
High	 Performance	 Compu2ng	
Paper	 Review	 	

Hiroki	 Kanezashi	
13M38152	

1	

Reviewed	 Paper	 1	

Sailfish:	 a	 framework	 for	 large	 scale	 data	
processing	

[SoCC	 '12	 Proceedings	 of	 the	 Third	 ACM	 Symposium	 on	
Cloud	 Compu2ng]	

	
Sriram	 Rao1,	 Raghu	 Ramakrishnan1,	 Adam	

Silberstein2,	 Mike	 Ovsiannikov3,	 Damian	 Reeves3	
1MicrosoP	 Corp,	 2LinkedIn,	 3Quantcast	 Corp	

2	

Reviewed	 Paper	 2	

Breaking	 the	 speed	 and	 scalability	 Barriers	
for	 Graph	 explora2on	 on	 distributed-‐

memory	 machines	
[2012	 Interna2onal	 Conference	 for	 High	 Performance	
Compu2ng,	 Networking,	 Storage	 and	 Analysis	 (SC)]	

	
Checconi	 F,	 Petrini	 F,	 Willcock	 J,	 Lumsdaine	 A,	

Choudhury	 A.R,	 Sabharwal	 Y.	
IBM	 TJ	 Watson,	 Yorktown	 Heights,	 NY,	 USA	

3	

Reviewed	 Paper	 3	

Parallel	 breadth-‐first	 search	 on	 distributed	
memory	 systems	

[SC	 '11	 Proceedings	 of	 2011	 Interna2onal	 Conference	
for	 High	 Performance	 Compu2ng,	 Networking,	 Storage	

and	 Analysis]	

	
	 Aydin	 Buluç	 and	 Kamesh	 Madduri	

Lawrence	 Berkeley	 Na2onal	 Laboratory,	 Berkeley,	 CA	

4	

Summarized	 Abstract	

•  Developed	 Sailfish:	 MapReduce	 framework	 for	
large	 scale	 data	 processing.	

•  Sailfish	 improved	 performance	 of	 Hadoop	 by	
20%	 ~	 5	 2mes	 on	 real	 jobs	 and	 datasets.	

•  Sailfish	 design	 enabled	 auto-‐tuning	
func2onality	 that	 changes	 data	 volume	 and	
distribu2ons	 effec2vely.	

5	

Outline	

1.  Introduc2on	
2.  Intermediate	 Data	 Handling	
3.  Batching	 Data	 I/O	
4.  I-‐files	 for	 Aggrega2ng	 Intermediate	 Data	
5. Salifish:	 MapReduce	 Using	 I-‐files	
6.  Evalua2ons	
7.  Related	 Work	
8.  Summary	

6	

1.	 Introduc2on	

•  Data	 intensive	 compu2ng	 applica2ons	
commonly	 process	 several	 tens	 of	 terabytes.	
– These	 applica2ons	 run	 on	 large	 clusters	 by	 using	
parallel	 dataflow	 graph	 frameworks.	

– These	 frameworks	 enable	 to	 simplify	 procedures	
like	 task	 scheduling,	 handling	 data	 transferred	
between	 computa2on	 steps(intermediate	 data).	

7	

Contribu2ons	 of	 this	 paper	

•  Op2mized	 the	 transport	 of	 intermediate	 data	
in	 distributed	 dataflow	 systems.	

•  Found	 that	 data	 managing	 for	 disk	 I/O	 should	
be	 a	 core	 design	 principle.	

•  Developed	 I-‐files	 to	 support	 batching	 of	 data.	
•  Developed	 and	 demonstrated	 Sailfish,	 a	 new	
MapReduce	 framework.	

8	

2.	 Intermediate	 Data	 Handling	

•  Current	 MapReduce	 implementa2ons	 have	 a	
problem	 about	 performance	 while	
intermediate	 data	 handling.	
– For	 example,	 Hadoop	 stores	 intermediate	 data	 to	
RAM,	 but	 some2mes	 spills	 them	 to	 disk.	

9	

Current	 Approaches	 (Hadoop)	

1.  Handles	 intermediate	
data	 using	 merge-‐sort.	

2.  Spills	 data	 from	 RAM	
to	 a	 file	 on	 disk.	

3.  The	 map	 task	 merges	
the	 spills	 to	 a	 file.	

4.  Each	 reduce	 task	 pull	
data	 from	 mappers’	
output	 files.	

5.  Reducer	 merges	 data.	
10	

M*R	 2mes	

Cost	 of	 handling	 intermediate	 data	

•  It	 is	 dominated	 by	 the	 rate	 at	 which	 data	 can	
be	 read	 from	 the	 disk	 subsystems.	
– Disk	 performance	 is	 affected	 by	 the	 amount	 of	
data	 read	 per	 the	 number	 of	 disk	 seek.	

•  If	 memory-‐based	 filesystem	 buffer	 caches	
cannot	 mask	 disk	 seeks,	 overhead	 of	 them	
affects	 throughput.	

11	

The	 number	 of	 Mappers	 and	 Reducers	

•  There	 are	 many	 mappers	 and	 reducers,	 and	 the	
number	 of	 dis2nct	 retrievals	 is	 the	 product	 of	 them.	

•  The	 amount	 of	 data	 retrieved	 by	 a	 reduce	 task	 is	
propor2onal	 to	 the	 number	 of	 reducer	 tasks.	

	

Ø The	 amount	 of	 data	 read	 per	 disk	 seek	 will	
decreases	 but	 the	 number	 of	 disk	 seeks	 grows	
super-‐linearly.	

12	

Inefficiency	 of	 Performance	

•  Hadoop	 performance	
degrades	 non-‐linearly.	

•  The	 reason	 is	 disk	
overheads	 involved	 in	
the	 data	 transfer.	

13	

Linear	
Scale	

System	 parameter	 tuning	

•  Users	 have	 to	 tune	 system	 parameters	 of	 such	
parallel	 dataflow	 frameworks.	

•  However,	 many	 programmers	 set	 parameters	
only	 once	 and	 rarely	 do	 it	 further.	

•  Data	 volumes	 will	 change	 con2nuously,	 so	
performance	 will	 degrade	 without	 tuning.	

14	

3.	 Batching	 Data	 I/O	

•  Used	 “blocking	 step”	 techniques.	
– Already	 exists	 in	 MapReduce,	 SQL	 Systems,	 Pig	

•  Used	 MapReduce	 as	 a	 sample	 applica2on.	
– Every	 step	 in	 the	 flow	 is	 blocking.	

15	

Clusters	 for	 data	 intensive	 compu2ng	

•  Using	 commodity	 hardware	
– Hard	 disks	 are	 currently	 the	 only	 cost-‐effec2ve	 and	
high	 capacity	 storage.	

– Only	 focus	 on	 minimizing	 the	 disk	 overheads.	

•  Other	 storage	 systems	 to	 avoid	 some	 disk	
overheads	 are	 not	 yet	 viable.	
– RAM-‐based	 system	 will	 be	 expensive.	
– Using	 SSD	 is	 not	 applicable	 for	 mul2-‐terabyte	 scales.	

16	

Intermediate	 Data	 Aggrega2on	

•  The	 number	 of	 reduce	
tasks	 is	 reduced	 from	
M*R	 to	 R.	

•  Enhanced	 the	
distributed	 file	 system.	 	

17	

R	 2mes	

4.	 I-‐files	 for	 Aggrega2ng	 Intermediate	 Data	

•  Extended	 the	 KFS	 to	 implement	 the	 I-‐file	
abstrac2on	 besides	 HDFS.	
– KFS	 already	 contains	 some	 I-‐file	 features.	
– KFS	 is	 designed	 for	 handle	 large	 files	 in	 clusters.	

18	

Adap2ng	 KFS	 to	 Support	 I-‐files	

•  I-‐files	 is	 different	 from	 KFS	 in:	
– File	 chunks	 is	 append-‐only	 (primi2ve).	
– Once	 a	 chunk	 is	 closed	 for	 wri2ng,	 it	 is	 immutable.	

•  	 Set	 rules	 to	 I-‐files	 for	 data	 aggrega2on.	
– Restricts	 the	 number	 of	 writers	 for	 an	 I-‐file.	
– Allows	 mul2ple	 chunks	 of	 I-‐file	 to	 be	 appended	 to.	

19	

I-‐file	 APIs	 to	 support	 record-‐based	 I/O	

•  create_ifile(filename)	
– Creates	 an	 I-‐file	

•  record_append(fd,	 <key,	 value>)	
– Writes(appends)	 records	 to	 an	 I-‐file.	

•  scan(fd,	 buffer,	 lower_key,	 upper_key)	
– Retrieves	 records	 from	 an	 I-‐file.	
– Data	 is	 specified	 by	 key	 range.	

20	

Appending	 Records	 to	 an	 I-‐file	

1.  Client	 send	 an	 allocate	
request	 to	 KFS	
metaserver	 to	 write	 a	
record	 to	 an	 I-‐file.	

2.  If	 there	 is	 an	 available	
chunk,	 this	 server	
binds	 the	 client	 to	 a	
chunkserver(CS).	
–  If	 not,	 it	 allocates	 new	

chunk.	

21	

Appending	 Records	 to	 an	 I-‐file	

3.  The	 client	 sends	 the	
record	 to	 the	 bound	
chunkserver.	

4.  When	 client	 receives	
an	 ACK	 message,	 client	
considers	 it	 succeeds.	
–  If	 fails	 to	 receive,	 It	 will	

retry.	 APer	 failing	 for	
some	 2me,	 gives	 up	
binging	 to	 chunkserver.	

22	

5.	 Salifish:	 MapReduce	 Using	 I-‐files	

•  It	 is	 a	 MapReduce	 framework	 replaced	 I-‐files	
for	 HDFS.	

•  Computa2on	 Overviews	
1.  Wri2ng	 map	 task	 output	 to	 I-‐file	
2.  Sor2ng	 and	 indexing	 I-‐file	 chunks	
3.  Determining	 the	 number	 of	 reducers	
4.  Retrieving	 reduce	 task	 input	 from	 an	 I-‐file	

23	

Wri2ng	 map	 task	 output	 to	 I-‐file	 	

•  Map	 output	 (I-‐file)	 is	
par22oned	 by	 key.	

•  Each	 mappers	 append	
records	 to	 designated	
chunks.	

•  Chunkservers	 storing	
chunks	 serialize	 the	
appends.	

24	

Sor2ng	 and	 indexing	 I-‐file	 chunks	

•  Sor2ng	 of	 map	 output	 is	 decoupled	 from	 map	
task	 execu2on.	
–  If	 an	 I-‐file	 chunk	 becomes	 stable,	 it	 is	 sorted	 and	
augmented	 with	 an	 in-‐chunk	 index.	

25	

Determining	 the	 number	 of	 reducers	

•  It	 tries	 to	 automa2cally	 parallelize	 execu2on.	
– Calculates	 the	 number	 of	 reduce	 tasks	 from	 data	
proper2es	 and	 run-‐2me	 proper2es.	

•  The	 aim	 of	 this	 func2on	 is	 to	 divide	 reduce	
phase	 from	 works	 and	 to	 gain	 amount	 of	 work	
per	 task.	

26	

Retrieving	 reduce	 task	 input	 from	 an	 I-‐file	

•  Two	 reduce	 tasks	 R1	 &	
R2	 are	 assigned	 I-‐file65.	

•  These	 tasks	 use	 the	 per-‐
chunk	 index	 to	 retrieve	
their	 input	 from	 chunks	
C17	 &	 C18	 in	 I-‐file65.	

27	

Sailfish	 Implementa2on	

•  Appending	 Map	 Output	 to	 I-‐files	
•  Sor2ng	 Stable	 I-‐file	 Chunks	
•  Determining	 Number	 of	 Reducers	
•  Genera2ng	 Reduce	 Task	 Input	 From	 I-‐files	
•  Recovering	 Lost	 Map	 Task	 Output	

28	

Dataflow	

29	Figure	 7:	 Dataflow	 in	 Sailfish	 as	 it	 corresponds	 to	 a	 single	 I-‐file	 chunk.	
The	 iappender	 and	 imerger	 are	 one	 per	 task.	 There	 is	 one	 workbuilder	 daemon	 per	 job.	

Appending	 Map	 Output	 To	 I-‐files	

1)  Map	 task	 generate	 and	
send	 each	 record	 to	
iappender	 (child	
process).	

2)  The	 iappender	 buffer	
flushes	 the	 record	 to	
chunkserver.	

3)  The	 chunkserver	
buffer	 sends	 the	
record	 to	 disk.	

30	

Sor2ng	 Stable	 I-‐file	 Chunks	

4)  When	 the	 chunk	
becomes	 stable,	
chunkserver	 will	
become	 chunksorter.	
–  Performs	 in-‐memory	

sor2ng.	

5)  When	 sor2ng	 is	
finished,	 the	
chunksorter	 write	
sorted	 records	 to	 disk.	

31	

Determining	 Number	 of	 Reducers	

6)  A	 workbuilder	
daemon	 process	 reads	
the	 per-‐chunk	 indexes	
from	 I-‐files	 in	 order	 to	
determine	 split	 points.	

7)  Each	 reduce	 task	
obtains	 its	 work	
assignment	 from	
workbuilder.	

32	

Genera2ng	 Reduce	 Task	 Input	 From	 I-‐files	

8)  The	 reducer	 startup	
imerger	 process	 and	 it	
retrieves	 records	 from	
the	 chunks	 of	 the	 I-‐file.	

9)  When	 the	 imerger	
used	 all	 of	 indexes	 in	
the	 I-‐file,	 it	 merges	 the	
records	 and	 send	 them	
to	 the	 reduce	 task.	

33	

Recovering	 Lost	 Map	 Task	 Output	

•  A	 chunk	 of	 an	 I-‐file	 may	 be	 lost	 and	 the	
containing	 records	 will	 be	 lost.	

•  To	 regenerate	 the	 lost	 data,	 the	 workbuilder	
maintains	 addi2onal	 bookkeeping	 informa2on.	
– When	 a	 map	 task	 execu2ng	 finished,	 the	 iappender	
no2fies	 the	 workbuilder	 about	 wrixen	 chunks.	

–  If	 a	 chunk	 is	 lost,	 workbuilder	 tells	 JobTracker	 to	 re-‐
run	 the	 map	 tasks	 to	 generate	 the	 chunk.	

34	

Disk	 Seek	 Analysis	

•  Disk	 seeks	 occur	 when	 map	 output	 is	 commixed	
to	 disk	 by	 the	 chunkservers.	
–  read	 back,	 sort,	 write	 back	

•  The	 number	 of	 disk	 seeks	 is	 data	 dependent.	
– Wri2ng:	 (I-‐files)	 *	 (chunk	 filesper	 I-‐file)	
– Sor2ng:	 2	 (I-‐files)*(chunk	 filesper	 I-‐file)	
→Lower	 bound	 seeks:	 3	 (I-‐files)	 *	 (chunk	 filesper	 I-‐file	

35	

6.	 Evalua2ons	

•  With	 Synthe2c	 Benchmark	
– For	 evalua2ng	 the	 effec2veness	 of	 I-‐files	 in	
aggrega2ng	 intermediate	 data	

– For	 studying	 the	 system	 effects	 of	 the	 Sailfish	
dataflow	 path	

•  With	 Actual	 Jobs	
– To	 evaluate	 representa2ve	 mix	 of	 real	 MapReduce	
jobs	 with	 real	 datasets	

36	

Parameter	 sezngs	

Parameter Values
Map tasks per node 6
Reduce tasks per node 6
Memory per
map/reduce task 1.5GB

io.sort.mb = 512
Map-side sort io.sort.factor = 100
parameters io.sort.record.percent = 0.2

io.sort.spill.percent = 0.95

Parameter Values
Map tasks per node 6
Reduce tasks per node 6
Memory per
map/reduce task 512MB
Memory per iappender 1GB
Memory per imerger 1GB

(a) Stock Hadoop (b) Sailfish

Table 2: Parameter settings

other Sailfish components. On each machine we run an in-
stance of a Hadoop TaskTracker, a KFS chunkserver, and 4 KFS
chunksorter daemon processes (one sorter process per drive). The
disks on each machine are used by all the software components.

Parameter Settings: We configure Stock Hadoop using pub-
lished best practices [19] along with settings from Yahoo! clusters
for the Hadoop map-side sort parameters. Table 2(a) shows the pa-
rameters we used. Due to the differences in intermediate data han-
dling, the parameter settings for Sailfish (shown in Table 2(b))
are different from Stock Hadoop. The total memory budget im-
posed by either system is similar. Finally, during the experiments
none of the nodes in the cluster incurred swapping.

SailfishNotes: For Sailfish, we use the rack-aware vari-
ant of I-files described in Section 5.4. In the experiments, we
limit the number of concurrent appenders per chunk of an I-file
to 128, enforced by having each iappender reserve 1MB of log-
ical space before it appends records to a chunk. We set the number
of I-files to be 512 (the largest possible value given our system
configuration). Choosing a large value makes Sailfish perfor-
mance less sensitive to the specific choice. Furthermore, this set-
ting relieves our users from choosing the number of I-files for their
specific job. We configure each of the chunksorter deamons to use
256MB RAM. Finally, for the merge involved in generating reducer
input, if imerger determines that the reducer input exceeds the
amount of RAM, it does an external merge. (Our implementation
for merging records is similar to that of Stock Hadoop’s.)

6.2 Evaluation With Synthetic Benchmark

In this part of the study, we evaluate Sailfish for handling in-
termediate at scale (viz., for data volumes ranging from 1TB to
64TB). We then discuss aspects of the Sailfish dataflow path as
it relates to (1) packing intermediate data in chunks, (2) overheads
imposed by chunksorter daemon, and (3) system effects of aggre-
gating map output on a rack-wide basis. We begin by describing
our synthetic benchmark program and then present the results.

6.2.1 Benchmark Description

To highlight the overheads of transporting intermediate data in iso-
lation, we implemented a synthetic MapReduce job in which, inten-
tionally, there is no job input/output. Our program, Benchmark,
performs a partitioned sort: (1) each map task generates a config-
urable number of records (namely, strings with 10-byte key, 90-
byte value over the ASCII character set), (2) the records are hash-
partitioned, sorted, and merged and then provided as input to the
reduce task, and (3) each reduce task validates its input records
and discards them. Our Benchmark is very similar to the Day-
tona Sort benchmark program that is used in data sorting competi-
tions [7]. Finally, with Benchmark, there is no skew: (1) all map
tasks generate an equal amount of data such that the keys are uni-
formly random and (2) all reduce tasks process roughly the same
number of keys.

6.2.2 Handling intermediate data at scale

For scale, we ran Benchmark while varying the volume of inter-
mediate data generated by the map tasks from 1TB to 64TB. For
both Stock Hadoop and Sailfish, we configure the number of
mapper tasks such that each mapper generates 1GB of output. For
the reduce phase, (1) with Stock Hadoop we provide a value for the
number of reduce tasks and (2) with Sailfish we configure the
workbuilder process to assign each reduce task approximately
1GB of data. In the experiments, the number of map/reduce tasks
varied from 1024 (for handling 1TB of data) to 65536 (for handling
64TB of data).

Figure 8 shows the results of our experiments. A key takeaway
from this graph is that the performance of Sailfish for handling
intermediate data scales linearly even upto large volumes of data
(viz., 64TB). On the other hand, the performance of Stock Hadoop
grows non-linearly as the volume of intermediate data to be trans-
ported begins to exceed 16TB.

The following discussion focusses on the system characteristics
during the reduce phase of execution. We defer the discussion of
the map phase of execution to Section 6.2.5.

Recall that, in this set of experiments, the amount of input data
to a reduce task is approximately 1GB. Based on the parameter
settings, the reducer input fits entirely in RAM. Furthermore, in
both systems, a reducer retrieves its input from the multiple sources
concurrently: with Stock Hadoop, a reduce task obtains its input
multiple mapper machines (viz., 30 by default) in parallel; with
Sailfish, an imerger issues concurrent reads to all the chunks
of the I-file. However, the difference between the two systems is in
the efficiency with which the reduce task obtains its input, namely,
the amount of data read per seek which effectively determines the
disk throughput that can be achieved.

For Stock Hadoop, Section 2.2 details why data retrieved per
I/O shrinks and why this hurts its performance: the amount of
data a reducer pulls from a mapper, on average, is (1GB/R). For
Sailfish, since the number of I-files is fixed (i.e., 512), there
is an increase in both the number of chunks in an I-file as well
as the number of reduce tasks assigned to a given I-file. While
the amount of data consumed by a reduce task is fixed (namely,
1GB), this data is spread over almost all the chunks of the I-file.
Consequently, the amount of data retrieved per I/O by a reduce
task from a single I-file chunk begins to decrease. However, due
to better batching (see Section 6.2.3), the amount of data read per
I/O with Sailfish is an order of magnitude higher when com-
pared to Stock Hadoop (see Figure 9). The difference in the amount
of data read per seek translates to higher disk read throughput for
Sailfish in the reduce phase leading to better job performance.
We highlight this effect next.

Figure 10 shows the disk throughput obtained with Stock Hadoop
as well as Sailfish for runs of Benchmark in which the vol-
ume of intermediate data is 16TB. Given our 1GB limit of data for
each map or reducer task, this job involved executing 16384 map-
pers and 16384 reducers. For Stock Hadoop, the average amount
data retrieved by a reducer from a map task is about 70KB. For
Sailfish, the average amount data retrieved by a reducer from
an I-file chunk is about 1.5MB. With fewer seeks and higher amount
of data read per seek, the disk read throughput obtained by Sailfish
on a single machine averages to about 35MB/s. On the other hand,
with Stock Hadoop, due to higher seeks and less amount of data
read per seek, the observed disk throughput averages to about 20MB/s.
As a result, this effect causes the reduce phase in Stock Hadoop
to be substantially longer when compared to Sailfish’s reduce
phase for the same job (viz., 3.5 hours when compared to 1.75
hours).

37	

Evalua2on	 With	 Synthe2c	 Benchmark	

•  Evaluated	 Sailfish	 for	 handling	 1TB~16TB	 data	
– Packing	 intermediate	 data	 in	 chunks	 	
– Overheads	 imposed	 by	 chunksorter	 daemon	 	
– System	 effects	 of	 aggre-‐	 ga2ng	 map	 output	 on	 a	
rack-‐wide	 basis	

38	

Changing	 intermediate	 volume	

•  Intermediate	 data	
scales	 linearly	 even	
handling	 maximum	 of	
volume(64TB).	

 1

 2

 4

 8

 16

 32

 1 2 4 8 16 32 64 128

Jo
b
 r

u
n
-t

im
e

(i
n
 H

o
u
rs

)

Intermediate data size (TB)

Stock Hadoop
Sailfish

Figure 8: Variation in job run-time with
the volume of intermediate data. Note that
the axes are log-scale.

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128

D
at

a
re

ad
 b

y
 a

 r
ed

u
ce

 t
as

k
 p

er
 r

et
ri

ev
al

 (
in

 M
B

)

Intermediate data size (TB)

Stock Hadoop
Sailfish

Figure 9: Data read per retrieval by
a reduce task with Stock Hadoop and
Sailfish.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.5 1 1.5 2 2.5 3 3.5 4

D
is

k
 R

ea
d

 T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Time (in hours)

Stock Hadoop
Sailfish

Figure 10: Disk read throughput in the re-
duce phase with Sailfish is higher and
hence reduce phase is faster (int. data size
= 16TB).

Note that our implementation of Sailfish can be tuned fur-
ther. For instance, rather than sorting individual chunks when they
become stable, multiple chunks can be locally aggregated and sorted.
This optimization increases the length of the “sorted runs” which
can lead to better scale/performance. That is, when compared to
Figure 9, this optimization can increase the data read per retrieval
at larger values of intermediate data size.

Finally, there is also the issue of implementation differences be-
tween the two systems when transporting intermediate data. Based
on the above results (coupled with the observation that there is no
data skew), much of the gains in Sailfish are due to better disk
I/O in the reduce phase. Therefore, unless the I/O sizes in both
systems are comparable, we do not believe the implementation dif-
ferences have a significant impact on performance.

6.2.3 Effectiveness of I-files

For a given I-file our atomic record append implementation tries
to minimize the number of chunks required for storing the interme-
diate data. The experimental results validated the implementation.
The chunk allocation policy ensured that the number of chunks per
I-file was close to optimal (i.e., size of I-file /KFS chunksize).
Furthermore, except for the last chunk of an I-file, the remaining
chunks were over 99% full. This is key to our strategy of maximiz-
ing batching: a metric discussed in Section 4.2.4 was the number
of files used to store intermediate data.

6.2.4 Chunk sorting overheads

For I-files, whenever a chunk becomes stable, the chunkserver
utilizes the chunksorter daemon to sort the records in the chunk.
The chunksorter daemon is I/O intensive and performs largely se-
quential I/O: First, it spends approximately 2-4 seconds loading a
128MB chunk of data into RAM. Second, it spends approximately
1-2 seconds sorting the keys using a radix trie algorithm. Finally, it
spends approximately 2-4 seconds writing the sorted data back to
disk4.

6.2.5 Impact of network-based aggregation

The improvements in the reduce phase of execution with Sailfish
come at the expense of an additional network transfer. During the
map phase, in Stock Hadoop, a map task writes its output to the
local filesystem’s buffer cache (which writes the data to disk asyn-
chronously). With Sailfish, the map output is committed to
RAM on remote machines (and the chunkserver aggregates and

4Since writing out the sorter output file is a large sequential
I/O, as a performance optimization, our implementation uses the
posix_fallocate()API for contiguous disk space allocation.

writes to disk asynchronously). This additional network transfer
causes the map phase of execution to be higher by about 10%.

From a practical standpoint, aggregating map output on per-rack
basis (see Section 5.4) minimizes the impact of the additional traf-
fic on the network for two reasons. First, clusters for data inten-
sive computing are configured with higher intra-rack connectivity
when compared to inter-rack capacity. For instance, in Yahoo!’s
clusters, the connectivity is 1Gbps between any pair of intra-rack
nodes when compared to 200Mbps between inter-rack nodes. Sec-
ond, due to locality optimizations in the Hadoop job scheduler (i.e.,
schedule tasks where the data is stored) the intra-rack capacity is
relatively unused and Sailfish leverages the unused capacity.

Finally, network capacity within the datacenter is slated to sub-
stantially increase over the next few years. Clusters with 10Gbps
inter-node connectivity (on a small scale) have been deployed [25];
larger clusters with such connectivity will be commonplace. We ex-
pect Sailfish to be deployed in such settings, where maximiz-
ing the achievable disk subystem bandwidth and in turn effectively
utilizing the available network bandwidth becomes paramount.

6.3 Evaluation With Actual Jobs

For this part of the study we first construct a job mix by develop-
ing a simple taxonomy for classifying Map-Reduce jobs in general.
Our taxonomy is based on an analysis of jobs we see in Yahoo!’s
clusters (see Section 6.3.1). Using this taxonomy, we handpicked
a representative mix of jobs to drive an evaluation using actual
datasets and jobs (from data mining, data analytics pipelines) run
in production clusters at Yahoo!. We then present the results of our
evaluation.

6.3.1 Constructing a Job Mix

Based on conversations with our users as well as an analysis of our
cluster workloads, we use the following taxonomy for classifying
MapReduce jobs in general:

1. Skew in map output: Data compression is commonly used
in practice, and users organize their data so as to obtain high
compression ratios. As a result, the number of input records
processed by various map tasks can be substantially different,
and this impacts the size of the output of the task.

2. Skew in reduce input: These are jobs for which some parti-
tions get more data than others. The causes for skew include
poor choice of partitioning function, low entropy in keys, etc.

3. Incremental computation: Incremental computation is a
commonly used paradigm in data intensive computing en-
vironments. A typical use case is creating a sliding window

39	

Frequency	 of	 data	 retrivals	

•  Fixing	 the	 number	 of	 I-‐
files	 gained	 high	
performance.	
–  The	 numbers	 of	 chunks	
and	 reduce	 tasks	 per	 I-‐
file	 are	 increased.	

 1

 2

 4

 8

 16

 32

 1 2 4 8 16 32 64 128

Jo
b

 r
u
n

-t
im

e
(i

n
 H

o
u

rs
)

Intermediate data size (TB)

Stock Hadoop
Sailfish

Figure 8: Variation in job run-time with
the volume of intermediate data. Note that
the axes are log-scale.

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128

D
at

a
re

ad
 b

y
 a

 r
ed

u
ce

 t
as

k
 p

er
 r

et
ri

ev
al

 (
in

 M
B

)

Intermediate data size (TB)

Stock Hadoop
Sailfish

Figure 9: Data read per retrieval by
a reduce task with Stock Hadoop and
Sailfish.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.5 1 1.5 2 2.5 3 3.5 4

D
is

k
 R

ea
d
 T

h
ro

u
g

h
p

u
t

(M
B

/s
)

Time (in hours)

Stock Hadoop
Sailfish

Figure 10: Disk read throughput in the re-
duce phase with Sailfish is higher and
hence reduce phase is faster (int. data size
= 16TB).

Note that our implementation of Sailfish can be tuned fur-
ther. For instance, rather than sorting individual chunks when they
become stable, multiple chunks can be locally aggregated and sorted.
This optimization increases the length of the “sorted runs” which
can lead to better scale/performance. That is, when compared to
Figure 9, this optimization can increase the data read per retrieval
at larger values of intermediate data size.

Finally, there is also the issue of implementation differences be-
tween the two systems when transporting intermediate data. Based
on the above results (coupled with the observation that there is no
data skew), much of the gains in Sailfish are due to better disk
I/O in the reduce phase. Therefore, unless the I/O sizes in both
systems are comparable, we do not believe the implementation dif-
ferences have a significant impact on performance.

6.2.3 Effectiveness of I-files

For a given I-file our atomic record append implementation tries
to minimize the number of chunks required for storing the interme-
diate data. The experimental results validated the implementation.
The chunk allocation policy ensured that the number of chunks per
I-file was close to optimal (i.e., size of I-file /KFS chunksize).
Furthermore, except for the last chunk of an I-file, the remaining
chunks were over 99% full. This is key to our strategy of maximiz-
ing batching: a metric discussed in Section 4.2.4 was the number
of files used to store intermediate data.

6.2.4 Chunk sorting overheads

For I-files, whenever a chunk becomes stable, the chunkserver
utilizes the chunksorter daemon to sort the records in the chunk.
The chunksorter daemon is I/O intensive and performs largely se-
quential I/O: First, it spends approximately 2-4 seconds loading a
128MB chunk of data into RAM. Second, it spends approximately
1-2 seconds sorting the keys using a radix trie algorithm. Finally, it
spends approximately 2-4 seconds writing the sorted data back to
disk4.

6.2.5 Impact of network-based aggregation

The improvements in the reduce phase of execution with Sailfish
come at the expense of an additional network transfer. During the
map phase, in Stock Hadoop, a map task writes its output to the
local filesystem’s buffer cache (which writes the data to disk asyn-
chronously). With Sailfish, the map output is committed to
RAM on remote machines (and the chunkserver aggregates and

4Since writing out the sorter output file is a large sequential
I/O, as a performance optimization, our implementation uses the
posix_fallocate()API for contiguous disk space allocation.

writes to disk asynchronously). This additional network transfer
causes the map phase of execution to be higher by about 10%.

From a practical standpoint, aggregating map output on per-rack
basis (see Section 5.4) minimizes the impact of the additional traf-
fic on the network for two reasons. First, clusters for data inten-
sive computing are configured with higher intra-rack connectivity
when compared to inter-rack capacity. For instance, in Yahoo!’s
clusters, the connectivity is 1Gbps between any pair of intra-rack
nodes when compared to 200Mbps between inter-rack nodes. Sec-
ond, due to locality optimizations in the Hadoop job scheduler (i.e.,
schedule tasks where the data is stored) the intra-rack capacity is
relatively unused and Sailfish leverages the unused capacity.

Finally, network capacity within the datacenter is slated to sub-
stantially increase over the next few years. Clusters with 10Gbps
inter-node connectivity (on a small scale) have been deployed [25];
larger clusters with such connectivity will be commonplace. We ex-
pect Sailfish to be deployed in such settings, where maximiz-
ing the achievable disk subystem bandwidth and in turn effectively
utilizing the available network bandwidth becomes paramount.

6.3 Evaluation With Actual Jobs

For this part of the study we first construct a job mix by develop-
ing a simple taxonomy for classifying Map-Reduce jobs in general.
Our taxonomy is based on an analysis of jobs we see in Yahoo!’s
clusters (see Section 6.3.1). Using this taxonomy, we handpicked
a representative mix of jobs to drive an evaluation using actual
datasets and jobs (from data mining, data analytics pipelines) run
in production clusters at Yahoo!. We then present the results of our
evaluation.

6.3.1 Constructing a Job Mix

Based on conversations with our users as well as an analysis of our
cluster workloads, we use the following taxonomy for classifying
MapReduce jobs in general:

1. Skew in map output: Data compression is commonly used
in practice, and users organize their data so as to obtain high
compression ratios. As a result, the number of input records
processed by various map tasks can be substantially different,
and this impacts the size of the output of the task.

2. Skew in reduce input: These are jobs for which some parti-
tions get more data than others. The causes for skew include
poor choice of partitioning function, low entropy in keys, etc.

3. Incremental computation: Incremental computation is a
commonly used paradigm in data intensive computing en-
vironments. A typical use case is creating a sliding window

40	

Disk	 throughput	

•  Sailfish	 has	 twice	 as	 fast	
as	 Stock	 Hadoop.	

 1

 2

 4

 8

 16

 32

 1 2 4 8 16 32 64 128

Jo
b
 r

u
n
-t

im
e

(i
n
 H

o
u

rs
)

Intermediate data size (TB)

Stock Hadoop
Sailfish

Figure 8: Variation in job run-time with
the volume of intermediate data. Note that
the axes are log-scale.

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128

D
at

a
re

ad
 b

y
 a

 r
ed

u
ce

 t
as

k
 p

er
 r

et
ri

ev
al

 (
in

 M
B

)

Intermediate data size (TB)

Stock Hadoop
Sailfish

Figure 9: Data read per retrieval by
a reduce task with Stock Hadoop and
Sailfish.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.5 1 1.5 2 2.5 3 3.5 4

D
is

k
 R

ea
d
 T

h
ro

u
g
h
p
u
t

(M
B

/s
)

Time (in hours)

Stock Hadoop
Sailfish

Figure 10: Disk read throughput in the re-
duce phase with Sailfish is higher and
hence reduce phase is faster (int. data size
= 16TB).

Note that our implementation of Sailfish can be tuned fur-
ther. For instance, rather than sorting individual chunks when they
become stable, multiple chunks can be locally aggregated and sorted.
This optimization increases the length of the “sorted runs” which
can lead to better scale/performance. That is, when compared to
Figure 9, this optimization can increase the data read per retrieval
at larger values of intermediate data size.

Finally, there is also the issue of implementation differences be-
tween the two systems when transporting intermediate data. Based
on the above results (coupled with the observation that there is no
data skew), much of the gains in Sailfish are due to better disk
I/O in the reduce phase. Therefore, unless the I/O sizes in both
systems are comparable, we do not believe the implementation dif-
ferences have a significant impact on performance.

6.2.3 Effectiveness of I-files

For a given I-file our atomic record append implementation tries
to minimize the number of chunks required for storing the interme-
diate data. The experimental results validated the implementation.
The chunk allocation policy ensured that the number of chunks per
I-file was close to optimal (i.e., size of I-file /KFS chunksize).
Furthermore, except for the last chunk of an I-file, the remaining
chunks were over 99% full. This is key to our strategy of maximiz-
ing batching: a metric discussed in Section 4.2.4 was the number
of files used to store intermediate data.

6.2.4 Chunk sorting overheads

For I-files, whenever a chunk becomes stable, the chunkserver
utilizes the chunksorter daemon to sort the records in the chunk.
The chunksorter daemon is I/O intensive and performs largely se-
quential I/O: First, it spends approximately 2-4 seconds loading a
128MB chunk of data into RAM. Second, it spends approximately
1-2 seconds sorting the keys using a radix trie algorithm. Finally, it
spends approximately 2-4 seconds writing the sorted data back to
disk4.

6.2.5 Impact of network-based aggregation

The improvements in the reduce phase of execution with Sailfish
come at the expense of an additional network transfer. During the
map phase, in Stock Hadoop, a map task writes its output to the
local filesystem’s buffer cache (which writes the data to disk asyn-
chronously). With Sailfish, the map output is committed to
RAM on remote machines (and the chunkserver aggregates and

4Since writing out the sorter output file is a large sequential
I/O, as a performance optimization, our implementation uses the
posix_fallocate()API for contiguous disk space allocation.

writes to disk asynchronously). This additional network transfer
causes the map phase of execution to be higher by about 10%.

From a practical standpoint, aggregating map output on per-rack
basis (see Section 5.4) minimizes the impact of the additional traf-
fic on the network for two reasons. First, clusters for data inten-
sive computing are configured with higher intra-rack connectivity
when compared to inter-rack capacity. For instance, in Yahoo!’s
clusters, the connectivity is 1Gbps between any pair of intra-rack
nodes when compared to 200Mbps between inter-rack nodes. Sec-
ond, due to locality optimizations in the Hadoop job scheduler (i.e.,
schedule tasks where the data is stored) the intra-rack capacity is
relatively unused and Sailfish leverages the unused capacity.

Finally, network capacity within the datacenter is slated to sub-
stantially increase over the next few years. Clusters with 10Gbps
inter-node connectivity (on a small scale) have been deployed [25];
larger clusters with such connectivity will be commonplace. We ex-
pect Sailfish to be deployed in such settings, where maximiz-
ing the achievable disk subystem bandwidth and in turn effectively
utilizing the available network bandwidth becomes paramount.

6.3 Evaluation With Actual Jobs

For this part of the study we first construct a job mix by develop-
ing a simple taxonomy for classifying Map-Reduce jobs in general.
Our taxonomy is based on an analysis of jobs we see in Yahoo!’s
clusters (see Section 6.3.1). Using this taxonomy, we handpicked
a representative mix of jobs to drive an evaluation using actual
datasets and jobs (from data mining, data analytics pipelines) run
in production clusters at Yahoo!. We then present the results of our
evaluation.

6.3.1 Constructing a Job Mix

Based on conversations with our users as well as an analysis of our
cluster workloads, we use the following taxonomy for classifying
MapReduce jobs in general:

1. Skew in map output: Data compression is commonly used
in practice, and users organize their data so as to obtain high
compression ratios. As a result, the number of input records
processed by various map tasks can be substantially different,
and this impacts the size of the output of the task.

2. Skew in reduce input: These are jobs for which some parti-
tions get more data than others. The causes for skew include
poor choice of partitioning function, low entropy in keys, etc.

3. Incremental computation: Incremental computation is a
commonly used paradigm in data intensive computing en-
vironments. A typical use case is creating a sliding window

41	

Evalua2on	 With	 Actual	 Jobs	

•  Classify	 MapReduce	 jobs	 with	 these	 taxonomy:	
– Skew	 in	 map	 output	 (e.g.	 data	 compression)	
– Skew	 in	 reduce	 input	 (e.g.	 data	 par22on)	
–  Incremental	 computa2on	 (e.g.	 join)	
– Big	 data	 (e.g.	 handling	 huge	 daily	 logs)	
– Data	 explosion	 (e.g.	 ad-‐campaign	 by	 geo-‐loca2on)	
– Data	 reduc2on	 (e.g.	 sta2s2cal	 narrowing	 down)	

42	

List	 of	 experiment	 jobs	

Job Name Job Characteristics Operators Input size Int. data size # of mappers # of reducers Run time
Stock Hadoop Sailfish Stock Hadoop Sailfish

LogCount Data reduction COUNT 1.1TB 0.04TB 400 512 512 0:11 0:14
LogProc Skew in map output GROUP BY 1.1TB 1.1TB 400 1024 1024 3:27 0:37
LogRead Skew in reduce input GROUP BY 1.1TB 1.1TB 400 512 800 0:58 0:40
NdayModel Incr. computation JOIN 3.54TB 3.54TB 2000 4096 4096 2:18 0:42
BehaviorModel Big data job COGROUP 3.6TB 9.47TB 4000 4096 5120 4:55 3:15
ClickAttribution Big data job COGROUP, 6.8TB 8.2TB 21259 4096 4096 6:00 5:00

FILTER

SegmentExploder Data explosion COGROUP, 14.1TB 25.2TB 42092 16384 13824 13:20 8:48
FLATTEN,

FILTER

Table 3: Characteristics of the jobs used in the experiments. The data sizes are post-compression. The job run times reported in
this table are end-to-end (i.e., from start to finish). As data volumes scale, Sailfish outperforms Stock Hadoop between 20% to a
factor of 5. See Figure 11 for a break-down in the time spent in Map/Reduce phases of the job.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
as

k
 r

u
n

-t
im

e
(i

n
 m

in
u

te
s)

Map Task #

Stock Hadoop
Sailfish

Figure 12: Distribution of map task run
time for NdayModel job. Skew in map
output sizes affects task completion times
for both Stock Hadoop and Sailfish,
but the impact for Stock Hadoop is much
higher.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 50 100 150 200 250 300 350 400

D
at

a
S

iz
e

(i
n

 M
B

)

Partition #

Figure 13: Distribution of the size of the
intermediate data files in LogRead job.
For this job there is a skew in distribution
of data across partitions (i.e., skew in re-
ducer input).

 0

 1

 2

 3

 4

 0 50 100 150 200 250 300 350 400

N
u

m
b

er
 o

f
ta

sk
s

 a
ss

ig
n

ed
 t

o
 a

n
 I

-f
il

e

Partition #

Figure 14: For the LogRead job
Sailfish handles skew in interme-
diate data by assigning reduce tasks in
proportion to the data in the I-file (see
Figure 13).

6.3.3 Impact of data loss in I-files

In our setting the intermediate data is not replicated: Stock Hadoop
does not implement it and for a fair comparison, we did not enable
replication for I-files. Hence, in the event of data loss (viz., caused
by a disk failure), the lost data has to be regenerated via recompu-
tation. When a disk fails, the required recomputations on the two
systems are:

• Stock Hadoop: Since map tasks store their output on the local
disks by arbitrarily choosing a drive, the expected number of

recomputes is: # of tasks run on a node
of drives on a node .

• Sailfish: With 512 I-files and 30 machines per rack,
with per-rack I-files, a map task running on a node will write
to all the chunkservers in the rack. Since a chunkserver on
a node arbitrarily chooses a drive to store a chunk file, the

expected number of recomputes is: # of tasks run on a rack
of drives on a node .

Though these recompute tasks can be run in parallel, their effect
on job runtimes is data dependent. For jobs where there is a skew
in map output, the cost of recompute with Stock Hadoop is much
higher than Sailfish. For instance, for the LogProc job in
which over 90% of the job run-time is in the map phase of com-
putation, recomputes can cause the overall job run-time to nearly
double: The run-time with Stock Hadoop increases from 2 :18 to
4 :06, while with Sailfish it increases from 0 :42 to 1 :08. For
the other jobs where there is no skew in map output, regenerating
the lost data requires about 1 to 2 waves of map task execution
which causes a 10-20% increase in job runtime in either system.

7 Related Work

The performance of Hadoop Map-Reduce framework has been stud-
ied recently [16, 22, 27]. In [22], they find that Hadoop job perfor-
mance is affected by factors such as, lack of a schema which im-
pacts selection queries, lack of an index which affects join perfor-
mance, and data parsing overheads. Reference [12] shows how to
improve Hadoop performance by augmenting data with a schema
as well as an index and then using the augmented information to
substantially speed up select/join operators. These mechanisms are
applicable with Sailfish as well. In [16], they identify addi-
tional factors that affect Hadoop performance such as, I/O mode
for accessing data from disk, and task scheduling. The paper also
describes ways to tune these factors to improve performance by 2.5
to 3.5x. The same paper also notes that another potential source
of performance improvement is in modifying how the intermedi-
ate data is handled. Our work addresses this aspect and our results
demonstrate substantial gains.

TritonSort [24, 25] was developed for doing large-scale data sort-
ing. Recently, in an effort that parallels our Sailfish work, the
TritonSort architecture has been extended with a Map-Reduce im-
plementation called ThemisMR [23]. While an experimental com-
parison of the two systems is outside the scope of this paper, we
briefly describe the ThemisMR design and then contrast it with
Sailfish. The design goals of ThemisMR are similar to some
our objectives in building Sailfish: (1) ThemisMR focuses on
optimizing disk subsystem performance when handling intermedi-
ate data at scale and (2) ThemisMR tries to mitigate skew in reducer
input. With ThemisMR, a Map-Reduce computation consists of
two distinct phases, namely map and shuffle followed by sort and

43	

Elapsed	 2me	 of	 Map	 and	 Reduce	

•  There	 are	 between	 20%	
to	 5x	 speed-‐ups.	

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

S H S H S H S H S H S H S H

T
im

e
(i

n
 m

in
u

te
s)

Reduce
Map

Segment
Exploder

Click
Attribution

Behavior
Model

Nday
ModelLogReadLogProcLogCount

Figure 11: Time spent in the Map and Reduce phases of execu-
tion for the various MapReduce jobs. At scale, Sailfish (S)
outperforms Stock Hadoop (H) between 20% to a factor of 5.

over a dataset. For instance, for behavioral targeting, N -day
models of user behavior are created by a key-based join of a
1-day model with the previous N -day model.

4. Big data: These are data mining jobs that process vast amounts
of data, e.g., jobs that process a day of server logs (where the
daily log volume is about 5TB in size). With these jobs, the
output is proportional to the input (i.e., for each input record,
the job generates an output record of proportional size).

5. Data explosion: These are jobs for which the output of the
map step is a multiple of the input size. For instance, to
analyze the effectiveness of an online ad-campaign by geo-
location (e.g., impressions by (1) country, (2) state, (3) city),
the map task emits multiple records for each input record.

6. Data reduction: These are jobs in which the computation
involves a data reduction step which causes the intermediate
data size (and job output) to be a fraction of the job input.
For example, there are jobs that compute statistics over the
data by processing a few TB of input but producing only a
few GB of output.

Table 3 shows the jobs that we handpicked for our evaluation. We
note that several of these are Pig scripts containing joins and co-
grouping, and produce large amounts of intermediate data. Of these
jobs, BehaviorModel, ClickAttribution are CPU and data inten-
sive, while the rest are data intensive. Finally, note that in all of
these jobs, with the exception of LogCount, there is no reduction
in the intermediate data size when compared to the job input’s size.

6.3.2 Evaluation With Representative Jobs

Hadoop best practices [19] recommend using compression to min-
imize the amount of I/O when handling intermediate data. Hence,
for this set of experiments, for handling intermediate data we en-
abled LZO-based compression with Stock Hadoop and extended
our Sailfish implementation to support an LZO codec.

Table 3 shows the data volumes for the various jobs as well
as the number of map/reduce tasks. Note that multiple waves of
map/reduce tasks per job is common.

For this set of experiments, the workbuilder was configured
to assign upto 2GB of data per reduce task (independent of the
job). This value represents a trade-off between fault-tolerance (i.e.,
amount of computation that has to be re-done when a reducer fails)
versus performance (i.e., a large value implies fewer reducers, pos-
sibly improving disk performance due to larger sequential I/Os). As

part of follow-on work [8], we are exploring ways of eliminating
this parameter. This would then allow the reduce phase of execu-
tion to be adapted completely dynamically based on the available
cluster resources (viz., CPUs).

Figure 11 shows the results of running the various jobs using
Stock Hadoop as well as Sailfish. Our results show that as
the volume of intermediate data scales, job completion times with
Sailfish are between 20% to 5x faster when compared to the
same job run with Stock Hadoop. There are three aspects to the
gains:

• Using I-files for aggregation: In terms of the reduce phase
of computation, except for the LogProc and LogRead jobs
in which the volume of intermediate data is relatively low
(see Table 3), for the remaining jobs there is a substantial
speedup with Sailfish. The speedup in the reduce phase
is due to the better batching of intermediate data in I-files,
similar to what we observed with Benchmark.

• Decoupling sorting from map task execution: From our
job mix, we found that skew in map output impacted Log-
Proc and NdayModel jobs: (1) in the LogProc job, a few
of the map tasks generated as much as 30GB of data, and
(2) in the NdayModel job, which involves a JOIN of an N -
day dataset with a 1-day dataset, about half the map tasks
that processed files from the N -day dataset generated about
10GB of data while the remaining tasks generated 450MB of
data. Figure 12 shows the distribution of map task comple-
tion times for NdayModel job. While the skew affects map
task completion times in both Stock Hadoop and Sailfish,
the impact on Stock Hadoop due to the sorting overheads in-
curred by map tasks is much higher. This result validates
one of our design choices: decoupling the sort of map output
from map task execution. In these experiments, particularly
for the LogProc job, such a separation yielded upto a 5x im-
provement in application run-time.

• Making reduce phase dynamic: Dynamically determining
the number of reduce tasks and their work assignment in a
data dependent manner helps in skew handling as well as in
automatically exploiting the parallelism in the reduce phase.
We illustrate these effects using the LogRead job in which
there is a skew in the intermediate data (particularly, as Fig-
ure 13 shows, partitions 0-200 had more data than the rest—
4.5GB vs 0.5GB). As shown in Table 3 Sailfish used
more reduce tasks than Stock Hadoop (800 compared to 512),
and proportionately more reducers were assigned to those
partitions (i.e., as shown in Figure 14, with 2GB of data per
reduce task, I-file0 to I-file200 were assigned 3 reducers per
I-file while the remaining I-files were assigned 1 reducer
apiece). As a result, by better exploiting the available paral-
lelism, the reduce phase in Sailfish is much faster com-
pared to Stock Hadoop. Our approach realizes these benefits
in a seamless manner without re-partitioning the intermediate
data and simplifies program tuning.

Finally, to study the effect of change in data volume, we ran the
ClickAttribution job using Sailfish where we increased the in-
put data size (from 25% to 100%). We found that the workbuilder
deamon automatically caused the number of reduce tasks to in-
crease proportionately (i.e., from 4096 to 8192) in a data dependent
manner.

44	

Speed-‐up	 aspects	

•  Using	 I-‐files	 for	 aggrega2on	
•  Decoupling	 sor2ng	 from	 map	 task	 execu2on	
•  Making	 reduce	 phase	 dynamic	

45	

Using	 I-‐files	 for	 aggrega2on	

•  There	 is	 a	 substan2al	 speedup	 with	 Sailfish	 for	
the	 remaining	 jobs.	
– bexer	 batching	 of	 intermediate	 data	 in	 I-‐files,	
similar	 to	 what	 we	 observed	 with	 this	 benchmark.	

•  In	 LogProc	 and	 LogRead	 jobs,	 not	 speedup.	
– The	 volume	 of	 intermediate	 data	 is	 rela2vely	 low.	

46	

Decoupling	 sor2ng	 from	 map	 task	 execu2on	

•  In	 LogProc	 and	
NdayModel	 jobs,	 skew	 in	
map	 output	 impacted.	

Job Name Job Characteristics Operators Input size Int. data size # of mappers # of reducers Run time
Stock Hadoop Sailfish Stock Hadoop Sailfish

LogCount Data reduction COUNT 1.1TB 0.04TB 400 512 512 0:11 0:14
LogProc Skew in map output GROUP BY 1.1TB 1.1TB 400 1024 1024 3:27 0:37
LogRead Skew in reduce input GROUP BY 1.1TB 1.1TB 400 512 800 0:58 0:40
NdayModel Incr. computation JOIN 3.54TB 3.54TB 2000 4096 4096 2:18 0:42
BehaviorModel Big data job COGROUP 3.6TB 9.47TB 4000 4096 5120 4:55 3:15
ClickAttribution Big data job COGROUP, 6.8TB 8.2TB 21259 4096 4096 6:00 5:00

FILTER

SegmentExploder Data explosion COGROUP, 14.1TB 25.2TB 42092 16384 13824 13:20 8:48
FLATTEN,

FILTER

Table 3: Characteristics of the jobs used in the experiments. The data sizes are post-compression. The job run times reported in
this table are end-to-end (i.e., from start to finish). As data volumes scale, Sailfish outperforms Stock Hadoop between 20% to a
factor of 5. See Figure 11 for a break-down in the time spent in Map/Reduce phases of the job.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
as

k
 r

u
n

-t
im

e
(i

n
 m

in
u

te
s)

Map Task #

Stock Hadoop
Sailfish

Figure 12: Distribution of map task run
time for NdayModel job. Skew in map
output sizes affects task completion times
for both Stock Hadoop and Sailfish,
but the impact for Stock Hadoop is much
higher.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 50 100 150 200 250 300 350 400

D
at

a
S

iz
e

(i
n

 M
B

)

Partition #

Figure 13: Distribution of the size of the
intermediate data files in LogRead job.
For this job there is a skew in distribution
of data across partitions (i.e., skew in re-
ducer input).

 0

 1

 2

 3

 4

 0 50 100 150 200 250 300 350 400

N
u

m
b

er
 o

f
ta

sk
s

 a
ss

ig
n

ed
 t

o
 a

n
 I

-f
il

e

Partition #

Figure 14: For the LogRead job
Sailfish handles skew in interme-
diate data by assigning reduce tasks in
proportion to the data in the I-file (see
Figure 13).

6.3.3 Impact of data loss in I-files

In our setting the intermediate data is not replicated: Stock Hadoop
does not implement it and for a fair comparison, we did not enable
replication for I-files. Hence, in the event of data loss (viz., caused
by a disk failure), the lost data has to be regenerated via recompu-
tation. When a disk fails, the required recomputations on the two
systems are:

• Stock Hadoop: Since map tasks store their output on the local
disks by arbitrarily choosing a drive, the expected number of

recomputes is: # of tasks run on a node
of drives on a node .

• Sailfish: With 512 I-files and 30 machines per rack,
with per-rack I-files, a map task running on a node will write
to all the chunkservers in the rack. Since a chunkserver on
a node arbitrarily chooses a drive to store a chunk file, the

expected number of recomputes is: # of tasks run on a rack
of drives on a node .

Though these recompute tasks can be run in parallel, their effect
on job runtimes is data dependent. For jobs where there is a skew
in map output, the cost of recompute with Stock Hadoop is much
higher than Sailfish. For instance, for the LogProc job in
which over 90% of the job run-time is in the map phase of com-
putation, recomputes can cause the overall job run-time to nearly
double: The run-time with Stock Hadoop increases from 2 :18 to
4 :06, while with Sailfish it increases from 0 :42 to 1 :08. For
the other jobs where there is no skew in map output, regenerating
the lost data requires about 1 to 2 waves of map task execution
which causes a 10-20% increase in job runtime in either system.

7 Related Work

The performance of Hadoop Map-Reduce framework has been stud-
ied recently [16, 22, 27]. In [22], they find that Hadoop job perfor-
mance is affected by factors such as, lack of a schema which im-
pacts selection queries, lack of an index which affects join perfor-
mance, and data parsing overheads. Reference [12] shows how to
improve Hadoop performance by augmenting data with a schema
as well as an index and then using the augmented information to
substantially speed up select/join operators. These mechanisms are
applicable with Sailfish as well. In [16], they identify addi-
tional factors that affect Hadoop performance such as, I/O mode
for accessing data from disk, and task scheduling. The paper also
describes ways to tune these factors to improve performance by 2.5
to 3.5x. The same paper also notes that another potential source
of performance improvement is in modifying how the intermedi-
ate data is handled. Our work addresses this aspect and our results
demonstrate substantial gains.

TritonSort [24, 25] was developed for doing large-scale data sort-
ing. Recently, in an effort that parallels our Sailfish work, the
TritonSort architecture has been extended with a Map-Reduce im-
plementation called ThemisMR [23]. While an experimental com-
parison of the two systems is outside the scope of this paper, we
briefly describe the ThemisMR design and then contrast it with
Sailfish. The design goals of ThemisMR are similar to some
our objectives in building Sailfish: (1) ThemisMR focuses on
optimizing disk subsystem performance when handling intermedi-
ate data at scale and (2) ThemisMR tries to mitigate skew in reducer
input. With ThemisMR, a Map-Reduce computation consists of
two distinct phases, namely map and shuffle followed by sort and

47	

Making	 reduce	 phase	 dynamic	
Job Name Job Characteristics Operators Input size Int. data size # of mappers # of reducers Run time

Stock Hadoop Sailfish Stock Hadoop Sailfish

LogCount Data reduction COUNT 1.1TB 0.04TB 400 512 512 0:11 0:14
LogProc Skew in map output GROUP BY 1.1TB 1.1TB 400 1024 1024 3:27 0:37
LogRead Skew in reduce input GROUP BY 1.1TB 1.1TB 400 512 800 0:58 0:40
NdayModel Incr. computation JOIN 3.54TB 3.54TB 2000 4096 4096 2:18 0:42
BehaviorModel Big data job COGROUP 3.6TB 9.47TB 4000 4096 5120 4:55 3:15
ClickAttribution Big data job COGROUP, 6.8TB 8.2TB 21259 4096 4096 6:00 5:00

FILTER

SegmentExploder Data explosion COGROUP, 14.1TB 25.2TB 42092 16384 13824 13:20 8:48
FLATTEN,

FILTER

Table 3: Characteristics of the jobs used in the experiments. The data sizes are post-compression. The job run times reported in
this table are end-to-end (i.e., from start to finish). As data volumes scale, Sailfish outperforms Stock Hadoop between 20% to a
factor of 5. See Figure 11 for a break-down in the time spent in Map/Reduce phases of the job.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
as

k
 r

u
n
-t

im
e

(i
n
 m

in
u
te

s)

Map Task #

Stock Hadoop
Sailfish

Figure 12: Distribution of map task run
time for NdayModel job. Skew in map
output sizes affects task completion times
for both Stock Hadoop and Sailfish,
but the impact for Stock Hadoop is much
higher.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 50 100 150 200 250 300 350 400

D
at

a
S

iz
e

(i
n
 M

B
)

Partition #

Figure 13: Distribution of the size of the
intermediate data files in LogRead job.
For this job there is a skew in distribution
of data across partitions (i.e., skew in re-
ducer input).

 0

 1

 2

 3

 4

 0 50 100 150 200 250 300 350 400

N
u
m

b
er

 o
f

ta
sk

s
 a

ss
ig

n
ed

 t
o
 a

n
 I

-f
il

e
Partition #

Figure 14: For the LogRead job
Sailfish handles skew in interme-
diate data by assigning reduce tasks in
proportion to the data in the I-file (see
Figure 13).

6.3.3 Impact of data loss in I-files

In our setting the intermediate data is not replicated: Stock Hadoop
does not implement it and for a fair comparison, we did not enable
replication for I-files. Hence, in the event of data loss (viz., caused
by a disk failure), the lost data has to be regenerated via recompu-
tation. When a disk fails, the required recomputations on the two
systems are:

• Stock Hadoop: Since map tasks store their output on the local
disks by arbitrarily choosing a drive, the expected number of

recomputes is: # of tasks run on a node
of drives on a node .

• Sailfish: With 512 I-files and 30 machines per rack,
with per-rack I-files, a map task running on a node will write
to all the chunkservers in the rack. Since a chunkserver on
a node arbitrarily chooses a drive to store a chunk file, the

expected number of recomputes is: # of tasks run on a rack
of drives on a node .

Though these recompute tasks can be run in parallel, their effect
on job runtimes is data dependent. For jobs where there is a skew
in map output, the cost of recompute with Stock Hadoop is much
higher than Sailfish. For instance, for the LogProc job in
which over 90% of the job run-time is in the map phase of com-
putation, recomputes can cause the overall job run-time to nearly
double: The run-time with Stock Hadoop increases from 2 :18 to
4 :06, while with Sailfish it increases from 0 :42 to 1 :08. For
the other jobs where there is no skew in map output, regenerating
the lost data requires about 1 to 2 waves of map task execution
which causes a 10-20% increase in job runtime in either system.

7 Related Work

The performance of Hadoop Map-Reduce framework has been stud-
ied recently [16, 22, 27]. In [22], they find that Hadoop job perfor-
mance is affected by factors such as, lack of a schema which im-
pacts selection queries, lack of an index which affects join perfor-
mance, and data parsing overheads. Reference [12] shows how to
improve Hadoop performance by augmenting data with a schema
as well as an index and then using the augmented information to
substantially speed up select/join operators. These mechanisms are
applicable with Sailfish as well. In [16], they identify addi-
tional factors that affect Hadoop performance such as, I/O mode
for accessing data from disk, and task scheduling. The paper also
describes ways to tune these factors to improve performance by 2.5
to 3.5x. The same paper also notes that another potential source
of performance improvement is in modifying how the intermedi-
ate data is handled. Our work addresses this aspect and our results
demonstrate substantial gains.

TritonSort [24, 25] was developed for doing large-scale data sort-
ing. Recently, in an effort that parallels our Sailfish work, the
TritonSort architecture has been extended with a Map-Reduce im-
plementation called ThemisMR [23]. While an experimental com-
parison of the two systems is outside the scope of this paper, we
briefly describe the ThemisMR design and then contrast it with
Sailfish. The design goals of ThemisMR are similar to some
our objectives in building Sailfish: (1) ThemisMR focuses on
optimizing disk subsystem performance when handling intermedi-
ate data at scale and (2) ThemisMR tries to mitigate skew in reducer
input. With ThemisMR, a Map-Reduce computation consists of
two distinct phases, namely map and shuffle followed by sort and

Job Name Job Characteristics Operators Input size Int. data size # of mappers # of reducers Run time
Stock Hadoop Sailfish Stock Hadoop Sailfish

LogCount Data reduction COUNT 1.1TB 0.04TB 400 512 512 0:11 0:14
LogProc Skew in map output GROUP BY 1.1TB 1.1TB 400 1024 1024 3:27 0:37
LogRead Skew in reduce input GROUP BY 1.1TB 1.1TB 400 512 800 0:58 0:40
NdayModel Incr. computation JOIN 3.54TB 3.54TB 2000 4096 4096 2:18 0:42
BehaviorModel Big data job COGROUP 3.6TB 9.47TB 4000 4096 5120 4:55 3:15
ClickAttribution Big data job COGROUP, 6.8TB 8.2TB 21259 4096 4096 6:00 5:00

FILTER

SegmentExploder Data explosion COGROUP, 14.1TB 25.2TB 42092 16384 13824 13:20 8:48
FLATTEN,

FILTER

Table 3: Characteristics of the jobs used in the experiments. The data sizes are post-compression. The job run times reported in
this table are end-to-end (i.e., from start to finish). As data volumes scale, Sailfish outperforms Stock Hadoop between 20% to a
factor of 5. See Figure 11 for a break-down in the time spent in Map/Reduce phases of the job.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
as

k
 r

u
n
-t

im
e

(i
n
 m

in
u
te

s)

Map Task #

Stock Hadoop
Sailfish

Figure 12: Distribution of map task run
time for NdayModel job. Skew in map
output sizes affects task completion times
for both Stock Hadoop and Sailfish,
but the impact for Stock Hadoop is much
higher.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 50 100 150 200 250 300 350 400

D
at

a
S

iz
e

(i
n
 M

B
)

Partition #

Figure 13: Distribution of the size of the
intermediate data files in LogRead job.
For this job there is a skew in distribution
of data across partitions (i.e., skew in re-
ducer input).

 0

 1

 2

 3

 4

 0 50 100 150 200 250 300 350 400

N
u
m

b
er

 o
f

ta
sk

s
 a

ss
ig

n
ed

 t
o
 a

n
 I

-f
il

e

Partition #

Figure 14: For the LogRead job
Sailfish handles skew in interme-
diate data by assigning reduce tasks in
proportion to the data in the I-file (see
Figure 13).

6.3.3 Impact of data loss in I-files

In our setting the intermediate data is not replicated: Stock Hadoop
does not implement it and for a fair comparison, we did not enable
replication for I-files. Hence, in the event of data loss (viz., caused
by a disk failure), the lost data has to be regenerated via recompu-
tation. When a disk fails, the required recomputations on the two
systems are:

• Stock Hadoop: Since map tasks store their output on the local
disks by arbitrarily choosing a drive, the expected number of

recomputes is: # of tasks run on a node
of drives on a node .

• Sailfish: With 512 I-files and 30 machines per rack,
with per-rack I-files, a map task running on a node will write
to all the chunkservers in the rack. Since a chunkserver on
a node arbitrarily chooses a drive to store a chunk file, the

expected number of recomputes is: # of tasks run on a rack
of drives on a node .

Though these recompute tasks can be run in parallel, their effect
on job runtimes is data dependent. For jobs where there is a skew
in map output, the cost of recompute with Stock Hadoop is much
higher than Sailfish. For instance, for the LogProc job in
which over 90% of the job run-time is in the map phase of com-
putation, recomputes can cause the overall job run-time to nearly
double: The run-time with Stock Hadoop increases from 2 :18 to
4 :06, while with Sailfish it increases from 0 :42 to 1 :08. For
the other jobs where there is no skew in map output, regenerating
the lost data requires about 1 to 2 waves of map task execution
which causes a 10-20% increase in job runtime in either system.

7 Related Work

The performance of Hadoop Map-Reduce framework has been stud-
ied recently [16, 22, 27]. In [22], they find that Hadoop job perfor-
mance is affected by factors such as, lack of a schema which im-
pacts selection queries, lack of an index which affects join perfor-
mance, and data parsing overheads. Reference [12] shows how to
improve Hadoop performance by augmenting data with a schema
as well as an index and then using the augmented information to
substantially speed up select/join operators. These mechanisms are
applicable with Sailfish as well. In [16], they identify addi-
tional factors that affect Hadoop performance such as, I/O mode
for accessing data from disk, and task scheduling. The paper also
describes ways to tune these factors to improve performance by 2.5
to 3.5x. The same paper also notes that another potential source
of performance improvement is in modifying how the intermedi-
ate data is handled. Our work addresses this aspect and our results
demonstrate substantial gains.

TritonSort [24, 25] was developed for doing large-scale data sort-
ing. Recently, in an effort that parallels our Sailfish work, the
TritonSort architecture has been extended with a Map-Reduce im-
plementation called ThemisMR [23]. While an experimental com-
parison of the two systems is outside the scope of this paper, we
briefly describe the ThemisMR design and then contrast it with
Sailfish. The design goals of ThemisMR are similar to some
our objectives in building Sailfish: (1) ThemisMR focuses on
optimizing disk subsystem performance when handling intermedi-
ate data at scale and (2) ThemisMR tries to mitigate skew in reducer
input. With ThemisMR, a Map-Reduce computation consists of
two distinct phases, namely map and shuffle followed by sort and

48	

•  Dinamically	 determining	
the	 number	 of	 reduce	
tasks	 helps	 in	 skew	
handling.	

•  More	 reducers	 were	
assigned	 to	 par22ons	
with	 large	 data.	

Conclusions	 from	 Results	

•  I-‐files	 enable	 bexer	 batching	 of	 intermediate	
data.	
– Sailfish	 provides	 bexer	 scale	 than	 Stock	 Hadoop.	

49	

7.	 Related	 Work	

•  TritonSort	
– Using	 MapReduce	 implementa2on	 “ThemisMR”.	
–  It	 considers	 a	 point	 in	 the	 small	 design	 space.	

•  Starfish	
– Profiling	 has	 to	 be	 run	 to	 obtain	 suitable	
parameter	 values.	

50	

8.	 Summary	

•  Sailfish	 is	 an	 alternate	 MapReduce	 framework	
to	 aggregate	 intermediate	 data.	
– Developed	 I-‐files	 as	 distributed	 filesystem.	

51	

Future	 Work	

•  Add	 a	 feedback	 loop	 to	 the	 reduce	 phase	 of	
Sailfish	 to	 re-‐par22on	 the	 key-‐boundary	 work.	

•  Evaluate	 mechanisms	 for	 replica2ng	
intermediate	 data.	

•  Have	 I-‐files	 to	 provide	 new	 opportuni2es	 for	
debugging	 (e.g.	 saving	 valuable	 programmer	
2me	 with	 reducing	 phase	 of	 a	 job).	

52	

My	 Impressions	

Strong	 Points	
•  Considers	 large-‐scale	 data	

and	 clusters.	
–  It	 will	 be	 applicable	 to	 system	

handling	 larger	 data.	

•  Sailfish	 framework	 has	 good	
scalability	 compared	 to	
current	 Hadoop.	

Weak	 Points	
•  Used	 only	 limited	 data	 and	

situa2ons	 (Yahoo!	 data	 set).	
•  Not	 compared	 with	 other	

frameworks	 than	 Stock	
Hadoop.	

53	

Thank	 you	 for	 listening	

54	

