Mizan workers cannot maintain the
management information for all vertices in the graph. Man-
agement information includes the collected statistics for
each vertex (described in Section 3.1) and the location (own-
ership) of each vertex. While per-vertex monitoring statis-
tics are only used locally by the worker, vertex ownership
information is needed by all workers. When vertices send
messages, workers need to know the destination address for
each message. With frequent vertex migration, updating the
location of the vertices across all workers can easily create a
communication bottleneck.

To overcome this challenge, we use a distributed hash ta-
ble (DHT) [1] to implement a distributed lookup service. The
DHT implementation allows Mizan to distribute the over-
head of looking up and updating vertex location across all
workers. The DHT stores a set of (key,value) pairs, where
the key represents a vertex ID and the value represents its
current physical location. Each vertex is assigned a home
worker. The role of the home worker is to maintain the
current location of the vertex. A vertex can physically ex-
ist in any worker, including its home worker. The DHT
uses a globally defined hash function that maps the keys to
their associated home workers, such that home worker =

location hash(key).
During a superstep, when a (source) vertex sends a mes-

sage to another (target) vertex, the message is passed to the
Communicator. If the target vertex is located on the same
worker, it is rerouted back to the appropriate queue. Other-
wise, the source worker uses the location hash function
to locate and query the home worker for the target vertex.
The home worker responds back with the actual physical lo-

Figure 9. Migrating vertex v

i

from Worker 1 to Worker 2,
while updating its DHT home worker (Worker 3)

cation of target vertex. The source worker finally sends the
queued message to the current worker for the target vertex. It
also caches the physical location to minimize future lookups.

4.2 DHT Updates After Vertex Migration
Figure 9 depicts the vertex migration process. When a vertex
v migrates between two workers, the receiving worker sends
the new location of v to the home worker of v. The home
worker, in turn, sends an update message to all workers that
have previously asked for—and, thus, potentially cached—
the location of v. Since Mizan migrates vertices in the barrier
between two supersteps, all workers that have cached the
location of the migrating vertex will receive the updated
physical location from the home worker before the start of
the new superstep.

If for any reason a worker did not receive the updated
location, the messages will be sent to the last known phys-
ical location of v. The receiving worker, which no longer
owns the vertex, will simply buffer the incorrectly routed
messages, ask for the new location for v, and reroute the
messages to the correct worker.

4.3 Migrating Vertices with Large Message Size
Migrating a vertex to another worker requires moving its
queued messages and its entire state (which includes its
ID, value, and neighbors). Especially when processing large
graphs, a vertex can have a significant number of queued
messages, which are costly to migrate. To minimize the cost,
Mizan migrates large vertices using a delayed migration
process that spreads the migration over two supersteps. In-
stead of physically moving the vertex with its large message
queue, delayed migration only moves the vertex’s informa-
tion and the ownership to the new worker. Assuming w

old

is
the old owner and w

new

is the new one, w
old

continues to
process the migrating vertex v in the next superstep, SS

t+1.
w

new

receives the messages for v, which will be processed
at the following superstep, SS

t+2. At the end of SS
t+1, w

old

sends the new value of v, calculated at SS
t+1, to w

new

and
completes the delayed migration. Note that migration plan-

���

24	

Vertex	 Ownership	

•  Mizan	 will	 not	 maintain	 centralized	 vertex	
management	 especially	 with	 huge	 one.	

•  A	 distributed	 hash	 table	 (DHT)	 is	 used	 to	
implement	 a	 distributed	 lookup	 service.	
–  It	 stores	 key	 (ID)	 and	 value	 (physical	 loca2on)	 sets.	
– A	 “home”	 worker	 maintains	 current	 loca2on	 of	
assigned	 ver2ces.	

25	

Distributed	 Hash	 Table	 Updates	

•  Vertex	 whose	 home	
worker	 is	 3	 will	 migrate	
from	 Worker	 1	 to	 2.	
1.  The	 vertex	 migrates.	
2.  Des2na2on	 worker	

inform	 migra2on	 to	
home	 worker.	

3.  The	 home	 worker	
updates	 DHTs.	

Figure 8. Architecture of Mizan

ers. This is different from existing approaches (e.g., Pregel,
Giraph, and GoldenOrb), which operate on a much coarser
granularity (clusters of vertices) to enable scalability. The
second challenge was in allowing fast updates to the vertex
ownership information as vertices get migrated. The third
challenge was in minimizing the cost of migrating vertices
with large data structures. In this section, we discuss the im-
plementation details around these three challenges, which al-
low Mizan to achieve its effectiveness and scalability.

4.1 Vertex Ownership
With huge datasets, Mizan workers cannot maintain the
management information for all vertices in the graph. Man-
agement information includes the collected statistics for
each vertex (described in Section 3.1) and the location (own-
ership) of each vertex. While per-vertex monitoring statis-
tics are only used locally by the worker, vertex ownership
information is needed by all workers. When vertices send
messages, workers need to know the destination address for
each message. With frequent vertex migration, updating the
location of the vertices across all workers can easily create a
communication bottleneck.

To overcome this challenge, we use a distributed hash ta-
ble (DHT) [1] to implement a distributed lookup service. The
DHT implementation allows Mizan to distribute the over-
head of looking up and updating vertex location across all
workers. The DHT stores a set of (key,value) pairs, where
the key represents a vertex ID and the value represents its
current physical location. Each vertex is assigned a home
worker. The role of the home worker is to maintain the
current location of the vertex. A vertex can physically ex-
ist in any worker, including its home worker. The DHT
uses a globally defined hash function that maps the keys to
their associated home workers, such that home worker =

location hash(key).
During a superstep, when a (source) vertex sends a mes-

sage to another (target) vertex, the message is passed to the
Communicator. If the target vertex is located on the same
worker, it is rerouted back to the appropriate queue. Other-
wise, the source worker uses the location hash function
to locate and query the home worker for the target vertex.
The home worker responds back with the actual physical lo-

Figure 9. Migrating vertex v

i

from Worker 1 to Worker 2,
while updating its DHT home worker (Worker 3)

cation of target vertex. The source worker finally sends the
queued message to the current worker for the target vertex. It
also caches the physical location to minimize future lookups.

4.2 DHT Updates After Vertex Migration
Figure 9 depicts the vertex migration process. When a vertex
v migrates between two workers, the receiving worker sends
the new location of v to the home worker of v. The home
worker, in turn, sends an update message to all workers that
have previously asked for—and, thus, potentially cached—
the location of v. Since Mizan migrates vertices in the barrier
between two supersteps, all workers that have cached the
location of the migrating vertex will receive the updated
physical location from the home worker before the start of
the new superstep.

If for any reason a worker did not receive the updated
location, the messages will be sent to the last known phys-
ical location of v. The receiving worker, which no longer
owns the vertex, will simply buffer the incorrectly routed
messages, ask for the new location for v, and reroute the
messages to the correct worker.

4.3 Migrating Vertices with Large Message Size
Migrating a vertex to another worker requires moving its
queued messages and its entire state (which includes its
ID, value, and neighbors). Especially when processing large
graphs, a vertex can have a significant number of queued
messages, which are costly to migrate. To minimize the cost,
Mizan migrates large vertices using a delayed migration
process that spreads the migration over two supersteps. In-
stead of physically moving the vertex with its large message
queue, delayed migration only moves the vertex’s informa-
tion and the ownership to the new worker. Assuming w

old

is
the old owner and w

new

is the new one, w
old

continues to
process the migrating vertex v in the next superstep, SS

t+1.
w

new

receives the messages for v, which will be processed
at the following superstep, SS

t+2. At the end of SS
t+1, w

old

sends the new value of v, calculated at SS
t+1, to w

new

and
completes the delayed migration. Note that migration plan-

���

26	

Migra2ng	 Large	 Ver2ces	

•  If	 a	 vertex	 has	 many	 messages,	 it	 costs	 very	
much	 when	 it	 migrates.	

•  Mizan	 uses	 a	 delayed	 migra2on	 process.	
–  It	 takes	 two	 supersteps.	
– Only	 moves	 the	 vertex’s	 informa2on	 and	 the	
ownership,	 not	 large	 message	 informa2on.	

27	

Delayed	 Migra2on	

1.  An	 ownership	 of	 the	
migrated	 vertex	 is	
moved	 to	 Worker_new.	
–  Messages	 will	 be	 sent	 to	

Worker_new.	

2.  Worker_old	 sends	 the	
edge	 informa2on.	

3.  The	 vertex	 is	 fully	
migrated.	

Figure 10. Delayed vertex migration

G(N,E) |N | |E|
kg1 1,048,576 5,360,368
kg4m68m 4,194,304 68,671,566
web-Google 875,713 5,105,039
LiveJournal1 4,847,571 68,993,773
hollywood-2011 2,180,759 228,985,632
arabic-2005 22,744,080 639,999,458

Table 1. Datasets—N , E denote nodes and edges, respec-
tively. Graphs with prefix kg are synthetic.

ning is disabled for superstep SS

t+1 after applying delayed
migration to ensure the consistency of the migration plans.

An example is shown in Figure 10, where Vertex 7 is
migrated using delayed migration. As Vertex 7 migrates,
the ownership of Vertex 7 is moved to Worker new and
messages sent to Vertex 7 at SS

t+1 are addressed to
Worker new. At the barrier of SS

t+1, Worker old sends
the edge information and state of v to Worker new and starts
SS

t+2 with v fully migrated to Worker new.
With delayed migration, the consistency of computation

is maintained without introducing additional network cost
for vertices with large message queues. Since delayed mi-
gration uses two supersteps to complete, Mizan may need
more steps before it converges on a balanced state.

5. Evaluation
We implemented Mizan using C++ and MPI and compared
it against Giraph [8], a Pregel clone implemented in Java
on top of Hadoop. We ran our experiments on a local clus-
ter of 21 machines equipped with a mix of i5 and i7 pro-
cessors with 16GB RAM on each machine. We also used
an IBM Blue Gene/P supercomputer with 1024 PowerPC-
450 CPUs, each with 4 cores at 850MHz and 4GB RAM.
We downloaded publicly available datasets from the Stan-
ford Network Analysis Project6 and from The Laboratory for

6
http://snap.stanford.edu

Figure 11. Comparing Static Mizan vs. Giraph using
PageRank on social network and random graphs

Web Algorithmics (LAW) [2, 20]. We also generated syn-
thetic datasets using the Kronecker [21] generator that mod-
els the structure of real life networks. The details are shown
in Table 1.

To better isolate the effects of dynamic migration on
system performance, we implemented three variations of
Mizan: Static, Work Stealing (WS), and Mizan. Static Mizan
disables any dynamic migration and uses either hash-based,
range-based or min-cuts graph pre-partitioning (rendering
it similar to Giraph). Work Stealing (WS) Mizan is our
attempt to emulate Pregel’s coarse-grained dynamic load
balancing behavior (described in [23]). Finally, Mizan is our
framework that supports dynamic migration as described in
Sections 3 and 4.

We evaluated Mizan across three dimensions: partitioning
scheme, graph structure, and algorithm behavior. We par-
tition the datasets using three schemes: hash-based, range-
based, and METIS partitioning. We run our experiments
against both social and random graphs. Finally, we experi-
mented with the algorithms described in Section 2.1.

5.1 Giraph vs. Mizan
We picked Giraph for its popularity as an open source Pregel
framework with broad adoption. We only compared Giraph
to Static Mizan, which allows us to evaluate our base (non-
dynamic) implementation. Mizan’s dynamic migration is
evaluated later in this section. To further equalize Giraph and
the Static Mizan, we disabled the fault tolerance feature of
Giraph to eliminate any additional overhead resulting from
frequent snapshots during runtime. In this section, we report
the results using PageRank (a stationary and well balanced
algorithm) using different graph structures.

In Figure 11, we ran both frameworks on social network
and random graphs. As shown, Static Mizan outperforms Gi-
raph by a large margin, up to four times faster than Giraph in
kg4m68, which contains around 70M edges. We also com-
pared both systems when increasing the number of nodes
in random structure graphs. As shown in Figure 12, Static

���

28	

5.	 Evalua2on	

•  Mizan	 was	 implemented	
using	 C++	 and	 MPI.	
–  Compared	 against	 Giraph	
(Java	 based	 Plegel	 clone)	

•  Computa2on	 nodes	
–  Local	 clusters	 with	 21	
machines,	 mix	 of	 i5	 and	
i7,	 16GB	 RAM	

–  IBM	 Blue	 Gene/P,	 1024	
PowerPC-‐450	 CPUs	 with	 4	
cores,	 4GB	 RAM	

Figure 10. Delayed vertex migration

G(N,E) |N | |E|
kg1 1,048,576 5,360,368
kg4m68m 4,194,304 68,671,566
web-Google 875,713 5,105,039
LiveJournal1 4,847,571 68,993,773
hollywood-2011 2,180,759 228,985,632
arabic-2005 22,744,080 639,999,458

Table 1. Datasets—N , E denote nodes and edges, respec-
tively. Graphs with prefix kg are synthetic.

ning is disabled for superstep SS

t+1 after applying delayed
migration to ensure the consistency of the migration plans.

An example is shown in Figure 10, where Vertex 7 is
migrated using delayed migration. As Vertex 7 migrates,
the ownership of Vertex 7 is moved to Worker new and
messages sent to Vertex 7 at SS

t+1 are addressed to
Worker new. At the barrier of SS

t+1, Worker old sends
the edge information and state of v to Worker new and starts
SS

t+2 with v fully migrated to Worker new.
With delayed migration, the consistency of computation

is maintained without introducing additional network cost
for vertices with large message queues. Since delayed mi-
gration uses two supersteps to complete, Mizan may need
more steps before it converges on a balanced state.

5. Evaluation
We implemented Mizan using C++ and MPI and compared
it against Giraph [8], a Pregel clone implemented in Java
on top of Hadoop. We ran our experiments on a local clus-
ter of 21 machines equipped with a mix of i5 and i7 pro-
cessors with 16GB RAM on each machine. We also used
an IBM Blue Gene/P supercomputer with 1024 PowerPC-
450 CPUs, each with 4 cores at 850MHz and 4GB RAM.
We downloaded publicly available datasets from the Stan-
ford Network Analysis Project6 and from The Laboratory for

6
http://snap.stanford.edu

Figure 11. Comparing Static Mizan vs. Giraph using
PageRank on social network and random graphs

Web Algorithmics (LAW) [2, 20]. We also generated syn-
thetic datasets using the Kronecker [21] generator that mod-
els the structure of real life networks. The details are shown
in Table 1.

To better isolate the effects of dynamic migration on
system performance, we implemented three variations of
Mizan: Static, Work Stealing (WS), and Mizan. Static Mizan
disables any dynamic migration and uses either hash-based,
range-based or min-cuts graph pre-partitioning (rendering
it similar to Giraph). Work Stealing (WS) Mizan is our
attempt to emulate Pregel’s coarse-grained dynamic load
balancing behavior (described in [23]). Finally, Mizan is our
framework that supports dynamic migration as described in
Sections 3 and 4.

We evaluated Mizan across three dimensions: partitioning
scheme, graph structure, and algorithm behavior. We par-
tition the datasets using three schemes: hash-based, range-
based, and METIS partitioning. We run our experiments
against both social and random graphs. Finally, we experi-
mented with the algorithms described in Section 2.1.

5.1 Giraph vs. Mizan
We picked Giraph for its popularity as an open source Pregel
framework with broad adoption. We only compared Giraph
to Static Mizan, which allows us to evaluate our base (non-
dynamic) implementation. Mizan’s dynamic migration is
evaluated later in this section. To further equalize Giraph and
the Static Mizan, we disabled the fault tolerance feature of
Giraph to eliminate any additional overhead resulting from
frequent snapshots during runtime. In this section, we report
the results using PageRank (a stationary and well balanced
algorithm) using different graph structures.

In Figure 11, we ran both frameworks on social network
and random graphs. As shown, Static Mizan outperforms Gi-
raph by a large margin, up to four times faster than Giraph in
kg4m68, which contains around 70M edges. We also com-
pared both systems when increasing the number of nodes
in random structure graphs. As shown in Figure 12, Static

���

29	

Synthe2c	 datasets	 are	 generated	 by	
Kronecker	 generator.	

Giraph	 vs.	 Mizan	

30	

Figure 10. Delayed vertex migration

G(N,E) |N | |E|
kg1 1,048,576 5,360,368
kg4m68m 4,194,304 68,671,566
web-Google 875,713 5,105,039
LiveJournal1 4,847,571 68,993,773
hollywood-2011 2,180,759 228,985,632
arabic-2005 22,744,080 639,999,458

Table 1. Datasets—N , E denote nodes and edges, respec-
tively. Graphs with prefix kg are synthetic.

ning is disabled for superstep SS

t+1 after applying delayed
migration to ensure the consistency of the migration plans.

An example is shown in Figure 10, where Vertex 7 is
migrated using delayed migration. As Vertex 7 migrates,
the ownership of Vertex 7 is moved to Worker new and
messages sent to Vertex 7 at SS

t+1 are addressed to
Worker new. At the barrier of SS

t+1, Worker old sends
the edge information and state of v to Worker new and starts
SS

t+2 with v fully migrated to Worker new.
With delayed migration, the consistency of computation

is maintained without introducing additional network cost
for vertices with large message queues. Since delayed mi-
gration uses two supersteps to complete, Mizan may need
more steps before it converges on a balanced state.

5. Evaluation
We implemented Mizan using C++ and MPI and compared
it against Giraph [8], a Pregel clone implemented in Java
on top of Hadoop. We ran our experiments on a local clus-
ter of 21 machines equipped with a mix of i5 and i7 pro-
cessors with 16GB RAM on each machine. We also used
an IBM Blue Gene/P supercomputer with 1024 PowerPC-
450 CPUs, each with 4 cores at 850MHz and 4GB RAM.
We downloaded publicly available datasets from the Stan-
ford Network Analysis Project6 and from The Laboratory for

6
http://snap.stanford.edu

Figure 11. Comparing Static Mizan vs. Giraph using
PageRank on social network and random graphs

Web Algorithmics (LAW) [2, 20]. We also generated syn-
thetic datasets using the Kronecker [21] generator that mod-
els the structure of real life networks. The details are shown
in Table 1.

To better isolate the effects of dynamic migration on
system performance, we implemented three variations of
Mizan: Static, Work Stealing (WS), and Mizan. Static Mizan
disables any dynamic migration and uses either hash-based,
range-based or min-cuts graph pre-partitioning (rendering
it similar to Giraph). Work Stealing (WS) Mizan is our
attempt to emulate Pregel’s coarse-grained dynamic load
balancing behavior (described in [23]). Finally, Mizan is our
framework that supports dynamic migration as described in
Sections 3 and 4.

We evaluated Mizan across three dimensions: partitioning
scheme, graph structure, and algorithm behavior. We par-
tition the datasets using three schemes: hash-based, range-
based, and METIS partitioning. We run our experiments
against both social and random graphs. Finally, we experi-
mented with the algorithms described in Section 2.1.

5.1 Giraph vs. Mizan
We picked Giraph for its popularity as an open source Pregel
framework with broad adoption. We only compared Giraph
to Static Mizan, which allows us to evaluate our base (non-
dynamic) implementation. Mizan’s dynamic migration is
evaluated later in this section. To further equalize Giraph and
the Static Mizan, we disabled the fault tolerance feature of
Giraph to eliminate any additional overhead resulting from
frequent snapshots during runtime. In this section, we report
the results using PageRank (a stationary and well balanced
algorithm) using different graph structures.

In Figure 11, we ran both frameworks on social network
and random graphs. As shown, Static Mizan outperforms Gi-
raph by a large margin, up to four times faster than Giraph in
kg4m68, which contains around 70M edges. We also com-
pared both systems when increasing the number of nodes
in random structure graphs. As shown in Figure 12, Static

���

Figure 12. Comparing Mizan vs. Giraph using PageRank
on regular random graphs, the graphs are uniformly dis-
tributed with each has around 17M edge

Mizan consistently outperforms Giraph in all datasets and
reaches up to three times faster with 16 million vertexes.
While the execution time of both frameworks increases lin-
early with graph size, the rate of increase—slope of the
graph—for Giraph (0.318) is steeper than Mizan (0.09), in-
dicating that Mizan also achieves better scalability.

The experiments in Figures 12 and 11 show that Giraph’s
implementation is inefficient. It is a non-trivial task to dis-
cover the source of inefficiency in Giraph since it is tightly
coupled with Hadoop. We suspect that part of the ineffi-
ciency is due to the initialization cost of the Hadoop jobs
and the high overhead of communication. Other factors, like
internal data structure choice and memory footprint, might
also play a role in this inefficiency.

5.2 Effectiveness of Dynamic Vertex Migration
Given the large performance difference between Static
Mizan and Giraph, we exclude Giraph from further exper-
iments and focus on isolating the effects of dynamic migra-
tion on the overall performance of the system.

Figure 13 shows the results for running PageRank on a
social graph with various partitioning schemes. We notice
that both hash-based and METIS partitioning achieve a bal-
anced workload for PageRank such that dynamic migration
did not improve the results. In comparison, range-based par-
titioning resulted in poor graph partitioning. In this case, we
observe Mizan (with dynamic partitioning) was able to re-
duce execution time by approximately 40% when compared
to the static version. We have also evaluated the diameter es-
timation algorithm, which behaves the same as PageRank,
but exchanges larger size messages. Mizan exhibited similar
behavior with diameter estimation; the results are omitted
for space considerations.

Figure 14 shows how Mizan’s dynamic migration was
able to optimize running PageRank starting with range-
based partitioning. The figure shows that Mizan’s migration
reduced both the variance in workers’ runtime and the su-

Figure 13. Comparing Static Mizan and Work Stealing
(Pregel clone) vs. Mizan using PageRank on a social graph
(LiveJournal1). The shaded part of each column repre-
sents the algorithm runtime while unshaded parts represents
the initial partitioning cost of the input graph.

perstep’s runtime. The same figure also shows that Mizan’s
migration alternated the optimization objective between the
number of outgoing messages and vertex response time, il-
lustrated as points on the superstep’s runtime trend.

By looking at both Figures 14 and 15, we observe that
the convergence of Mizan’s dynamic migration is correlated
with the algorithm’s runtime reduction. For the PageRank
algorithm with range-based partitioning, Mizan requires 13
supersteps to reach an acceptable balanced workload. Since
PageRank is a stationary algorithm, Mizan’s migration con-
verged quickly; we expect that it would require more super-
steps to converge on other algorithms and datasets. In gen-
eral, Mizan requires multiple supersteps before it balances
the workload. This also explains why running Mizan with
range-based partitioning is less efficient than running Mizan
with METIS or hash-based partitioning.

As described in Section 2.1, Top-K PageRank adds vari-
ability in the communication among the graph nodes. As
shown in Figure 16, such variability in the messages ex-
changed leads to minor variation in both hash-based and
METIS execution times. Similarly, in range partitioning,
Mizan had better performance than the static version. The
slight performance improvement arises from the fact that the
base algorithm (PageRank) dominates the execution time. If
a large number of queries are performed, the improvements
will be more significant.

To study the effect of algorithms with highly variable
messaging patterns, we evaluated Mizan using two algo-
rithms: DMST and advertisement propagation simulation.
In both cases, we used METIS to pre-partition the graph
data. METIS partitioning groups the strongly connected sub-
graphs into clusters, thus minimizing the global communica-
tion among each cluster.

In DMST, as discussed in Section 2.1, computation com-
plexity increases with vertex connectivity degree. Because

���

•  First,	 Sta2c	 Mizan	 was	
compared	 to	 Giraph.	
–  In	 Sta2c	 Mizan,	 dynamic	
migra2ons	 never	 occur	 and	
graph	 pre-‐par22oning	 is	
used.	

•  In	 Figure	 11	 and	 12,	 Sta2c	
Mizan	 is	 faster	 than	
Giraph.	

Dynamic	 Vertex	 Migra2on	

Figure 12. Comparing Mizan vs. Giraph using PageRank
on regular random graphs, the graphs are uniformly dis-
tributed with each has around 17M edge

Mizan consistently outperforms Giraph in all datasets and
reaches up to three times faster with 16 million vertexes.
While the execution time of both frameworks increases lin-
early with graph size, the rate of increase—slope of the
graph—for Giraph (0.318) is steeper than Mizan (0.09), in-
dicating that Mizan also achieves better scalability.

The experiments in Figures 12 and 11 show that Giraph’s
implementation is inefficient. It is a non-trivial task to dis-
cover the source of inefficiency in Giraph since it is tightly
coupled with Hadoop. We suspect that part of the ineffi-
ciency is due to the initialization cost of the Hadoop jobs
and the high overhead of communication. Other factors, like
internal data structure choice and memory footprint, might
also play a role in this inefficiency.

5.2 Effectiveness of Dynamic Vertex Migration
Given the large performance difference between Static
Mizan and Giraph, we exclude Giraph from further exper-
iments and focus on isolating the effects of dynamic migra-
tion on the overall performance of the system.

Figure 13 shows the results for running PageRank on a
social graph with various partitioning schemes. We notice
that both hash-based and METIS partitioning achieve a bal-
anced workload for PageRank such that dynamic migration
did not improve the results. In comparison, range-based par-
titioning resulted in poor graph partitioning. In this case, we
observe Mizan (with dynamic partitioning) was able to re-
duce execution time by approximately 40% when compared
to the static version. We have also evaluated the diameter es-
timation algorithm, which behaves the same as PageRank,
but exchanges larger size messages. Mizan exhibited similar
behavior with diameter estimation; the results are omitted
for space considerations.

Figure 14 shows how Mizan’s dynamic migration was
able to optimize running PageRank starting with range-
based partitioning. The figure shows that Mizan’s migration
reduced both the variance in workers’ runtime and the su-

Figure 13. Comparing Static Mizan and Work Stealing
(Pregel clone) vs. Mizan using PageRank on a social graph
(LiveJournal1). The shaded part of each column repre-
sents the algorithm runtime while unshaded parts represents
the initial partitioning cost of the input graph.

perstep’s runtime. The same figure also shows that Mizan’s
migration alternated the optimization objective between the
number of outgoing messages and vertex response time, il-
lustrated as points on the superstep’s runtime trend.

By looking at both Figures 14 and 15, we observe that
the convergence of Mizan’s dynamic migration is correlated
with the algorithm’s runtime reduction. For the PageRank
algorithm with range-based partitioning, Mizan requires 13
supersteps to reach an acceptable balanced workload. Since
PageRank is a stationary algorithm, Mizan’s migration con-
verged quickly; we expect that it would require more super-
steps to converge on other algorithms and datasets. In gen-
eral, Mizan requires multiple supersteps before it balances
the workload. This also explains why running Mizan with
range-based partitioning is less efficient than running Mizan
with METIS or hash-based partitioning.

As described in Section 2.1, Top-K PageRank adds vari-
ability in the communication among the graph nodes. As
shown in Figure 16, such variability in the messages ex-
changed leads to minor variation in both hash-based and
METIS execution times. Similarly, in range partitioning,
Mizan had better performance than the static version. The
slight performance improvement arises from the fact that the
base algorithm (PageRank) dominates the execution time. If
a large number of queries are performed, the improvements
will be more significant.

To study the effect of algorithms with highly variable
messaging patterns, we evaluated Mizan using two algo-
rithms: DMST and advertisement propagation simulation.
In both cases, we used METIS to pre-partition the graph
data. METIS partitioning groups the strongly connected sub-
graphs into clusters, thus minimizing the global communica-
tion among each cluster.

In DMST, as discussed in Section 2.1, computation com-
plexity increases with vertex connectivity degree. Because

���

31	

•  Hash-‐based	 and	 METIS	
par22oning	 make	 lijle	
differences.	

•  However,	 effec2veness	
of	 dynamic	 migra2on	 is	
showed	 in	 the	 range-‐
based	 par22oning.	

Dynamic	 Vertex	 Migra2on	

32	

•  In	 PageRank	 algorithm,	
the	 dynamic	 migra2on	
is	 correlated	 with	
run2me	 reduc2on.	
–  It	 would	 take	 more	
supersteps	 when	
workload	 is	 balanced	 in	
other	 algorithms.	

Figure 14. Comparing Mizan’s migration cost with the su-
perstep’s (or the algorithm) runtime at each supertstep us-
ing PageRank on a social graph (LiveJournal1) starting
with range based partitioning. The points on the superstep’s
runtime trend represents Mizan’s migration objective at that
specific superstep.

Figure 15. Comparing both the total migrated vertices and
the maximum migrated vertices by a single worker for
PageRank on LiveJournal1 starting with range-based par-
titioning. The migration cost at each superstep is also shown.

of the quadratic complexity of computation as a function of
connectivity degree, some workers will suffer from exten-
sive workload while others will have light workload. Such
imbalance in the workload leads to the results shown in Fig-
ure 17. Mizan was able to reduce the imbalance in the work-
load, resulting in a large drop in execution time (two orders
of magnitude improvement). Even when using our version
of Pregel’s load balancing approach (called work stealing),
Mizan is roughly eight times faster.

Similar to DMST, the behavior of the advertising propa-
gation simulation algorithm varies across supersteps. In this
algorithm, a dynamic set of graph vertices communicate
heavily with each other, while others have little or no com-
munication. In every superstep, the communication behav-
ior differs depending on the state of the vertex. Therefore,
it creates an imbalance across the workers for every super-

Figure 16. Comparing static Mizan and Work Stealing
(Pregel clone) vs. Mizan using Top-K PageRanks on a so-
cial graph (LiveJournal1). The shaded part of each col-
umn represents the algorithm runtime while unshaded parts
represents the initial partitioning cost of the input graph.

Figure 17. Comparing Work stealing (Pregel clone) vs.
Mizan using DMST and Propagation Simulation on a metis
partitioned social graph (LiveJournal1)

Total runtime (s) 707
Data read time to memory (s) 72

Migrated vertices 1,062,559
Total migration time (s) 75

Average migrate time per vertex (µs) 70.5

Table 2. Overhead of Mizan’s migration process when
compared to the total runtime using range partitioning on
LiveJournal1 graph

step. Even METIS partitioning in such case is ill-suited since
workers’ load dynamically changes at runtime. As shown in
Figure 17, similar to DMST, Mizan is able to reduce such an
imbalance, resulting in approximately 200% speed up when
compared to the work stealing and static versions.

���

Figure 14. Comparing Mizan’s migration cost with the su-
perstep’s (or the algorithm) runtime at each supertstep us-
ing PageRank on a social graph (LiveJournal1) starting
with range based partitioning. The points on the superstep’s
runtime trend represents Mizan’s migration objective at that
specific superstep.

Figure 15. Comparing both the total migrated vertices and
the maximum migrated vertices by a single worker for
PageRank on LiveJournal1 starting with range-based par-
titioning. The migration cost at each superstep is also shown.

of the quadratic complexity of computation as a function of
connectivity degree, some workers will suffer from exten-
sive workload while others will have light workload. Such
imbalance in the workload leads to the results shown in Fig-
ure 17. Mizan was able to reduce the imbalance in the work-
load, resulting in a large drop in execution time (two orders
of magnitude improvement). Even when using our version
of Pregel’s load balancing approach (called work stealing),
Mizan is roughly eight times faster.

Similar to DMST, the behavior of the advertising propa-
gation simulation algorithm varies across supersteps. In this
algorithm, a dynamic set of graph vertices communicate
heavily with each other, while others have little or no com-
munication. In every superstep, the communication behav-
ior differs depending on the state of the vertex. Therefore,
it creates an imbalance across the workers for every super-

Figure 16. Comparing static Mizan and Work Stealing
(Pregel clone) vs. Mizan using Top-K PageRanks on a so-
cial graph (LiveJournal1). The shaded part of each col-
umn represents the algorithm runtime while unshaded parts
represents the initial partitioning cost of the input graph.

Figure 17. Comparing Work stealing (Pregel clone) vs.
Mizan using DMST and Propagation Simulation on a metis
partitioned social graph (LiveJournal1)

Total runtime (s) 707
Data read time to memory (s) 72

Migrated vertices 1,062,559
Total migration time (s) 75

Average migrate time per vertex (µs) 70.5

Table 2. Overhead of Mizan’s migration process when
compared to the total runtime using range partitioning on
LiveJournal1 graph

step. Even METIS partitioning in such case is ill-suited since
workers’ load dynamically changes at runtime. As shown in
Figure 17, similar to DMST, Mizan is able to reduce such an
imbalance, resulting in approximately 200% speed up when
compared to the work stealing and static versions.

���

Dynamic	 Vertex	 Migra2on	

•  In	 the	 both	 of	 algorithms,	
Mizan	 resulted	 in	 about	
200%	 speed	 up.	

Figure 14. Comparing Mizan’s migration cost with the su-
perstep’s (or the algorithm) runtime at each supertstep us-
ing PageRank on a social graph (LiveJournal1) starting
with range based partitioning. The points on the superstep’s
runtime trend represents Mizan’s migration objective at that
specific superstep.

Figure 15. Comparing both the total migrated vertices and
the maximum migrated vertices by a single worker for
PageRank on LiveJournal1 starting with range-based par-
titioning. The migration cost at each superstep is also shown.

of the quadratic complexity of computation as a function of
connectivity degree, some workers will suffer from exten-
sive workload while others will have light workload. Such
imbalance in the workload leads to the results shown in Fig-
ure 17. Mizan was able to reduce the imbalance in the work-
load, resulting in a large drop in execution time (two orders
of magnitude improvement). Even when using our version
of Pregel’s load balancing approach (called work stealing),
Mizan is roughly eight times faster.

Similar to DMST, the behavior of the advertising propa-
gation simulation algorithm varies across supersteps. In this
algorithm, a dynamic set of graph vertices communicate
heavily with each other, while others have little or no com-
munication. In every superstep, the communication behav-
ior differs depending on the state of the vertex. Therefore,
it creates an imbalance across the workers for every super-

Figure 16. Comparing static Mizan and Work Stealing
(Pregel clone) vs. Mizan using Top-K PageRanks on a so-
cial graph (LiveJournal1). The shaded part of each col-
umn represents the algorithm runtime while unshaded parts
represents the initial partitioning cost of the input graph.

Figure 17. Comparing Work stealing (Pregel clone) vs.
Mizan using DMST and Propagation Simulation on a metis
partitioned social graph (LiveJournal1)

Total runtime (s) 707
Data read time to memory (s) 72

Migrated vertices 1,062,559
Total migration time (s) 75

Average migrate time per vertex (µs) 70.5

Table 2. Overhead of Mizan’s migration process when
compared to the total runtime using range partitioning on
LiveJournal1 graph

step. Even METIS partitioning in such case is ill-suited since
workers’ load dynamically changes at runtime. As shown in
Figure 17, similar to DMST, Mizan is able to reduce such an
imbalance, resulting in approximately 200% speed up when
compared to the work stealing and static versions.

���

33	

Scalability	 of	 Mizan	Linux Cluster Blue Gene/P

hollywood-2011 arabic-2005

Processors Runtime (m) Processors Runtime (m)
2 154 64 144.7
4 79.1 128 74.6
8 40.4 256 37.9
16 21.5 512 21.5

1024 17.5

Table 3. Scalability of Mizan on a Linux Cluster of
16 machines (hollywood-2011 dataset), and an IBM
Blue Gene/P supercomputer (arabic-2005 dataset).

5.3 Overhead of Vertex Migration
To analyze migration cost, we measured the time for var-
ious performance metrics of Mizan. We used the PageR-
ank algorithm with a range-based partitioning of the
Live-Journal1 dataset on 21 workers. We chose range-
based partitioning as it provides the worst data distribution
according to previous experiments and therefore will trigger
frequent vertex migrations to balance the workload.

Table 2 reports the average cost of migrating as 70.5 µs
per vertex. In the LiveJournal1 dataset, Mizan paid a 9%
penalty of the total runtime to balance the workload, trans-
ferring over 1M vertices. As shown earlier in Figure 13, this
resulted in a 40% saving in computation time when com-
pared to Static Mizan. Moreover, Figures 14 and 15 compare
the algorithm runtime and the migration cost at each super-
step, the migration cost is at most 13% (at superstep 2) and
on average 6% for all supersteps that included a migration
phase.

5.4 Scalability of Mizan
We tested the scalability of Mizan on the Linux cluster
as shown in Table 3. We used two compute nodes as our
base reference as a single node was too small when running
the dataset (hollywood-2011), causing significant paging
activities. As Figure 18 shows, Mizan scales linearly with
the number of workers.

We were interested in performing large scale-out experi-
ments, well beyond what can be achieved on public clouds.
Since Mizan’s was written in C++ and uses MPI for mes-
sage passing, it was easily ported to IBM’s Blue Gene/P su-
percomputer. Once ported, we natively ran Mizan on 1024
Blue Gene/P compute nodes. The results are shown in Ta-
ble 3. We ran the PageRank algorithm using a huge graph
(arabic-2005) that contains 639M edges. As shown in
Figure 19, Mizan scales linearly from 64 to 512 compute
nodes then starts to flatten out as we increase to 1024 com-
pute nodes. The flattening was expected since with an in-
creased number of cores, compute nodes will spend more
time communicating than computing. We expect that as we
continue to increase the number of CPUs, most of the time

Figure 18. Speedup on Linux Cluster of 16 machines using
PageRank on the hollywood-2011 dataset.

Figure 19. Speedup on Shaheen IBM Blue Gene/P super-
computer using PageRank on the arabic-2005 dataset.

will be spent communicating (which effectively breaks the
BSP model of overlapping communication and computa-
tion).

6. Related Work
In the past few years, a number of large scale graph process-
ing systems have been proposed. A common thread across
the majority of existing work is how to partition graph data
and how to balance computation across compute nodes. This
problem is known as applying dynamic load balancing to the
distributed graph data by utilizing on the fly graph partition-
ing, which Bruce et al. [11] assert to be either too expen-
sive or hard to parallelize. Mizan follows the Pregel model,
but focuses on dynamic load balancing of vertexes. In this
section, we examine the design aspects of existing work for
achieving a balanced workload.

Pregel and its Clones. The default partitioning scheme for
the input graph used by Pregel [23] is hash based. In every
superstep, Pregel assigns more than one subgraph (partition)
to a worker. While this load balancing approach helps in bal-
ancing computation in any superstep, it is coarse-grained

���

Linux Cluster Blue Gene/P

hollywood-2011 arabic-2005

Processors Runtime (m) Processors Runtime (m)
2 154 64 144.7
4 79.1 128 74.6
8 40.4 256 37.9
16 21.5 512 21.5

1024 17.5

Table 3. Scalability of Mizan on a Linux Cluster of
16 machines (hollywood-2011 dataset), and an IBM
Blue Gene/P supercomputer (arabic-2005 dataset).

5.3 Overhead of Vertex Migration
To analyze migration cost, we measured the time for var-
ious performance metrics of Mizan. We used the PageR-
ank algorithm with a range-based partitioning of the
Live-Journal1 dataset on 21 workers. We chose range-
based partitioning as it provides the worst data distribution
according to previous experiments and therefore will trigger
frequent vertex migrations to balance the workload.

Table 2 reports the average cost of migrating as 70.5 µs
per vertex. In the LiveJournal1 dataset, Mizan paid a 9%
penalty of the total runtime to balance the workload, trans-
ferring over 1M vertices. As shown earlier in Figure 13, this
resulted in a 40% saving in computation time when com-
pared to Static Mizan. Moreover, Figures 14 and 15 compare
the algorithm runtime and the migration cost at each super-
step, the migration cost is at most 13% (at superstep 2) and
on average 6% for all supersteps that included a migration
phase.

5.4 Scalability of Mizan
We tested the scalability of Mizan on the Linux cluster
as shown in Table 3. We used two compute nodes as our
base reference as a single node was too small when running
the dataset (hollywood-2011), causing significant paging
activities. As Figure 18 shows, Mizan scales linearly with
the number of workers.

We were interested in performing large scale-out experi-
ments, well beyond what can be achieved on public clouds.
Since Mizan’s was written in C++ and uses MPI for mes-
sage passing, it was easily ported to IBM’s Blue Gene/P su-
percomputer. Once ported, we natively ran Mizan on 1024
Blue Gene/P compute nodes. The results are shown in Ta-
ble 3. We ran the PageRank algorithm using a huge graph
(arabic-2005) that contains 639M edges. As shown in
Figure 19, Mizan scales linearly from 64 to 512 compute
nodes then starts to flatten out as we increase to 1024 com-
pute nodes. The flattening was expected since with an in-
creased number of cores, compute nodes will spend more
time communicating than computing. We expect that as we
continue to increase the number of CPUs, most of the time

Figure 18. Speedup on Linux Cluster of 16 machines using
PageRank on the hollywood-2011 dataset.

Figure 19. Speedup on Shaheen IBM Blue Gene/P super-
computer using PageRank on the arabic-2005 dataset.

will be spent communicating (which effectively breaks the
BSP model of overlapping communication and computa-
tion).

6. Related Work
In the past few years, a number of large scale graph process-
ing systems have been proposed. A common thread across
the majority of existing work is how to partition graph data
and how to balance computation across compute nodes. This
problem is known as applying dynamic load balancing to the
distributed graph data by utilizing on the fly graph partition-
ing, which Bruce et al. [11] assert to be either too expen-
sive or hard to parallelize. Mizan follows the Pregel model,
but focuses on dynamic load balancing of vertexes. In this
section, we examine the design aspects of existing work for
achieving a balanced workload.

Pregel and its Clones. The default partitioning scheme for
the input graph used by Pregel [23] is hash based. In every
superstep, Pregel assigns more than one subgraph (partition)
to a worker. While this load balancing approach helps in bal-
ancing computation in any superstep, it is coarse-grained

���

34	

•  While	 using	 smaller	
data	 sets,	 it	 achieved	
the	 scalability.	

•  However,	 in	 1024	 nodes	 	
with	 larger	 graph,	 the	
scale	 became	 flajen.	
–  The	 reason	 may	 be	 that	
compu2ng	 2me	 cannot	
hide	 too	 much	
communica2on	 2me.	

6.	 Related	 Work	

•  Pregel	 and	 its	 Clones	
•  Power-‐law	 Op2mized	 Graph	 Processing	
Systems	

•  Shared	 Memory	 Graph	 Processing	 Systems	
•  Specialized	 Graph	 Systems	

35	

7.	 Future	 Work	

•  In	 order	 to	 reduce	 migra2on	 costs,	 the	
frequency	 of	 them	 should	 be	 reduced.	
– Vertex	 replica2on	 proposed	 by	 PowerGraph	 may	
be	 useful.	

•  In	 the	 evalua2ons,	 graph	 was	 par22oned	 only	
by	 single	 applica2on	 or	 algorithm.	
–  If	 experiments	 using	 mul2ple	 algorithms	 on	 the	
same	 graph	 are	 conducted,	 bejer	 result	 will	 gain.	

36	

8.	 Conclusion	

•  A	 Pregel	 system	 called	 Mizan	 was	 presented.	
–  Iden2fies	 the	 cause	 of	 workload	 imbalance.	
– Conducts	 fine-‐grained	 vertex	 migra2on.	

•  Performance	 evalua2on	 showed	 it	 had	 most	
efficiency	 and	 robustness.	
–  It	 also	 showed	 the	 linear	 scalability	 to	 hundreds	
nodes.	

37	

Contribu2ons	

•  Analyzed	 some	 graph	 algorithm	 characteris2cs	
that	 can	 contribute	 to	 imbalanced	
computa2on	 of	 a	 Pregel	 system.	

•  Proposed	 a	 dynamic	 migra2on	 model	 based	
on	 run2me	 monitoring	 of	 ver2ces.	

•  Implemented	 Mizan	 in	 C++	 and	 MPI	 as	 an	
op2mized	 Pregel	 system.	

•  Deployed	 Mizan	 and	 showed	 linear	 scalability.	

38	

My	 Impression	 1	

•  Even	 Mizan	 assumes	 many	 nodes	 computa2on,	
data	 sets	 might	 not	 large	 enough.	
– The	 number	 of	 nodes	 is	 23	 million	 at	 most.	
–  I	 wanted	 to	 see	 the	 result	 of	 evalua2ons	 using	
billion-‐scale	 graph.	

–  I	 think	 that	 scalability	 would	 be	 less	 and	 less	 with	
using	 larger	 network.	
•  Migra2on	 cost	 would	 be	 more	 visible.	

39	

My	 Impression	 2	

•  It	 has	 substan2al	 analyzing	 and	 evalua2ons	 on	
graph	 algorithms.	
– Thought	 of	 categories	 “(Non-‐)sta2onary	
algorithms”	 seems	 to	 be	 useful.	

–  I	 found	 that	 many	 graph	 par22oning	 algorithms	
for	 preprocessing	 are	 worth	 trying.	

40	

My	 Impression	 3	

•  The	 series	 of	 algorithms	 and	 implements	 of	
Mizan	 will	 serve	 as	 a	 reference	 of	 my	 research.	
–  I	 am	 researching	 an	 efficient	 traffic	 simula2ons	
using	 million-‐scale	 road	 network.	

– The	 main	 problem	 in	 these	 simula2ons	 is	 also	 load	
unbalancing	 caused	 by	 vehicles.	
• We	 cannot	 predict	 the	 number	 of	 vehicles	 (messages).	

– The	 idea	 of	 “delayed	 migra2on”	 can	 be	
implemented	 to	 my	 simula2ons.	

41	

Thank	 you	 for	 listening	

42	

