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1.	  Introduc2on	

•  To	  make	  bejer	  use	  of	  graph	  data	  and	  mining	  
algorithms,	  many	  plakorms	  are	  proposed.	  
– Pregel	  
– HADI	  
– PEGASUS	  
– X-‐RIME	  

•  This	  paper	  focused	  on	  Pregel.	  
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About	  Pregel	

•  Pregel	  is	  used	  for	  large	  graph	  minings	  
recently.	  
– Message	  passing-‐based	  
– Performs	  bejer	  than	  MapReduce	  
– Built	  on	  the	  Bulk	  Synchronous	  Parallel	  (BSP)	  
model	  
•  Computa2on	  is	  divided	  into	  “supersteps”.	  
•  These	  supersteps	  are	  separated	  by	  global	  barrier.	  
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Load	  balancing	

•  In	  a	  Pregel	  system,	  balanced	  computa2on	  and	  
communica2on	  is	  fundamental.	  

•  Pregel	  and	  other	  implemented	  plakorms	  have	  
systems	  to	  do	  so.	  
– Giraph	  
– GoldenOrb	  
– Hama	  
– Surfer	  
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Recent	  Approaches	  for	  Balancing	

•  Use	  hash-‐	  /	  range-‐based	  graph	  par22oning	  
•  Entrust	  developers	  to	  use	  their	  own	  
par22oning	  scheme	  or	  pre-‐par22on	  data	  

•  Provide	  sophis2cated	  techniques	  
•  U2lize	  distributed	  data	  stores	  and	  indexing	  on	  
ver2ces	  and	  edges	  

•  Perform	  coarse-‐grained	  load	  balancing	  
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The	  Efficacy	  of	  Recent	  Methods	

•  Are	  these	  method	  effec2ve	  for	  large	  graph?	  
– They	  are	  sta2c	  approaches.	  
– Developers	  should	  predict	  the	  behavior.	  
– Developers	  should	  know	  run2me	  characteris2cs.	  
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2.	  Dynamic	  Behavior	  of	  Algorithms	

•  There	  are	  many	  factors	  
affect	  the	  run2me	  
performance	  in	  Pregel.	  
– When	  ver2ces	  are	  ac2ve,	  
they	  compute,	  send	  and	  
receive	  messages.	  

–  Some	  messages	  are	  sent	  to	  
another	  workers	  (nodes).	  

•  Some	  factors	  can	  be	  
masked	  by	  overlapping	  or	  
running	  many	  ver2ces.	  
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Figure 1. Factors that can affect the runtime in the Pregel
framework

tioning methods divide a dataset based on a simple heuristic:
to evenly distribute vertices across compute nodes, irrespec-
tive of their edge connectivity. Min-cut based partitioning,
on the other hand, considers vertex connectivity and parti-
tions the data such that it places strongly connected vertices
close to each other (i.e., on the same cluster). The result-
ing performance of these partitioning approaches is, how-
ever, graph dependent. To demonstrate this variability, we
ran a simple—and highly predictable—PageRank algorithm
on different datasets (summarized in Table 1) using the three
popular partitioning methods. Figure 2 shows that none of
the partitioning methods consistently outperforms the rest,
noting that ParMETIS [15] partitioning cannot be performed
on the arabic-2005 graph due to memory limitations.

In addition to the graph structure, the running algorithm
can also affect the workload balance across compute nodes.
Broadly speaking, graph algorithms can be divided into
two categories (based on their communication characteris-
tics across supersteps): stationary and non-stationary.

Stationary Graph Algorithms. An algorithm is stationary
if its active vertices send and receive the same distribution of
messages across supersteps. At the end of a stationary algo-
rithm, all active vertices become inactive (terminate) during
the same superstep. Usually graph algorithms represented by
a matrix-vector multiplication2 are stationary algorithms, in-
cluding PageRank, diameter estimation and finding weakly
connected components.

Non-stationary Graph Algorithms. A graph algorithm is
non-stationary if the destination or size of its outgoing mes-
sages changes across supersteps. Such variations can create
workload imbalances across supersteps. Examples of non-
stationary algorithms include distributed minimal spanning
tree construction (DMST), graph queries, and various simu-
lations on social network graphs (e.g., advertisement propa-
gation).

2 The matrix represents the graph adjacency matrix and the vector represents
the vertices’ value.

Figure 2. The difference in execution time when processing
PageRank on different graphs using hash-based, range-based
and min-cuts partitioning. Because of its size, arabic-2005
cannot be partitioned using min-cuts (ParMETIS) in our
local cluster.

Figure 3. The difference between stationary and non-
stationary graph algorithms with respect to the incoming
messages. Total represents the sum across all workers and
Max represents the maximum amount (on a single worker)
across all workers.

To illustrate the differences between the two classes of
algorithms, we compared the runtime behavior of PageRank
(stationary) against DMST (non-stationary) when process-
ing the same dataset (LiveJournal1) on a cluster of 21 ma-
chines. The input graph was partitioned using a hash func-
tion. Figure 3 shows the variability in the incoming messages
per superstep for all workers. In particular, the variability can
span over five orders of magnitude for non-stationary algo-
rithms.

The remainder of the section describes four popular graph
mining algorithms that we use throughout the paper. They
cover both stationary and non-stationary algorithms.

2.1 Example Algorithms

PageRank. PageRank [24] is a stationary algorithm that
uses matrix-vector multiplications to calculate the eigenval-
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Workload	  imbalance	

•  It	  is	  difficult	  to	  achieve	  a	  balanced	  workload	  for	  
graph	  structure	  and	  algorithms	  behavior.	  

	  
•  Some	  nodes	  may	  take	  a	  long	  2me	  to	  compute	  
many	  nodes,	  send	  and	  receive	  many	  messages.	  

	  
•  As	  this	  paper	  introduced,	  many	  approaches	  are	  
used	  in	  Pregel	  systems.	  
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Evalua2on	  of	  recent	  methods	

•  At	  first,	  three	  common	  
approaches	  are	  
evaluated	  using	  these	  
datasets.	  
–  Hash-‐based	  
–  Range-‐based	  
– Minimum-‐cuts	  
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Max represents the maximum amount (on a single worker)
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To illustrate the differences between the two classes of
algorithms, we compared the runtime behavior of PageRank
(stationary) against DMST (non-stationary) when process-
ing the same dataset (LiveJournal1) on a cluster of 21 ma-
chines. The input graph was partitioned using a hash func-
tion. Figure 3 shows the variability in the incoming messages
per superstep for all workers. In particular, the variability can
span over five orders of magnitude for non-stationary algo-
rithms.
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mining algorithms that we use throughout the paper. They
cover both stationary and non-stationary algorithms.

2.1 Example Algorithms

PageRank. PageRank [24] is a stationary algorithm that
uses matrix-vector multiplications to calculate the eigenval-
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Figure 10. Delayed vertex migration

G(N,E) |N | |E|
kg1 1,048,576 5,360,368
kg4m68m 4,194,304 68,671,566
web-Google 875,713 5,105,039
LiveJournal1 4,847,571 68,993,773
hollywood-2011 2,180,759 228,985,632
arabic-2005 22,744,080 639,999,458

Table 1. Datasets—N , E denote nodes and edges, respec-
tively. Graphs with prefix kg are synthetic.

ning is disabled for superstep SS

t+1 after applying delayed
migration to ensure the consistency of the migration plans.

An example is shown in Figure 10, where Vertex 7 is
migrated using delayed migration. As Vertex 7 migrates,
the ownership of Vertex 7 is moved to Worker new and
messages sent to Vertex 7 at SS

t+1 are addressed to
Worker new. At the barrier of SS

t+1, Worker old sends
the edge information and state of v to Worker new and starts
SS

t+2 with v fully migrated to Worker new.
With delayed migration, the consistency of computation

is maintained without introducing additional network cost
for vertices with large message queues. Since delayed mi-
gration uses two supersteps to complete, Mizan may need
more steps before it converges on a balanced state.

5. Evaluation
We implemented Mizan using C++ and MPI and compared
it against Giraph [8], a Pregel clone implemented in Java
on top of Hadoop. We ran our experiments on a local clus-
ter of 21 machines equipped with a mix of i5 and i7 pro-
cessors with 16GB RAM on each machine. We also used
an IBM Blue Gene/P supercomputer with 1024 PowerPC-
450 CPUs, each with 4 cores at 850MHz and 4GB RAM.
We downloaded publicly available datasets from the Stan-
ford Network Analysis Project6 and from The Laboratory for

6
http://snap.stanford.edu

Figure 11. Comparing Static Mizan vs. Giraph using
PageRank on social network and random graphs

Web Algorithmics (LAW) [2, 20]. We also generated syn-
thetic datasets using the Kronecker [21] generator that mod-
els the structure of real life networks. The details are shown
in Table 1.

To better isolate the effects of dynamic migration on
system performance, we implemented three variations of
Mizan: Static, Work Stealing (WS), and Mizan. Static Mizan
disables any dynamic migration and uses either hash-based,
range-based or min-cuts graph pre-partitioning (rendering
it similar to Giraph). Work Stealing (WS) Mizan is our
attempt to emulate Pregel’s coarse-grained dynamic load
balancing behavior (described in [23]). Finally, Mizan is our
framework that supports dynamic migration as described in
Sections 3 and 4.

We evaluated Mizan across three dimensions: partitioning
scheme, graph structure, and algorithm behavior. We par-
tition the datasets using three schemes: hash-based, range-
based, and METIS partitioning. We run our experiments
against both social and random graphs. Finally, we experi-
mented with the algorithms described in Section 2.1.

5.1 Giraph vs. Mizan
We picked Giraph for its popularity as an open source Pregel
framework with broad adoption. We only compared Giraph
to Static Mizan, which allows us to evaluate our base (non-
dynamic) implementation. Mizan’s dynamic migration is
evaluated later in this section. To further equalize Giraph and
the Static Mizan, we disabled the fault tolerance feature of
Giraph to eliminate any additional overhead resulting from
frequent snapshots during runtime. In this section, we report
the results using PageRank (a stationary and well balanced
algorithm) using different graph structures.

In Figure 11, we ran both frameworks on social network
and random graphs. As shown, Static Mizan outperforms Gi-
raph by a large margin, up to four times faster than Giraph in
kg4m68, which contains around 70M edges. We also com-
pared both systems when increasing the number of nodes
in random structure graphs. As shown in Figure 12, Static
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Categolize	  Graph	  Algorithms	

•  Not	  only	  graph	  structure,	  but	  also	  graph	  
algorithms	  can	  affect	  the	  workload	  balance.	  	  

•  They	  can	  be	  categolized	  according	  to	  
communica2on	  characteris2cs.	  
– Sta2onary	  
– Non-‐sta2onary	
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Categolize	  Graph	  Algorithms	

Sta$onary	
•  Distribu2ons	  of	  sent	  

messages	  do	  not	  change.	  
•  Example	  

–  PageRank	  
–  Diameter	  es2ma2on	  
–  Finding	  weakly	  connected	  

components	

Non-‐Sta$onary	
•  Des2na2ons	  or	  sizes	  of	  

messages	  can	  change.	  
•  Example	  

–  Distributed	  minimal	  spanning	  
tree	  construc2on	  (DMST)	  

–  Graph	  queries	  
–  Simula2ons	  on	  social	  network	  

graphs	
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Categolize	  Graph	  Algorithms	

16	

•  While	  running	  two	  
algorithms	  in	  21	  nodes,	  
Non-‐sta2onary	  
algorithms	  (DMST)	  sent	  
more	  and	  more	  
messages.	

Figure 1. Factors that can affect the runtime in the Pregel
framework
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to evenly distribute vertices across compute nodes, irrespec-
tive of their edge connectivity. Min-cut based partitioning,
on the other hand, considers vertex connectivity and parti-
tions the data such that it places strongly connected vertices
close to each other (i.e., on the same cluster). The result-
ing performance of these partitioning approaches is, how-
ever, graph dependent. To demonstrate this variability, we
ran a simple—and highly predictable—PageRank algorithm
on different datasets (summarized in Table 1) using the three
popular partitioning methods. Figure 2 shows that none of
the partitioning methods consistently outperforms the rest,
noting that ParMETIS [15] partitioning cannot be performed
on the arabic-2005 graph due to memory limitations.

In addition to the graph structure, the running algorithm
can also affect the workload balance across compute nodes.
Broadly speaking, graph algorithms can be divided into
two categories (based on their communication characteris-
tics across supersteps): stationary and non-stationary.

Stationary Graph Algorithms. An algorithm is stationary
if its active vertices send and receive the same distribution of
messages across supersteps. At the end of a stationary algo-
rithm, all active vertices become inactive (terminate) during
the same superstep. Usually graph algorithms represented by
a matrix-vector multiplication2 are stationary algorithms, in-
cluding PageRank, diameter estimation and finding weakly
connected components.

Non-stationary Graph Algorithms. A graph algorithm is
non-stationary if the destination or size of its outgoing mes-
sages changes across supersteps. Such variations can create
workload imbalances across supersteps. Examples of non-
stationary algorithms include distributed minimal spanning
tree construction (DMST), graph queries, and various simu-
lations on social network graphs (e.g., advertisement propa-
gation).

2 The matrix represents the graph adjacency matrix and the vector represents
the vertices’ value.

Figure 2. The difference in execution time when processing
PageRank on different graphs using hash-based, range-based
and min-cuts partitioning. Because of its size, arabic-2005
cannot be partitioned using min-cuts (ParMETIS) in our
local cluster.











      























Figure 3. The difference between stationary and non-
stationary graph algorithms with respect to the incoming
messages. Total represents the sum across all workers and
Max represents the maximum amount (on a single worker)
across all workers.

To illustrate the differences between the two classes of
algorithms, we compared the runtime behavior of PageRank
(stationary) against DMST (non-stationary) when process-
ing the same dataset (LiveJournal1) on a cluster of 21 ma-
chines. The input graph was partitioned using a hash func-
tion. Figure 3 shows the variability in the incoming messages
per superstep for all workers. In particular, the variability can
span over five orders of magnitude for non-stationary algo-
rithms.

The remainder of the section describes four popular graph
mining algorithms that we use throughout the paper. They
cover both stationary and non-stationary algorithms.

2.1 Example Algorithms

PageRank. PageRank [24] is a stationary algorithm that
uses matrix-vector multiplications to calculate the eigenval-
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3.	  Mizan	

•  Common	  point	  with	  Pregel	  
– A	  BSP-‐based	  graph	  processing	  system	  
– Reads	  graph	  and	  par22on	  before	  supersteps	  

•  Different	  point	  with	  Pregel	  
– Focuses	  on	  efficient	  dynamic	  load	  balancing	  of	  
both	  computa2on	  and	  communica2on	  

– Moves	  some	  ver2ces	  across	  workers	  (migra2on)	  
•  Distributed	  run2me	  monitoring	  
•  Distributed	  migra2on	  planner	  	  

17	



Monitoring	

•  Mizan	  system	  monitors	  three	  metrics	  
– The	  number	  of	  outgoing	  messages	  
•  Counts	  messages	  to	  other	  ver2ces	  in	  remote	  workers.	  
•  Local	  outgoing	  ones	  never	  affect	  network	  cost.	  

– The	  number	  of	  total	  incoming	  messages	  
•  Counts	  ones	  from	  remote	  ver2ces	  and	  locally	  generated.	  

– The	  response	  2me	  (execu2on	  2me)	  
•  Measured	  for	  each	  vertex	  at	  each	  superstep.	  
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Monitoring	























Figure 4. The statistics monitored by Mizan

Figure 5. Mizan’s BSP flow with migration planning

the response time (execution time) during the current super-
step:

Outgoing Messages. Only outgoing messages to other ver-
tices in remote workers are counted since the local outgoing
messages are rerouted to the same worker and do not incur
any actual network cost.

Incoming Messages. All incoming messages are monitored,
those that are received from remote vertices and those lo-
cally generated. This is because queue size can affect the
performance of the vertex (i.e., when its buffer capacity is
exhausted, paging to disk is required).

Response Time. The response time for each vertex is mea-
sured. It is the time when a vertex starts processing its in-
coming messages until it finishes.

3.2 Migration Planning
High values for any of the three metrics above may indicate
poor vertex placement, which leads to workload imbalance.
As with many constrained optimization problems, optimiz-
ing against three objectives is non-trivial. To reduce the op-
timization search space, Mizan’s migration planner finds the
strongest cause of workload imbalance among the three met-
rics and plans the vertex migration accordingly.

By design, all workers create and execute the migration
plan in parallel, without requiring any centralized coordina-
tion. The migration planner starts on every worker at the end
of each superstep (i.e., when all workers reach the synchro-
nization barrier), after it receives summary statistics (as de-
scribed in Section 3.1) from all other workers. Additionally,
the execution of the migration planner is sandwiched be-

Figure 6. Summary of Mizan’s Migration Planner

tween a second synchronization barrier as shown in Figure 5,
which is necessary to ensure correctness of the BSP model.
Mizan’s migration planner executes the following five steps,
summarized in Figure 6:

1. Identify the source of imbalance.

2. Select the migration objective (i.e., optimize for outgoing
messages, incoming messages, or response time).

3. Pair over-utilized workers with under-utilized ones.

4. Select vertices to migrate.

5. Migrate vertices.

STEP 1: Identify the source of imbalance. Mizan detects
imbalances across supersteps by comparing the summary
statistics of all workers against a normal random distribu-
tion and flagging outliers. Specifically, at the end of a su-
perstep, Mizan computes the z-score4 for all workers. If
any worker has z-score greater than z

def

, Mizan’s migra-
tion planner flags the superstep as imbalanced. We found that
z

def

= 1.96, the commonly recommend value [26], allows
for natural workload fluctuations across workers. We have
experimented with different values of z

def

and validated the
robustness of our choice.

STEP 2: Select the migration objective. Each worker—
identically—uses the summary statistics to compute the cor-
relation between outgoing messages and response time, and
also the correlation between incoming messages and re-
sponse time. The correlation scores are used to select the
objective to optimize for: to balance outgoing messages,
balance incoming messages, or balance computation time.
The default objective is to balance the response time. If the

4 The z-score Wz

i

= |x
i

�x

max

|
standard deviation

, where x

i

is the run time of
worker i

���
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Migra2on	  Planning	

1.  Iden2fy	  the	  source	  of	  
imbalance.	  

2.  Select	  the	  migra2on	  
objec2ve.	  

3.  Pair	  over-‐u2lized	  and	  
under-‐u2lized	  workers.	  

4.  Select	  ver2ces	  to	  
migrate.	  

5.  Migrate	  ver2ces.	

Figure 4. The statistics monitored by Mizan

Figure 5. Mizan’s BSP flow with migration planning
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tices in remote workers are counted since the local outgoing
messages are rerouted to the same worker and do not incur
any actual network cost.
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those that are received from remote vertices and those lo-
cally generated. This is because queue size can affect the
performance of the vertex (i.e., when its buffer capacity is
exhausted, paging to disk is required).
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sured. It is the time when a vertex starts processing its in-
coming messages until it finishes.

3.2 Migration Planning
High values for any of the three metrics above may indicate
poor vertex placement, which leads to workload imbalance.
As with many constrained optimization problems, optimiz-
ing against three objectives is non-trivial. To reduce the op-
timization search space, Mizan’s migration planner finds the
strongest cause of workload imbalance among the three met-
rics and plans the vertex migration accordingly.

By design, all workers create and execute the migration
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the execution of the migration planner is sandwiched be-







 

























Figure 6. Summary of Mizan’s Migration Planner

tween a second synchronization barrier as shown in Figure 5,
which is necessary to ensure correctness of the BSP model.
Mizan’s migration planner executes the following five steps,
summarized in Figure 6:

1. Identify the source of imbalance.

2. Select the migration objective (i.e., optimize for outgoing
messages, incoming messages, or response time).

3. Pair over-utilized workers with under-utilized ones.

4. Select vertices to migrate.

5. Migrate vertices.

STEP 1: Identify the source of imbalance. Mizan detects
imbalances across supersteps by comparing the summary
statistics of all workers against a normal random distribu-
tion and flagging outliers. Specifically, at the end of a su-
perstep, Mizan computes the z-score4 for all workers. If
any worker has z-score greater than z

def

, Mizan’s migra-
tion planner flags the superstep as imbalanced. We found that
z

def

= 1.96, the commonly recommend value [26], allows
for natural workload fluctuations across workers. We have
experimented with different values of z

def

and validated the
robustness of our choice.

STEP 2: Select the migration objective. Each worker—
identically—uses the summary statistics to compute the cor-
relation between outgoing messages and response time, and
also the correlation between incoming messages and re-
sponse time. The correlation scores are used to select the
objective to optimize for: to balance outgoing messages,
balance incoming messages, or balance computation time.
The default objective is to balance the response time. If the

4 The z-score Wz

i

= |x
i

�x

max

|
standard deviation

, where x

i

is the run time of
worker i

���
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Detec2ng	  Imbalance	

1.  Check	  outlier	  workers	  comparing	  the	  
summary	  sta2s2cs	  of	  all	  ones.	  

2.  Select	  the	  objec2ve	  what	  it	  will	  op2mize	  with	  
calcula2ng	  correla2on	  of	  the	  metrics.	  
–  To	  balance	  outgoing	  messages	  
–  To	  balance	  incoming	  messages	  
–  To	  balance	  computa2on	  2me	  (default)	  
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Selec2ng	  Ver2ces	

3.  Pair	  workers	  by	  metrics.	  
–  If	  there	  are	  n	  workers,	  
	   	  top	  n	  and	  n-‐i	  	  workers	  should	  be	  pair.	  
–  Workers	  without	  enough	  memory	  are	  unavailable.	  

4.  Select	  ver2ces	  to	  move	  in	  order	  to	  minimize	  
the	  difference	  of	  sum	  of	  workloads	  to	  be	  
migrated	  and	  sum	  of	  those	  outliers.	  
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outgoing or incoming messages are highly correlated with
the response time, then Mizan chooses the objective with
highest correlation score. The computation of the correlation
score is described in Appendix A.

STEP 3: Pair over-utilized workers with under-utilized
ones. Each overutilized worker that needs to migrate ver-
tices out is paired with a single underutilized worker. While
complex pairings are possible, we choose a design that is ef-
ficient to execute, especially since the exact number of ver-
tices that different workers plan to migrate is not globally
known. Similar to the previous two steps in the migration
plan, this step is executed by each worker without explicit
global synchronization. Using the summary statistics for the
chosen migration objective (in Step 2), each worker creates
an ordered list of all workers. For example, if the objective is
to balance outgoing messages, then the list will order work-
ers from highest to lowest outgoing messages. The resulting
list, thus, places overutilized workers at the top and least uti-
lized workers at the bottom. The pairing function then suc-
cessively matches workers from opposite ends of the ordered
list. As depicted in Figure 7, if the list contains n elements
(one for each worker), then the worker at position i is paired
with the worker at position n � i. In cases where a worker
does not have memory to receive any vertices, the worker is
marked unavailable in the list.

STEP 4: Select vertices to migrate. The number of vertices
to be selected from an overutilized worker depends on the
difference of the selected migration objective statistics with
its paired worker. Assume that w

x

is a worker that needs
to migrate out a number of vertices, and is paired with the
receiver, w

y

. The load that should be migrated to the under-
utilized worker is defined as �

xy

, which equals to half the
difference in statistics of the migration objective between the
two workers. The selection criteria of the vertices depends
on the distribution of the statistics of the migration objective,
where the statistics of each vertex is compared against a nor-
mal distribution. A vertex is selected if it is an outlier (i.e.,
if its V z

i

stat

5). For example, if the migrating objective is to
balance the number of remote outgoing messages, vertices
with large remote outgoing messages are selected to migrate
to the underutilized worker. The sum of the statistics of the
selected vertices is denoted by

P
V

stat

which should mini-
mize |�

xy

�
P

V

stat

| to ensure the balance between w

x

and
w

y

in the next superstep. If there not enough outlier vertices
are found, a random set of vertices are selected to minimize
|�

xy

�
P

V

stat

|.
STEP 5: Migrate vertices. After the vertex selection pro-
cess, the migrating workers start sending the selected ver-
tices while other workers wait at the migration barrier. A
migrating worker starts sending the selected set of vertices
to its unique target worker, where each vertex is encoded

5 The z-score V z

i

stat

=
|x

i

�x

avg

|
standard deviation

, where x

i

is the statistics of
the migration objective of vertex i is greater than the z

def

        

        



Figure 7. Matching senders (workers with vertices to mi-
grate) with receivers using their summary statistics

into a stream that includes the vertex ID, state, edge informa-
tion and the received messages it will process. Once a ver-
tex stream is successfully sent, the sending worker deletes
the sent vertices so that it does not run them in the next su-
perstep. The receiving worker, on the other hand, receives
vertices (together with their messages) and prepares to run
them in the next superstep. The next superstep is started once
all workers finish migrating vertices and reach the migration
barrier. The complexity of the migration process is directly
related to the size of vertices being migrated.

4. Implementation
Mizan consists of four modules, shown in Figure 8: the
BSP Processor, Storage Manager, Communicator, and Mi-
gration Planner. The BSP Processor implements the Pregel
APIs, consisting primarily of the Compute class, and the
SendMessageTo, GetOutEdgeIterator and getValue

methods. The BSP Processor operates on the data struc-
tures of the graph and executes the user’s algorithm. It also
performs barrier synchronization with other workers at the
end of each superstep. The Storage Manager module main-
tains access atomicity and correctness of the graph’s data,
and maintains the data structures for message queues. Graph
data can be read and written to either HDFS or local disks,
depending on how Mizan is deployed. The Communicator
module uses MPI to enable communication between work-
ers; it also maintains distributed vertex ownership informa-
tion. Finally, the Migration Planner operates transparently
across superstep barriers to maintain the dynamic workload
balance.

Mizan allows the user’s code to manipulate the graph con-
nectivity by adding and removing vertices and edges at any
superstep. It also guarantees that all graph mutation com-
mands issued at superstep

x

are executed at the end of the
same superstep and before the BSP barrier, which is illus-
trated in Figure 5. Therefore, vertex migrations performed
by Mizan do not conflict with the user’s graph mutations and
Mizan always considers the most recent graph structure for
migration planning.

When implementing Mizan, we wanted to avoid having a
centralized controller. Overall, the BSP (Pregel) model nat-
urally lends itself to a decentralized implementation. There
were, however, three key challenges in implementing a dis-
tributed control plane that supports fine-grained vertex mi-
gration. The first challenge was in maintaining vertex own-
ership so that vertices can be freely migrated across work-
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Migra2ng	  Ver2ces	

5.  To	  migrate	  ver2ces,	  each	  worker	  will	  do	  that	  
in	  the	  migra2on	  barrier:	  
–  Sending	  worker	  
•  Sends	  encoded	  stream	  with	  vertex	  ID,	  state,	  edge	  

informa2on	  and	  received	  messages.	  
•  Ater	  the	  stream	  is	  sent,	  deletes	  the	  ver2ces.	  

–  Receiving	  worker	  
•  Receives	  ver2ces	  and	  messages.	  
•  Prepares	  to	  run	  them	  in	  the	  next	  superstep.	  
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4.	  Implementa2on	

•  In	  Mizan,	  each	  worker	  
has	  4	  modules	  
–  BSP	  Processor	  

•  Implemented	  Pregel	  APIs	  

–  Storage	  Manager	  
•  Maintains	  the	  graph	  data	  
always	  correct	  

–  Communicator	  
•  Uses	  MPI	  to	  communicate	  
with	  other	  workers	  	  

– Migra2on	  Planner	  
•  Operate	  across	  barriers	


















Figure 8. Architecture of Mizan

ers. This is different from existing approaches (e.g., Pregel,
Giraph, and GoldenOrb), which operate on a much coarser
granularity (clusters of vertices) to enable scalability. The
second challenge was in allowing fast updates to the vertex
ownership information as vertices get migrated. The third
challenge was in minimizing the cost of migrating vertices
with large data structures. In this section, we discuss the im-
plementation details around these three challenges, which al-
low Mizan to achieve its effectiveness and scalability.

4.1 Vertex Ownership
With huge datasets, Mizan workers cannot maintain the
management information for all vertices in the graph. Man-
agement information includes the collected statistics for
each vertex (described in Section 3.1) and the location (own-
ership) of each vertex. While per-vertex monitoring statis-
tics are only used locally by the worker, vertex ownership
information is needed by all workers. When vertices send
messages, workers need to know the destination address for
each message. With frequent vertex migration, updating the
location of the vertices across all workers can easily create a
communication bottleneck.

To overcome this challenge, we use a distributed hash ta-
ble (DHT) [1] to implement a distributed lookup service. The
DHT implementation allows Mizan to distribute the over-
head of looking up and updating vertex location across all
workers. The DHT stores a set of (key,value) pairs, where
the key represents a vertex ID and the value represents its
current physical location. Each vertex is assigned a home
worker. The role of the home worker is to maintain the
current location of the vertex. A vertex can physically ex-
ist in any worker, including its home worker. The DHT
uses a globally defined hash function that maps the keys to
their associated home workers, such that home worker =

location hash(key).
During a superstep, when a (source) vertex sends a mes-

sage to another (target) vertex, the message is passed to the
Communicator. If the target vertex is located on the same
worker, it is rerouted back to the appropriate queue. Other-
wise, the source worker uses the location hash function
to locate and query the home worker for the target vertex.
The home worker responds back with the actual physical lo-

Figure 9. Migrating vertex v

i

from Worker 1 to Worker 2,
while updating its DHT home worker (Worker 3)

cation of target vertex. The source worker finally sends the
queued message to the current worker for the target vertex. It
also caches the physical location to minimize future lookups.

4.2 DHT Updates After Vertex Migration
Figure 9 depicts the vertex migration process. When a vertex
v migrates between two workers, the receiving worker sends
the new location of v to the home worker of v. The home
worker, in turn, sends an update message to all workers that
have previously asked for—and, thus, potentially cached—
the location of v. Since Mizan migrates vertices in the barrier
between two supersteps, all workers that have cached the
location of the migrating vertex will receive the updated
physical location from the home worker before the start of
the new superstep.

If for any reason a worker did not receive the updated
location, the messages will be sent to the last known phys-
ical location of v. The receiving worker, which no longer
owns the vertex, will simply buffer the incorrectly routed
messages, ask for the new location for v, and reroute the
messages to the correct worker.

4.3 Migrating Vertices with Large Message Size
Migrating a vertex to another worker requires moving its
queued messages and its entire state (which includes its
ID, value, and neighbors). Especially when processing large
graphs, a vertex can have a significant number of queued
messages, which are costly to migrate. To minimize the cost,
Mizan migrates large vertices using a delayed migration
process that spreads the migration over two supersteps. In-
stead of physically moving the vertex with its large message
queue, delayed migration only moves the vertex’s informa-
tion and the ownership to the new worker. Assuming w

old

is
the old owner and w

new

is the new one, w
old

continues to
process the migrating vertex v in the next superstep, SS

t+1.
w

new

receives the messages for v, which will be processed
at the following superstep, SS

t+2. At the end of SS
t+1, w

old

sends the new value of v, calculated at SS
t+1, to w

new

and
completes the delayed migration. Note that migration plan-
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Vertex	  Ownership	

•  Mizan	  will	  not	  maintain	  centralized	  vertex	  
management	  especially	  with	  huge	  one.	  

•  A	  distributed	  hash	  table	  (DHT)	  is	  used	  to	  
implement	  a	  distributed	  lookup	  service.	  
–  It	  stores	  key	  (ID)	  and	  value	  (physical	  loca2on)	  sets.	  
– A	  “home”	  worker	  maintains	  current	  loca2on	  of	  
assigned	  ver2ces.	  
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Distributed	  Hash	  Table	  Updates	

•  Vertex	  whose	  home	  
worker	  is	  3	  will	  migrate	  
from	  Worker	  1	  to	  2.	  
1.  The	  vertex	  migrates.	  
2.  Des2na2on	  worker	  

inform	  migra2on	  to	  
home	  worker.	  

3.  The	  home	  worker	  
updates	  DHTs.	

Figure 8. Architecture of Mizan

ers. This is different from existing approaches (e.g., Pregel,
Giraph, and GoldenOrb), which operate on a much coarser
granularity (clusters of vertices) to enable scalability. The
second challenge was in allowing fast updates to the vertex
ownership information as vertices get migrated. The third
challenge was in minimizing the cost of migrating vertices
with large data structures. In this section, we discuss the im-
plementation details around these three challenges, which al-
low Mizan to achieve its effectiveness and scalability.

4.1 Vertex Ownership
With huge datasets, Mizan workers cannot maintain the
management information for all vertices in the graph. Man-
agement information includes the collected statistics for
each vertex (described in Section 3.1) and the location (own-
ership) of each vertex. While per-vertex monitoring statis-
tics are only used locally by the worker, vertex ownership
information is needed by all workers. When vertices send
messages, workers need to know the destination address for
each message. With frequent vertex migration, updating the
location of the vertices across all workers can easily create a
communication bottleneck.

To overcome this challenge, we use a distributed hash ta-
ble (DHT) [1] to implement a distributed lookup service. The
DHT implementation allows Mizan to distribute the over-
head of looking up and updating vertex location across all
workers. The DHT stores a set of (key,value) pairs, where
the key represents a vertex ID and the value represents its
current physical location. Each vertex is assigned a home
worker. The role of the home worker is to maintain the
current location of the vertex. A vertex can physically ex-
ist in any worker, including its home worker. The DHT
uses a globally defined hash function that maps the keys to
their associated home workers, such that home worker =

location hash(key).
During a superstep, when a (source) vertex sends a mes-

sage to another (target) vertex, the message is passed to the
Communicator. If the target vertex is located on the same
worker, it is rerouted back to the appropriate queue. Other-
wise, the source worker uses the location hash function
to locate and query the home worker for the target vertex.
The home worker responds back with the actual physical lo-


















 






























Figure 9. Migrating vertex v

i

from Worker 1 to Worker 2,
while updating its DHT home worker (Worker 3)

cation of target vertex. The source worker finally sends the
queued message to the current worker for the target vertex. It
also caches the physical location to minimize future lookups.

4.2 DHT Updates After Vertex Migration
Figure 9 depicts the vertex migration process. When a vertex
v migrates between two workers, the receiving worker sends
the new location of v to the home worker of v. The home
worker, in turn, sends an update message to all workers that
have previously asked for—and, thus, potentially cached—
the location of v. Since Mizan migrates vertices in the barrier
between two supersteps, all workers that have cached the
location of the migrating vertex will receive the updated
physical location from the home worker before the start of
the new superstep.

If for any reason a worker did not receive the updated
location, the messages will be sent to the last known phys-
ical location of v. The receiving worker, which no longer
owns the vertex, will simply buffer the incorrectly routed
messages, ask for the new location for v, and reroute the
messages to the correct worker.

4.3 Migrating Vertices with Large Message Size
Migrating a vertex to another worker requires moving its
queued messages and its entire state (which includes its
ID, value, and neighbors). Especially when processing large
graphs, a vertex can have a significant number of queued
messages, which are costly to migrate. To minimize the cost,
Mizan migrates large vertices using a delayed migration
process that spreads the migration over two supersteps. In-
stead of physically moving the vertex with its large message
queue, delayed migration only moves the vertex’s informa-
tion and the ownership to the new worker. Assuming w

old

is
the old owner and w

new

is the new one, w
old

continues to
process the migrating vertex v in the next superstep, SS

t+1.
w

new

receives the messages for v, which will be processed
at the following superstep, SS

t+2. At the end of SS
t+1, w

old

sends the new value of v, calculated at SS
t+1, to w

new

and
completes the delayed migration. Note that migration plan-
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Migra2ng	  Large	  Ver2ces	

•  If	  a	  vertex	  has	  many	  messages,	  it	  costs	  very	  
much	  when	  it	  migrates.	  

•  Mizan	  uses	  a	  delayed	  migra2on	  process.	  
–  It	  takes	  two	  supersteps.	  
– Only	  moves	  the	  vertex’s	  informa2on	  and	  the	  
ownership,	  not	  large	  message	  informa2on.	  
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Delayed	  Migra2on	

1.  An	  ownership	  of	  the	  
migrated	  vertex	  is	  
moved	  to	  Worker_new.	  
–  Messages	  will	  be	  sent	  to	  

Worker_new.	  

2.  Worker_old	  sends	  the	  
edge	  informa2on.	  

3.  The	  vertex	  is	  fully	  
migrated.	  









 











 













 



  



 

 



Figure 10. Delayed vertex migration

G(N,E) |N | |E|
kg1 1,048,576 5,360,368
kg4m68m 4,194,304 68,671,566
web-Google 875,713 5,105,039
LiveJournal1 4,847,571 68,993,773
hollywood-2011 2,180,759 228,985,632
arabic-2005 22,744,080 639,999,458

Table 1. Datasets—N , E denote nodes and edges, respec-
tively. Graphs with prefix kg are synthetic.

ning is disabled for superstep SS

t+1 after applying delayed
migration to ensure the consistency of the migration plans.

An example is shown in Figure 10, where Vertex 7 is
migrated using delayed migration. As Vertex 7 migrates,
the ownership of Vertex 7 is moved to Worker new and
messages sent to Vertex 7 at SS

t+1 are addressed to
Worker new. At the barrier of SS

t+1, Worker old sends
the edge information and state of v to Worker new and starts
SS

t+2 with v fully migrated to Worker new.
With delayed migration, the consistency of computation

is maintained without introducing additional network cost
for vertices with large message queues. Since delayed mi-
gration uses two supersteps to complete, Mizan may need
more steps before it converges on a balanced state.

5. Evaluation
We implemented Mizan using C++ and MPI and compared
it against Giraph [8], a Pregel clone implemented in Java
on top of Hadoop. We ran our experiments on a local clus-
ter of 21 machines equipped with a mix of i5 and i7 pro-
cessors with 16GB RAM on each machine. We also used
an IBM Blue Gene/P supercomputer with 1024 PowerPC-
450 CPUs, each with 4 cores at 850MHz and 4GB RAM.
We downloaded publicly available datasets from the Stan-
ford Network Analysis Project6 and from The Laboratory for

6
http://snap.stanford.edu

Figure 11. Comparing Static Mizan vs. Giraph using
PageRank on social network and random graphs

Web Algorithmics (LAW) [2, 20]. We also generated syn-
thetic datasets using the Kronecker [21] generator that mod-
els the structure of real life networks. The details are shown
in Table 1.

To better isolate the effects of dynamic migration on
system performance, we implemented three variations of
Mizan: Static, Work Stealing (WS), and Mizan. Static Mizan
disables any dynamic migration and uses either hash-based,
range-based or min-cuts graph pre-partitioning (rendering
it similar to Giraph). Work Stealing (WS) Mizan is our
attempt to emulate Pregel’s coarse-grained dynamic load
balancing behavior (described in [23]). Finally, Mizan is our
framework that supports dynamic migration as described in
Sections 3 and 4.

We evaluated Mizan across three dimensions: partitioning
scheme, graph structure, and algorithm behavior. We par-
tition the datasets using three schemes: hash-based, range-
based, and METIS partitioning. We run our experiments
against both social and random graphs. Finally, we experi-
mented with the algorithms described in Section 2.1.

5.1 Giraph vs. Mizan
We picked Giraph for its popularity as an open source Pregel
framework with broad adoption. We only compared Giraph
to Static Mizan, which allows us to evaluate our base (non-
dynamic) implementation. Mizan’s dynamic migration is
evaluated later in this section. To further equalize Giraph and
the Static Mizan, we disabled the fault tolerance feature of
Giraph to eliminate any additional overhead resulting from
frequent snapshots during runtime. In this section, we report
the results using PageRank (a stationary and well balanced
algorithm) using different graph structures.

In Figure 11, we ran both frameworks on social network
and random graphs. As shown, Static Mizan outperforms Gi-
raph by a large margin, up to four times faster than Giraph in
kg4m68, which contains around 70M edges. We also com-
pared both systems when increasing the number of nodes
in random structure graphs. As shown in Figure 12, Static
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5.	  Evalua2on	

•  Mizan	  was	  implemented	  
using	  C++	  and	  MPI.	  
–  Compared	  against	  Giraph	  
(Java	  based	  Plegel	  clone)	  

•  Computa2on	  nodes	  
–  Local	  clusters	  with	  21	  
machines,	  mix	  of	  i5	  and	  
i7,	  16GB	  RAM	  

–  IBM	  Blue	  Gene/P,	  1024	  
PowerPC-‐450	  CPUs	  with	  4	  
cores,	  4GB	  RAM	  

Figure 10. Delayed vertex migration

G(N,E) |N | |E|
kg1 1,048,576 5,360,368
kg4m68m 4,194,304 68,671,566
web-Google 875,713 5,105,039
LiveJournal1 4,847,571 68,993,773
hollywood-2011 2,180,759 228,985,632
arabic-2005 22,744,080 639,999,458

Table 1. Datasets—N , E denote nodes and edges, respec-
tively. Graphs with prefix kg are synthetic.

ning is disabled for superstep SS

t+1 after applying delayed
migration to ensure the consistency of the migration plans.

An example is shown in Figure 10, where Vertex 7 is
migrated using delayed migration. As Vertex 7 migrates,
the ownership of Vertex 7 is moved to Worker new and
messages sent to Vertex 7 at SS

t+1 are addressed to
Worker new. At the barrier of SS

t+1, Worker old sends
the edge information and state of v to Worker new and starts
SS

t+2 with v fully migrated to Worker new.
With delayed migration, the consistency of computation

is maintained without introducing additional network cost
for vertices with large message queues. Since delayed mi-
gration uses two supersteps to complete, Mizan may need
more steps before it converges on a balanced state.

5. Evaluation
We implemented Mizan using C++ and MPI and compared
it against Giraph [8], a Pregel clone implemented in Java
on top of Hadoop. We ran our experiments on a local clus-
ter of 21 machines equipped with a mix of i5 and i7 pro-
cessors with 16GB RAM on each machine. We also used
an IBM Blue Gene/P supercomputer with 1024 PowerPC-
450 CPUs, each with 4 cores at 850MHz and 4GB RAM.
We downloaded publicly available datasets from the Stan-
ford Network Analysis Project6 and from The Laboratory for

6
http://snap.stanford.edu

Figure 11. Comparing Static Mizan vs. Giraph using
PageRank on social network and random graphs

Web Algorithmics (LAW) [2, 20]. We also generated syn-
thetic datasets using the Kronecker [21] generator that mod-
els the structure of real life networks. The details are shown
in Table 1.

To better isolate the effects of dynamic migration on
system performance, we implemented three variations of
Mizan: Static, Work Stealing (WS), and Mizan. Static Mizan
disables any dynamic migration and uses either hash-based,
range-based or min-cuts graph pre-partitioning (rendering
it similar to Giraph). Work Stealing (WS) Mizan is our
attempt to emulate Pregel’s coarse-grained dynamic load
balancing behavior (described in [23]). Finally, Mizan is our
framework that supports dynamic migration as described in
Sections 3 and 4.

We evaluated Mizan across three dimensions: partitioning
scheme, graph structure, and algorithm behavior. We par-
tition the datasets using three schemes: hash-based, range-
based, and METIS partitioning. We run our experiments
against both social and random graphs. Finally, we experi-
mented with the algorithms described in Section 2.1.

5.1 Giraph vs. Mizan
We picked Giraph for its popularity as an open source Pregel
framework with broad adoption. We only compared Giraph
to Static Mizan, which allows us to evaluate our base (non-
dynamic) implementation. Mizan’s dynamic migration is
evaluated later in this section. To further equalize Giraph and
the Static Mizan, we disabled the fault tolerance feature of
Giraph to eliminate any additional overhead resulting from
frequent snapshots during runtime. In this section, we report
the results using PageRank (a stationary and well balanced
algorithm) using different graph structures.

In Figure 11, we ran both frameworks on social network
and random graphs. As shown, Static Mizan outperforms Gi-
raph by a large margin, up to four times faster than Giraph in
kg4m68, which contains around 70M edges. We also com-
pared both systems when increasing the number of nodes
in random structure graphs. As shown in Figure 12, Static
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Synthe2c	  datasets	  are	  generated	  by	  
Kronecker	  generator.	
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Figure 10. Delayed vertex migration

G(N,E) |N | |E|
kg1 1,048,576 5,360,368
kg4m68m 4,194,304 68,671,566
web-Google 875,713 5,105,039
LiveJournal1 4,847,571 68,993,773
hollywood-2011 2,180,759 228,985,632
arabic-2005 22,744,080 639,999,458

Table 1. Datasets—N , E denote nodes and edges, respec-
tively. Graphs with prefix kg are synthetic.

ning is disabled for superstep SS

t+1 after applying delayed
migration to ensure the consistency of the migration plans.

An example is shown in Figure 10, where Vertex 7 is
migrated using delayed migration. As Vertex 7 migrates,
the ownership of Vertex 7 is moved to Worker new and
messages sent to Vertex 7 at SS

t+1 are addressed to
Worker new. At the barrier of SS

t+1, Worker old sends
the edge information and state of v to Worker new and starts
SS

t+2 with v fully migrated to Worker new.
With delayed migration, the consistency of computation

is maintained without introducing additional network cost
for vertices with large message queues. Since delayed mi-
gration uses two supersteps to complete, Mizan may need
more steps before it converges on a balanced state.

5. Evaluation
We implemented Mizan using C++ and MPI and compared
it against Giraph [8], a Pregel clone implemented in Java
on top of Hadoop. We ran our experiments on a local clus-
ter of 21 machines equipped with a mix of i5 and i7 pro-
cessors with 16GB RAM on each machine. We also used
an IBM Blue Gene/P supercomputer with 1024 PowerPC-
450 CPUs, each with 4 cores at 850MHz and 4GB RAM.
We downloaded publicly available datasets from the Stan-
ford Network Analysis Project6 and from The Laboratory for

6
http://snap.stanford.edu













 


















Figure 11. Comparing Static Mizan vs. Giraph using
PageRank on social network and random graphs

Web Algorithmics (LAW) [2, 20]. We also generated syn-
thetic datasets using the Kronecker [21] generator that mod-
els the structure of real life networks. The details are shown
in Table 1.

To better isolate the effects of dynamic migration on
system performance, we implemented three variations of
Mizan: Static, Work Stealing (WS), and Mizan. Static Mizan
disables any dynamic migration and uses either hash-based,
range-based or min-cuts graph pre-partitioning (rendering
it similar to Giraph). Work Stealing (WS) Mizan is our
attempt to emulate Pregel’s coarse-grained dynamic load
balancing behavior (described in [23]). Finally, Mizan is our
framework that supports dynamic migration as described in
Sections 3 and 4.

We evaluated Mizan across three dimensions: partitioning
scheme, graph structure, and algorithm behavior. We par-
tition the datasets using three schemes: hash-based, range-
based, and METIS partitioning. We run our experiments
against both social and random graphs. Finally, we experi-
mented with the algorithms described in Section 2.1.

5.1 Giraph vs. Mizan
We picked Giraph for its popularity as an open source Pregel
framework with broad adoption. We only compared Giraph
to Static Mizan, which allows us to evaluate our base (non-
dynamic) implementation. Mizan’s dynamic migration is
evaluated later in this section. To further equalize Giraph and
the Static Mizan, we disabled the fault tolerance feature of
Giraph to eliminate any additional overhead resulting from
frequent snapshots during runtime. In this section, we report
the results using PageRank (a stationary and well balanced
algorithm) using different graph structures.

In Figure 11, we ran both frameworks on social network
and random graphs. As shown, Static Mizan outperforms Gi-
raph by a large margin, up to four times faster than Giraph in
kg4m68, which contains around 70M edges. We also com-
pared both systems when increasing the number of nodes
in random structure graphs. As shown in Figure 12, Static
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Figure 12. Comparing Mizan vs. Giraph using PageRank
on regular random graphs, the graphs are uniformly dis-
tributed with each has around 17M edge

Mizan consistently outperforms Giraph in all datasets and
reaches up to three times faster with 16 million vertexes.
While the execution time of both frameworks increases lin-
early with graph size, the rate of increase—slope of the
graph—for Giraph (0.318) is steeper than Mizan (0.09), in-
dicating that Mizan also achieves better scalability.

The experiments in Figures 12 and 11 show that Giraph’s
implementation is inefficient. It is a non-trivial task to dis-
cover the source of inefficiency in Giraph since it is tightly
coupled with Hadoop. We suspect that part of the ineffi-
ciency is due to the initialization cost of the Hadoop jobs
and the high overhead of communication. Other factors, like
internal data structure choice and memory footprint, might
also play a role in this inefficiency.

5.2 Effectiveness of Dynamic Vertex Migration
Given the large performance difference between Static
Mizan and Giraph, we exclude Giraph from further exper-
iments and focus on isolating the effects of dynamic migra-
tion on the overall performance of the system.

Figure 13 shows the results for running PageRank on a
social graph with various partitioning schemes. We notice
that both hash-based and METIS partitioning achieve a bal-
anced workload for PageRank such that dynamic migration
did not improve the results. In comparison, range-based par-
titioning resulted in poor graph partitioning. In this case, we
observe Mizan (with dynamic partitioning) was able to re-
duce execution time by approximately 40% when compared
to the static version. We have also evaluated the diameter es-
timation algorithm, which behaves the same as PageRank,
but exchanges larger size messages. Mizan exhibited similar
behavior with diameter estimation; the results are omitted
for space considerations.

Figure 14 shows how Mizan’s dynamic migration was
able to optimize running PageRank starting with range-
based partitioning. The figure shows that Mizan’s migration
reduced both the variance in workers’ runtime and the su-

Figure 13. Comparing Static Mizan and Work Stealing
(Pregel clone) vs. Mizan using PageRank on a social graph
(LiveJournal1). The shaded part of each column repre-
sents the algorithm runtime while unshaded parts represents
the initial partitioning cost of the input graph.

perstep’s runtime. The same figure also shows that Mizan’s
migration alternated the optimization objective between the
number of outgoing messages and vertex response time, il-
lustrated as points on the superstep’s runtime trend.

By looking at both Figures 14 and 15, we observe that
the convergence of Mizan’s dynamic migration is correlated
with the algorithm’s runtime reduction. For the PageRank
algorithm with range-based partitioning, Mizan requires 13
supersteps to reach an acceptable balanced workload. Since
PageRank is a stationary algorithm, Mizan’s migration con-
verged quickly; we expect that it would require more super-
steps to converge on other algorithms and datasets. In gen-
eral, Mizan requires multiple supersteps before it balances
the workload. This also explains why running Mizan with
range-based partitioning is less efficient than running Mizan
with METIS or hash-based partitioning.

As described in Section 2.1, Top-K PageRank adds vari-
ability in the communication among the graph nodes. As
shown in Figure 16, such variability in the messages ex-
changed leads to minor variation in both hash-based and
METIS execution times. Similarly, in range partitioning,
Mizan had better performance than the static version. The
slight performance improvement arises from the fact that the
base algorithm (PageRank) dominates the execution time. If
a large number of queries are performed, the improvements
will be more significant.

To study the effect of algorithms with highly variable
messaging patterns, we evaluated Mizan using two algo-
rithms: DMST and advertisement propagation simulation.
In both cases, we used METIS to pre-partition the graph
data. METIS partitioning groups the strongly connected sub-
graphs into clusters, thus minimizing the global communica-
tion among each cluster.

In DMST, as discussed in Section 2.1, computation com-
plexity increases with vertex connectivity degree. Because
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•  First,	  Sta2c	  Mizan	  was	  
compared	  to	  Giraph.	  
–  In	  Sta2c	  Mizan,	  dynamic	  
migra2ons	  never	  occur	  and	  
graph	  pre-‐par22oning	  is	  
used.	  

•  In	  Figure	  11	  and	  12,	  Sta2c	  
Mizan	  is	  faster	  than	  
Giraph.	  
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iments and focus on isolating the effects of dynamic migra-
tion on the overall performance of the system.

Figure 13 shows the results for running PageRank on a
social graph with various partitioning schemes. We notice
that both hash-based and METIS partitioning achieve a bal-
anced workload for PageRank such that dynamic migration
did not improve the results. In comparison, range-based par-
titioning resulted in poor graph partitioning. In this case, we
observe Mizan (with dynamic partitioning) was able to re-
duce execution time by approximately 40% when compared
to the static version. We have also evaluated the diameter es-
timation algorithm, which behaves the same as PageRank,
but exchanges larger size messages. Mizan exhibited similar
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Figure 13. Comparing Static Mizan and Work Stealing
(Pregel clone) vs. Mizan using PageRank on a social graph
(LiveJournal1). The shaded part of each column repre-
sents the algorithm runtime while unshaded parts represents
the initial partitioning cost of the input graph.

perstep’s runtime. The same figure also shows that Mizan’s
migration alternated the optimization objective between the
number of outgoing messages and vertex response time, il-
lustrated as points on the superstep’s runtime trend.

By looking at both Figures 14 and 15, we observe that
the convergence of Mizan’s dynamic migration is correlated
with the algorithm’s runtime reduction. For the PageRank
algorithm with range-based partitioning, Mizan requires 13
supersteps to reach an acceptable balanced workload. Since
PageRank is a stationary algorithm, Mizan’s migration con-
verged quickly; we expect that it would require more super-
steps to converge on other algorithms and datasets. In gen-
eral, Mizan requires multiple supersteps before it balances
the workload. This also explains why running Mizan with
range-based partitioning is less efficient than running Mizan
with METIS or hash-based partitioning.

As described in Section 2.1, Top-K PageRank adds vari-
ability in the communication among the graph nodes. As
shown in Figure 16, such variability in the messages ex-
changed leads to minor variation in both hash-based and
METIS execution times. Similarly, in range partitioning,
Mizan had better performance than the static version. The
slight performance improvement arises from the fact that the
base algorithm (PageRank) dominates the execution time. If
a large number of queries are performed, the improvements
will be more significant.

To study the effect of algorithms with highly variable
messaging patterns, we evaluated Mizan using two algo-
rithms: DMST and advertisement propagation simulation.
In both cases, we used METIS to pre-partition the graph
data. METIS partitioning groups the strongly connected sub-
graphs into clusters, thus minimizing the global communica-
tion among each cluster.

In DMST, as discussed in Section 2.1, computation com-
plexity increases with vertex connectivity degree. Because
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•  Hash-‐based	  and	  METIS	  
par22oning	  make	  lijle	  
differences.	  

•  However,	  effec2veness	  
of	  dynamic	  migra2on	  is	  
showed	  in	  the	  range-‐
based	  par22oning.	
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•  In	  PageRank	  algorithm,	  
the	  dynamic	  migra2on	  
is	  correlated	  with	  
run2me	  reduc2on.	  
–  It	  would	  take	  more	  
supersteps	  when	  
workload	  is	  balanced	  in	  
other	  algorithms.	














     























Figure 14. Comparing Mizan’s migration cost with the su-
perstep’s (or the algorithm) runtime at each supertstep us-
ing PageRank on a social graph (LiveJournal1) starting
with range based partitioning. The points on the superstep’s
runtime trend represents Mizan’s migration objective at that
specific superstep.

Figure 15. Comparing both the total migrated vertices and
the maximum migrated vertices by a single worker for
PageRank on LiveJournal1 starting with range-based par-
titioning. The migration cost at each superstep is also shown.

of the quadratic complexity of computation as a function of
connectivity degree, some workers will suffer from exten-
sive workload while others will have light workload. Such
imbalance in the workload leads to the results shown in Fig-
ure 17. Mizan was able to reduce the imbalance in the work-
load, resulting in a large drop in execution time (two orders
of magnitude improvement). Even when using our version
of Pregel’s load balancing approach (called work stealing),
Mizan is roughly eight times faster.

Similar to DMST, the behavior of the advertising propa-
gation simulation algorithm varies across supersteps. In this
algorithm, a dynamic set of graph vertices communicate
heavily with each other, while others have little or no com-
munication. In every superstep, the communication behav-
ior differs depending on the state of the vertex. Therefore,
it creates an imbalance across the workers for every super-

Figure 16. Comparing static Mizan and Work Stealing
(Pregel clone) vs. Mizan using Top-K PageRanks on a so-
cial graph (LiveJournal1). The shaded part of each col-
umn represents the algorithm runtime while unshaded parts
represents the initial partitioning cost of the input graph.

Figure 17. Comparing Work stealing (Pregel clone) vs.
Mizan using DMST and Propagation Simulation on a metis
partitioned social graph (LiveJournal1)

Total runtime (s) 707
Data read time to memory (s) 72

Migrated vertices 1,062,559
Total migration time (s) 75

Average migrate time per vertex (µs) 70.5

Table 2. Overhead of Mizan’s migration process when
compared to the total runtime using range partitioning on
LiveJournal1 graph

step. Even METIS partitioning in such case is ill-suited since
workers’ load dynamically changes at runtime. As shown in
Figure 17, similar to DMST, Mizan is able to reduce such an
imbalance, resulting in approximately 200% speed up when
compared to the work stealing and static versions.
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perstep’s (or the algorithm) runtime at each supertstep us-
ing PageRank on a social graph (LiveJournal1) starting
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specific superstep.
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Mizan using DMST and Propagation Simulation on a metis
partitioned social graph (LiveJournal1)

Total runtime (s) 707
Data read time to memory (s) 72

Migrated vertices 1,062,559
Total migration time (s) 75

Average migrate time per vertex (µs) 70.5

Table 2. Overhead of Mizan’s migration process when
compared to the total runtime using range partitioning on
LiveJournal1 graph

step. Even METIS partitioning in such case is ill-suited since
workers’ load dynamically changes at runtime. As shown in
Figure 17, similar to DMST, Mizan is able to reduce such an
imbalance, resulting in approximately 200% speed up when
compared to the work stealing and static versions.
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•  In	  the	  both	  of	  algorithms,	  
Mizan	  resulted	  in	  about	  
200%	  speed	  up.	  
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ing PageRank on a social graph (LiveJournal1) starting
with range based partitioning. The points on the superstep’s
runtime trend represents Mizan’s migration objective at that
specific superstep.
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the maximum migrated vertices by a single worker for
PageRank on LiveJournal1 starting with range-based par-
titioning. The migration cost at each superstep is also shown.

of the quadratic complexity of computation as a function of
connectivity degree, some workers will suffer from exten-
sive workload while others will have light workload. Such
imbalance in the workload leads to the results shown in Fig-
ure 17. Mizan was able to reduce the imbalance in the work-
load, resulting in a large drop in execution time (two orders
of magnitude improvement). Even when using our version
of Pregel’s load balancing approach (called work stealing),
Mizan is roughly eight times faster.

Similar to DMST, the behavior of the advertising propa-
gation simulation algorithm varies across supersteps. In this
algorithm, a dynamic set of graph vertices communicate
heavily with each other, while others have little or no com-
munication. In every superstep, the communication behav-
ior differs depending on the state of the vertex. Therefore,
it creates an imbalance across the workers for every super-
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cial graph (LiveJournal1). The shaded part of each col-
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Figure 17. Comparing Work stealing (Pregel clone) vs.
Mizan using DMST and Propagation Simulation on a metis
partitioned social graph (LiveJournal1)

Total runtime (s) 707
Data read time to memory (s) 72

Migrated vertices 1,062,559
Total migration time (s) 75

Average migrate time per vertex (µs) 70.5

Table 2. Overhead of Mizan’s migration process when
compared to the total runtime using range partitioning on
LiveJournal1 graph

step. Even METIS partitioning in such case is ill-suited since
workers’ load dynamically changes at runtime. As shown in
Figure 17, similar to DMST, Mizan is able to reduce such an
imbalance, resulting in approximately 200% speed up when
compared to the work stealing and static versions.
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Scalability	  of	  Mizan	Linux Cluster Blue Gene/P

hollywood-2011 arabic-2005

Processors Runtime (m) Processors Runtime (m)
2 154 64 144.7
4 79.1 128 74.6
8 40.4 256 37.9
16 21.5 512 21.5

1024 17.5

Table 3. Scalability of Mizan on a Linux Cluster of
16 machines (hollywood-2011 dataset), and an IBM
Blue Gene/P supercomputer (arabic-2005 dataset).

5.3 Overhead of Vertex Migration
To analyze migration cost, we measured the time for var-
ious performance metrics of Mizan. We used the PageR-
ank algorithm with a range-based partitioning of the
Live-Journal1 dataset on 21 workers. We chose range-
based partitioning as it provides the worst data distribution
according to previous experiments and therefore will trigger
frequent vertex migrations to balance the workload.

Table 2 reports the average cost of migrating as 70.5 µs
per vertex. In the LiveJournal1 dataset, Mizan paid a 9%
penalty of the total runtime to balance the workload, trans-
ferring over 1M vertices. As shown earlier in Figure 13, this
resulted in a 40% saving in computation time when com-
pared to Static Mizan. Moreover, Figures 14 and 15 compare
the algorithm runtime and the migration cost at each super-
step, the migration cost is at most 13% (at superstep 2) and
on average 6% for all supersteps that included a migration
phase.

5.4 Scalability of Mizan
We tested the scalability of Mizan on the Linux cluster
as shown in Table 3. We used two compute nodes as our
base reference as a single node was too small when running
the dataset (hollywood-2011), causing significant paging
activities. As Figure 18 shows, Mizan scales linearly with
the number of workers.

We were interested in performing large scale-out experi-
ments, well beyond what can be achieved on public clouds.
Since Mizan’s was written in C++ and uses MPI for mes-
sage passing, it was easily ported to IBM’s Blue Gene/P su-
percomputer. Once ported, we natively ran Mizan on 1024
Blue Gene/P compute nodes. The results are shown in Ta-
ble 3. We ran the PageRank algorithm using a huge graph
(arabic-2005) that contains 639M edges. As shown in
Figure 19, Mizan scales linearly from 64 to 512 compute
nodes then starts to flatten out as we increase to 1024 com-
pute nodes. The flattening was expected since with an in-
creased number of cores, compute nodes will spend more
time communicating than computing. We expect that as we
continue to increase the number of CPUs, most of the time

Figure 18. Speedup on Linux Cluster of 16 machines using
PageRank on the hollywood-2011 dataset.












 
















Figure 19. Speedup on Shaheen IBM Blue Gene/P super-
computer using PageRank on the arabic-2005 dataset.

will be spent communicating (which effectively breaks the
BSP model of overlapping communication and computa-
tion).

6. Related Work
In the past few years, a number of large scale graph process-
ing systems have been proposed. A common thread across
the majority of existing work is how to partition graph data
and how to balance computation across compute nodes. This
problem is known as applying dynamic load balancing to the
distributed graph data by utilizing on the fly graph partition-
ing, which Bruce et al. [11] assert to be either too expen-
sive or hard to parallelize. Mizan follows the Pregel model,
but focuses on dynamic load balancing of vertexes. In this
section, we examine the design aspects of existing work for
achieving a balanced workload.

Pregel and its Clones. The default partitioning scheme for
the input graph used by Pregel [23] is hash based. In every
superstep, Pregel assigns more than one subgraph (partition)
to a worker. While this load balancing approach helps in bal-
ancing computation in any superstep, it is coarse-grained

���

Linux Cluster Blue Gene/P

hollywood-2011 arabic-2005

Processors Runtime (m) Processors Runtime (m)
2 154 64 144.7
4 79.1 128 74.6
8 40.4 256 37.9
16 21.5 512 21.5

1024 17.5

Table 3. Scalability of Mizan on a Linux Cluster of
16 machines (hollywood-2011 dataset), and an IBM
Blue Gene/P supercomputer (arabic-2005 dataset).

5.3 Overhead of Vertex Migration
To analyze migration cost, we measured the time for var-
ious performance metrics of Mizan. We used the PageR-
ank algorithm with a range-based partitioning of the
Live-Journal1 dataset on 21 workers. We chose range-
based partitioning as it provides the worst data distribution
according to previous experiments and therefore will trigger
frequent vertex migrations to balance the workload.

Table 2 reports the average cost of migrating as 70.5 µs
per vertex. In the LiveJournal1 dataset, Mizan paid a 9%
penalty of the total runtime to balance the workload, trans-
ferring over 1M vertices. As shown earlier in Figure 13, this
resulted in a 40% saving in computation time when com-
pared to Static Mizan. Moreover, Figures 14 and 15 compare
the algorithm runtime and the migration cost at each super-
step, the migration cost is at most 13% (at superstep 2) and
on average 6% for all supersteps that included a migration
phase.

5.4 Scalability of Mizan
We tested the scalability of Mizan on the Linux cluster
as shown in Table 3. We used two compute nodes as our
base reference as a single node was too small when running
the dataset (hollywood-2011), causing significant paging
activities. As Figure 18 shows, Mizan scales linearly with
the number of workers.

We were interested in performing large scale-out experi-
ments, well beyond what can be achieved on public clouds.
Since Mizan’s was written in C++ and uses MPI for mes-
sage passing, it was easily ported to IBM’s Blue Gene/P su-
percomputer. Once ported, we natively ran Mizan on 1024
Blue Gene/P compute nodes. The results are shown in Ta-
ble 3. We ran the PageRank algorithm using a huge graph
(arabic-2005) that contains 639M edges. As shown in
Figure 19, Mizan scales linearly from 64 to 512 compute
nodes then starts to flatten out as we increase to 1024 com-
pute nodes. The flattening was expected since with an in-
creased number of cores, compute nodes will spend more
time communicating than computing. We expect that as we
continue to increase the number of CPUs, most of the time











        










Figure 18. Speedup on Linux Cluster of 16 machines using
PageRank on the hollywood-2011 dataset.

Figure 19. Speedup on Shaheen IBM Blue Gene/P super-
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BSP model of overlapping communication and computa-
tion).

6. Related Work
In the past few years, a number of large scale graph process-
ing systems have been proposed. A common thread across
the majority of existing work is how to partition graph data
and how to balance computation across compute nodes. This
problem is known as applying dynamic load balancing to the
distributed graph data by utilizing on the fly graph partition-
ing, which Bruce et al. [11] assert to be either too expen-
sive or hard to parallelize. Mizan follows the Pregel model,
but focuses on dynamic load balancing of vertexes. In this
section, we examine the design aspects of existing work for
achieving a balanced workload.

Pregel and its Clones. The default partitioning scheme for
the input graph used by Pregel [23] is hash based. In every
superstep, Pregel assigns more than one subgraph (partition)
to a worker. While this load balancing approach helps in bal-
ancing computation in any superstep, it is coarse-grained
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•  While	  using	  smaller	  
data	  sets,	  it	  achieved	  
the	  scalability.	  

•  However,	  in	  1024	  nodes	  	  
with	  larger	  graph,	  the	  
scale	  became	  flajen.	  
–  The	  reason	  may	  be	  that	  
compu2ng	  2me	  cannot	  
hide	  too	  much	  
communica2on	  2me.	



6.	  Related	  Work	

•  Pregel	  and	  its	  Clones	  
•  Power-‐law	  Op2mized	  Graph	  Processing	  
Systems	  

•  Shared	  Memory	  Graph	  Processing	  Systems	  
•  Specialized	  Graph	  Systems	

35	



7.	  Future	  Work	

•  In	  order	  to	  reduce	  migra2on	  costs,	  the	  
frequency	  of	  them	  should	  be	  reduced.	  
– Vertex	  replica2on	  proposed	  by	  PowerGraph	  may	  
be	  useful.	  

•  In	  the	  evalua2ons,	  graph	  was	  par22oned	  only	  
by	  single	  applica2on	  or	  algorithm.	  
–  If	  experiments	  using	  mul2ple	  algorithms	  on	  the	  
same	  graph	  are	  conducted,	  bejer	  result	  will	  gain.	  
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8.	  Conclusion	

•  A	  Pregel	  system	  called	  Mizan	  was	  presented.	  
–  Iden2fies	  the	  cause	  of	  workload	  imbalance.	  
– Conducts	  fine-‐grained	  vertex	  migra2on.	  

•  Performance	  evalua2on	  showed	  it	  had	  most	  
efficiency	  and	  robustness.	  
–  It	  also	  showed	  the	  linear	  scalability	  to	  hundreds	  
nodes.	  
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Contribu2ons	

•  Analyzed	  some	  graph	  algorithm	  characteris2cs	  
that	  can	  contribute	  to	  imbalanced	  
computa2on	  of	  a	  Pregel	  system.	  

•  Proposed	  a	  dynamic	  migra2on	  model	  based	  
on	  run2me	  monitoring	  of	  ver2ces.	  

•  Implemented	  Mizan	  in	  C++	  and	  MPI	  as	  an	  
op2mized	  Pregel	  system.	  

•  Deployed	  Mizan	  and	  showed	  linear	  scalability.	
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My	  Impression	  1	

•  Even	  Mizan	  assumes	  many	  nodes	  computa2on,	  
data	  sets	  might	  not	  large	  enough.	  
– The	  number	  of	  nodes	  is	  23	  million	  at	  most.	  
–  I	  wanted	  to	  see	  the	  result	  of	  evalua2ons	  using	  
billion-‐scale	  graph.	  

–  I	  think	  that	  scalability	  would	  be	  less	  and	  less	  with	  
using	  larger	  network.	  
•  Migra2on	  cost	  would	  be	  more	  visible.	  
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My	  Impression	  2	

•  It	  has	  substan2al	  analyzing	  and	  evalua2ons	  on	  
graph	  algorithms.	  
– Thought	  of	  categories	  “(Non-‐)sta2onary	  
algorithms”	  seems	  to	  be	  useful.	  

–  I	  found	  that	  many	  graph	  par22oning	  algorithms	  
for	  preprocessing	  are	  worth	  trying.	
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My	  Impression	  3	

•  The	  series	  of	  algorithms	  and	  implements	  of	  
Mizan	  will	  serve	  as	  a	  reference	  of	  my	  research.	  
–  I	  am	  researching	  an	  efficient	  traffic	  simula2ons	  
using	  million-‐scale	  road	  network.	  

– The	  main	  problem	  in	  these	  simula2ons	  is	  also	  load	  
unbalancing	  caused	  by	  vehicles.	  
• We	  cannot	  predict	  the	  number	  of	  vehicles	  (messages).	  

– The	  idea	  of	  “delayed	  migra2on”	  can	  be	  
implemented	  to	  my	  simula2ons.	  
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Thank	  you	  for	  listening	
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