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Summarized	  Abstract	

•  Developed	  Sailfish:	  MapReduce	  framework	  for	  
large	  scale	  data	  processing.	  

•  Sailfish	  improved	  performance	  of	  Hadoop	  by	  
20%	  ~	  5	  2mes	  on	  real	  jobs	  and	  datasets.	  

•  Sailfish	  design	  enabled	  auto-‐tuning	  
func2onality	  that	  changes	  data	  volume	  and	  
distribu2ons	  effec2vely.	
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1.	  Introduc2on	

•  Data	  intensive	  compu2ng	  applica2ons	  
commonly	  process	  several	  tens	  of	  terabytes.	  
– These	  applica2ons	  run	  on	  large	  clusters	  by	  using	  
parallel	  dataflow	  graph	  frameworks.	  

– These	  frameworks	  enable	  to	  simplify	  procedures	  
like	  task	  scheduling,	  handling	  data	  transferred	  
between	  computa2on	  steps(intermediate	  data).	  
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Contribu2ons	  of	  this	  paper	

•  Op2mized	  the	  transport	  of	  intermediate	  data	  
in	  distributed	  dataflow	  systems.	  

•  Found	  that	  data	  managing	  for	  disk	  I/O	  should	  
be	  a	  core	  design	  principle.	  

•  Developed	  I-‐files	  to	  support	  batching	  of	  data.	  
•  Developed	  and	  demonstrated	  Sailfish,	  a	  new	  
MapReduce	  framework.	  
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2.	  Intermediate	  Data	  Handling	

•  Current	  MapReduce	  implementa2ons	  have	  a	  
problem	  about	  performance	  while	  
intermediate	  data	  handling.	  
– For	  example,	  Hadoop	  stores	  intermediate	  data	  to	  
RAM,	  but	  some2mes	  spills	  them	  to	  disk.	
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Current	  Approaches	  (Hadoop)	

1.  Handles	  intermediate	  
data	  using	  merge-‐sort.	  

2.  Spills	  data	  from	  RAM	  
to	  a	  file	  on	  disk.	  

3.  The	  map	  task	  merges	  
the	  spills	  to	  a	  file.	  

4.  Each	  reduce	  task	  pull	  
data	  from	  mappers’	  
output	  files.	  

5.  Reducer	  merges	  data.	  
10	
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Cost	  of	  handling	  intermediate	  data	

•  It	  is	  dominated	  by	  the	  rate	  at	  which	  data	  can	  
be	  read	  from	  the	  disk	  subsystems.	  
– Disk	  performance	  is	  affected	  by	  the	  amount	  of	  
data	  read	  per	  the	  number	  of	  disk	  seek.	  

•  If	  memory-‐based	  filesystem	  buffer	  caches	  
cannot	  mask	  disk	  seeks,	  overhead	  of	  them	  
affects	  throughput.	  
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The	  number	  of	  Mappers	  and	  Reducers	

•  There	  are	  many	  mappers	  and	  reducers,	  and	  the	  
number	  of	  dis2nct	  retrievals	  is	  the	  product	  of	  them.	

•  The	  amount	  of	  data	  retrieved	  by	  a	  reduce	  task	  is	  
propor2onal	  to	  the	  number	  of	  reducer	  tasks.	  

	  

Ø The	  amount	  of	  data	  read	  per	  disk	  seek	  will	  
decreases	  but	  the	  number	  of	  disk	  seeks	  grows	  
super-‐linearly.	
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Inefficiency	  of	  Performance	

•  Hadoop	  performance	  
degrades	  non-‐linearly.	  

•  The	  reason	  is	  disk	  
overheads	  involved	  in	  
the	  data	  transfer.	  

13	
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System	  parameter	  tuning	

•  Users	  have	  to	  tune	  system	  parameters	  of	  such	  
parallel	  dataflow	  frameworks.	  

•  However,	  many	  programmers	  set	  parameters	  
only	  once	  and	  rarely	  do	  it	  further.	  

•  Data	  volumes	  will	  change	  con2nuously,	  so	  
performance	  will	  degrade	  without	  tuning.	
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3.	  Batching	  Data	  I/O	

•  Used	  “blocking	  step”	  techniques.	  
– Already	  exists	  in	  MapReduce,	  SQL	  Systems,	  Pig	  

•  Used	  MapReduce	  as	  a	  sample	  applica2on.	  
– Every	  step	  in	  the	  flow	  is	  blocking.	
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Clusters	  for	  data	  intensive	  compu2ng	

•  Using	  commodity	  hardware	  
– Hard	  disks	  are	  currently	  the	  only	  cost-‐effec2ve	  and	  
high	  capacity	  storage.	  

– Only	  focus	  on	  minimizing	  the	  disk	  overheads.	  

•  Other	  storage	  systems	  to	  avoid	  some	  disk	  
overheads	  are	  not	  yet	  viable.	  
– RAM-‐based	  system	  will	  be	  expensive.	  
– Using	  SSD	  is	  not	  applicable	  for	  mul2-‐terabyte	  scales.	  
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Intermediate	  Data	  Aggrega2on	

•  The	  number	  of	  reduce	  
tasks	  is	  reduced	  from	  
M*R	  to	  R.	  

•  Enhanced	  the	  
distributed	  file	  system.	  	  

17	
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4.	  I-‐files	  for	  Aggrega2ng	  Intermediate	  Data	

•  Extended	  the	  KFS	  to	  implement	  the	  I-‐file	  
abstrac2on	  besides	  HDFS.	  
– KFS	  already	  contains	  some	  I-‐file	  features.	  
– KFS	  is	  designed	  for	  handle	  large	  files	  in	  clusters.	  
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Adap2ng	  KFS	  to	  Support	  I-‐files	

•  I-‐files	  is	  different	  from	  KFS	  in:	  
– File	  chunks	  is	  append-‐only	  (primi2ve).	  
– Once	  a	  chunk	  is	  closed	  for	  wri2ng,	  it	  is	  immutable.	  

•  	  Set	  rules	  to	  I-‐files	  for	  data	  aggrega2on.	  
– Restricts	  the	  number	  of	  writers	  for	  an	  I-‐file.	  
– Allows	  mul2ple	  chunks	  of	  I-‐file	  to	  be	  appended	  to.	
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I-‐file	  APIs	  to	  support	  record-‐based	  I/O	

•  create_ifile(filename)	  
– Creates	  an	  I-‐file	  

•  record_append(fd,	  <key,	  value>)	  
– Writes(appends)	  records	  to	  an	  I-‐file.	  

•  scan(fd,	  buffer,	  lower_key,	  upper_key)	  
– Retrieves	  records	  from	  an	  I-‐file.	  
– Data	  is	  specified	  by	  key	  range.	  
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Appending	  Records	  to	  an	  I-‐file	

1.  Client	  send	  an	  allocate	  
request	  to	  KFS	  
metaserver	  to	  write	  a	  
record	  to	  an	  I-‐file.	  

2.  If	  there	  is	  an	  available	  
chunk,	  this	  server	  
binds	  the	  client	  to	  a	  
chunkserver(CS).	  
–  If	  not,	  it	  allocates	  new	  

chunk.	  
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Appending	  Records	  to	  an	  I-‐file	

3.  The	  client	  sends	  the	  
record	  to	  the	  bound	  
chunkserver.	  

4.  When	  client	  receives	  
an	  ACK	  message,	  client	  
considers	  it	  succeeds.	  
–  If	  fails	  to	  receive,	  It	  will	  

retry.	  APer	  failing	  for	  
some	  2me,	  gives	  up	  
binging	  to	  chunkserver.	
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5.	  Salifish:	  MapReduce	  Using	  I-‐files	

•  It	  is	  a	  MapReduce	  framework	  replaced	  I-‐files	  
for	  HDFS.	  

•  Computa2on	  Overviews	  
1.  Wri2ng	  map	  task	  output	  to	  I-‐file	  
2.  Sor2ng	  and	  indexing	  I-‐file	  chunks	  
3.  Determining	  the	  number	  of	  reducers	  
4.  Retrieving	  reduce	  task	  input	  from	  an	  I-‐file	
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Wri2ng	  map	  task	  output	  to	  I-‐file	  	

•  Map	  output	  (I-‐file)	  is	  
par22oned	  by	  key.	  

•  Each	  mappers	  append	  
records	  to	  designated	  
chunks.	  

•  Chunkservers	  storing	  
chunks	  serialize	  the	  
appends.	
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Sor2ng	  and	  indexing	  I-‐file	  chunks	

•  Sor2ng	  of	  map	  output	  is	  decoupled	  from	  map	  
task	  execu2on.	  
–  If	  an	  I-‐file	  chunk	  becomes	  stable,	  it	  is	  sorted	  and	  
augmented	  with	  an	  in-‐chunk	  index.	  
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Determining	  the	  number	  of	  reducers	

•  It	  tries	  to	  automa2cally	  parallelize	  execu2on.	  
– Calculates	  the	  number	  of	  reduce	  tasks	  from	  data	  
proper2es	  and	  run-‐2me	  proper2es.	  

•  The	  aim	  of	  this	  func2on	  is	  to	  divide	  reduce	  
phase	  from	  works	  and	  to	  gain	  amount	  of	  work	  
per	  task.	  
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Retrieving	  reduce	  task	  input	  from	  an	  I-‐file	

•  Two	  reduce	  tasks	  R1	  &	  
R2	  are	  assigned	  I-‐file65.	  

•  These	  tasks	  use	  the	  per-‐
chunk	  index	  to	  retrieve	  
their	  input	  from	  chunks	  
C17	  &	  C18	  in	  I-‐file65.	  
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Sailfish	  Implementa2on	

•  Appending	  Map	  Output	  to	  I-‐files	  
•  Sor2ng	  Stable	  I-‐file	  Chunks	  
•  Determining	  Number	  of	  Reducers	  
•  Genera2ng	  Reduce	  Task	  Input	  From	  I-‐files	  
•  Recovering	  Lost	  Map	  Task	  Output	  
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Dataflow	

29	Figure	  7:	  Dataflow	  in	  Sailfish	  as	  it	  corresponds	  to	  a	  single	  I-‐file	  chunk.	  
The	  iappender	  and	  imerger	  are	  one	  per	  task.	  There	  is	  one	  workbuilder	  daemon	  per	  job.	



Appending	  Map	  Output	  To	  I-‐files	

1)  Map	  task	  generate	  and	  
send	  each	  record	  to	  
iappender	  (child	  
process).	  

2)  The	  iappender	  buffer	  
flushes	  the	  record	  to	  
chunkserver.	  

3)  The	  chunkserver	  
buffer	  sends	  the	  
record	  to	  disk.	
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Sor2ng	  Stable	  I-‐file	  Chunks	

4)  When	  the	  chunk	  
becomes	  stable,	  
chunkserver	  will	  
become	  chunksorter.	  
–  Performs	  in-‐memory	  

sor2ng.	  

5)  When	  sor2ng	  is	  
finished,	  the	  
chunksorter	  write	  
sorted	  records	  to	  disk.	  
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Determining	  Number	  of	  Reducers	

6)  A	  workbuilder	  
daemon	  process	  reads	  
the	  per-‐chunk	  indexes	  
from	  I-‐files	  in	  order	  to	  
determine	  split	  points.	  

7)  Each	  reduce	  task	  
obtains	  its	  work	  
assignment	  from	  
workbuilder.	
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Genera2ng	  Reduce	  Task	  Input	  From	  I-‐files	

8)  The	  reducer	  startup	  
imerger	  process	  and	  it	  
retrieves	  records	  from	  
the	  chunks	  of	  the	  I-‐file.	  

9)  When	  the	  imerger	  
used	  all	  of	  indexes	  in	  
the	  I-‐file,	  it	  merges	  the	  
records	  and	  send	  them	  
to	  the	  reduce	  task.	
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Recovering	  Lost	  Map	  Task	  Output	

•  A	  chunk	  of	  an	  I-‐file	  may	  be	  lost	  and	  the	  
containing	  records	  will	  be	  lost.	  

•  To	  regenerate	  the	  lost	  data,	  the	  workbuilder	  
maintains	  addi2onal	  bookkeeping	  informa2on.	  
– When	  a	  map	  task	  execu2ng	  finished,	  the	  iappender	  
no2fies	  the	  workbuilder	  about	  wrixen	  chunks.	  

–  If	  a	  chunk	  is	  lost,	  workbuilder	  tells	  JobTracker	  to	  re-‐
run	  the	  map	  tasks	  to	  generate	  the	  chunk.	

34	



Disk	  Seek	  Analysis	

•  Disk	  seeks	  occur	  when	  map	  output	  is	  commixed	  
to	  disk	  by	  the	  chunkservers.	  
–  read	  back,	  sort,	  write	  back	  

•  The	  number	  of	  disk	  seeks	  is	  data	  dependent.	  
– Wri2ng:	  (I-‐files)	  *	  (chunk	  filesper	  I-‐file)	  
– Sor2ng:	  2	  (I-‐files)*(chunk	  filesper	  I-‐file)	  
→Lower	  bound	  seeks:	  3	  (I-‐files)	  *	  (chunk	  filesper	  I-‐file	  

35	



6.	  Evalua2ons	

•  With	  Synthe2c	  Benchmark	  
– For	  evalua2ng	  the	  effec2veness	  of	  I-‐files	  in	  
aggrega2ng	  intermediate	  data	  

– For	  studying	  the	  system	  effects	  of	  the	  Sailfish	  
dataflow	  path	  

•  With	  Actual	  Jobs	  
– To	  evaluate	  representa2ve	  mix	  of	  real	  MapReduce	  
jobs	  with	  real	  datasets	  
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Parameter	  sezngs	

Parameter Values
Map tasks per node 6
Reduce tasks per node 6
Memory per
map/reduce task 1.5GB

io.sort.mb = 512
Map-side sort io.sort.factor = 100
parameters io.sort.record.percent = 0.2

io.sort.spill.percent = 0.95

Parameter Values
Map tasks per node 6
Reduce tasks per node 6
Memory per
map/reduce task 512MB
Memory per iappender 1GB
Memory per imerger 1GB

(a) Stock Hadoop (b) Sailfish

Table 2: Parameter settings

other Sailfish components. On each machine we run an in-
stance of a Hadoop TaskTracker, a KFS chunkserver, and 4 KFS
chunksorter daemon processes (one sorter process per drive). The
disks on each machine are used by all the software components.

Parameter Settings: We configure Stock Hadoop using pub-
lished best practices [19] along with settings from Yahoo! clusters
for the Hadoop map-side sort parameters. Table 2(a) shows the pa-
rameters we used. Due to the differences in intermediate data han-
dling, the parameter settings for Sailfish (shown in Table 2(b))
are different from Stock Hadoop. The total memory budget im-
posed by either system is similar. Finally, during the experiments
none of the nodes in the cluster incurred swapping.

SailfishNotes: For Sailfish, we use the rack-aware vari-
ant of I-files described in Section 5.4. In the experiments, we
limit the number of concurrent appenders per chunk of an I-file
to 128, enforced by having each iappender reserve 1MB of log-
ical space before it appends records to a chunk. We set the number
of I-files to be 512 (the largest possible value given our system
configuration). Choosing a large value makes Sailfish perfor-
mance less sensitive to the specific choice. Furthermore, this set-
ting relieves our users from choosing the number of I-files for their
specific job. We configure each of the chunksorter deamons to use
256MB RAM. Finally, for the merge involved in generating reducer
input, if imerger determines that the reducer input exceeds the
amount of RAM, it does an external merge. (Our implementation
for merging records is similar to that of Stock Hadoop’s.)

6.2 Evaluation With Synthetic Benchmark

In this part of the study, we evaluate Sailfish for handling in-
termediate at scale (viz., for data volumes ranging from 1TB to
64TB). We then discuss aspects of the Sailfish dataflow path as
it relates to (1) packing intermediate data in chunks, (2) overheads
imposed by chunksorter daemon, and (3) system effects of aggre-
gating map output on a rack-wide basis. We begin by describing
our synthetic benchmark program and then present the results.

6.2.1 Benchmark Description

To highlight the overheads of transporting intermediate data in iso-
lation, we implemented a synthetic MapReduce job in which, inten-
tionally, there is no job input/output. Our program, Benchmark,
performs a partitioned sort: (1) each map task generates a config-
urable number of records (namely, strings with 10-byte key, 90-
byte value over the ASCII character set), (2) the records are hash-
partitioned, sorted, and merged and then provided as input to the
reduce task, and (3) each reduce task validates its input records
and discards them. Our Benchmark is very similar to the Day-
tona Sort benchmark program that is used in data sorting competi-
tions [7]. Finally, with Benchmark, there is no skew: (1) all map
tasks generate an equal amount of data such that the keys are uni-
formly random and (2) all reduce tasks process roughly the same
number of keys.

6.2.2 Handling intermediate data at scale

For scale, we ran Benchmark while varying the volume of inter-
mediate data generated by the map tasks from 1TB to 64TB. For
both Stock Hadoop and Sailfish, we configure the number of
mapper tasks such that each mapper generates 1GB of output. For
the reduce phase, (1) with Stock Hadoop we provide a value for the
number of reduce tasks and (2) with Sailfish we configure the
workbuilder process to assign each reduce task approximately
1GB of data. In the experiments, the number of map/reduce tasks
varied from 1024 (for handling 1TB of data) to 65536 (for handling
64TB of data).

Figure 8 shows the results of our experiments. A key takeaway
from this graph is that the performance of Sailfish for handling
intermediate data scales linearly even upto large volumes of data
(viz., 64TB). On the other hand, the performance of Stock Hadoop
grows non-linearly as the volume of intermediate data to be trans-
ported begins to exceed 16TB.

The following discussion focusses on the system characteristics
during the reduce phase of execution. We defer the discussion of
the map phase of execution to Section 6.2.5.

Recall that, in this set of experiments, the amount of input data
to a reduce task is approximately 1GB. Based on the parameter
settings, the reducer input fits entirely in RAM. Furthermore, in
both systems, a reducer retrieves its input from the multiple sources
concurrently: with Stock Hadoop, a reduce task obtains its input
multiple mapper machines (viz., 30 by default) in parallel; with
Sailfish, an imerger issues concurrent reads to all the chunks
of the I-file. However, the difference between the two systems is in
the efficiency with which the reduce task obtains its input, namely,
the amount of data read per seek which effectively determines the
disk throughput that can be achieved.

For Stock Hadoop, Section 2.2 details why data retrieved per
I/O shrinks and why this hurts its performance: the amount of
data a reducer pulls from a mapper, on average, is (1GB/R). For
Sailfish, since the number of I-files is fixed (i.e., 512), there
is an increase in both the number of chunks in an I-file as well
as the number of reduce tasks assigned to a given I-file. While
the amount of data consumed by a reduce task is fixed (namely,
1GB), this data is spread over almost all the chunks of the I-file.
Consequently, the amount of data retrieved per I/O by a reduce
task from a single I-file chunk begins to decrease. However, due
to better batching (see Section 6.2.3), the amount of data read per
I/O with Sailfish is an order of magnitude higher when com-
pared to Stock Hadoop (see Figure 9). The difference in the amount
of data read per seek translates to higher disk read throughput for
Sailfish in the reduce phase leading to better job performance.
We highlight this effect next.

Figure 10 shows the disk throughput obtained with Stock Hadoop
as well as Sailfish for runs of Benchmark in which the vol-
ume of intermediate data is 16TB. Given our 1GB limit of data for
each map or reducer task, this job involved executing 16384 map-
pers and 16384 reducers. For Stock Hadoop, the average amount
data retrieved by a reducer from a map task is about 70KB. For
Sailfish, the average amount data retrieved by a reducer from
an I-file chunk is about 1.5MB. With fewer seeks and higher amount
of data read per seek, the disk read throughput obtained by Sailfish
on a single machine averages to about 35MB/s. On the other hand,
with Stock Hadoop, due to higher seeks and less amount of data
read per seek, the observed disk throughput averages to about 20MB/s.
As a result, this effect causes the reduce phase in Stock Hadoop
to be substantially longer when compared to Sailfish’s reduce
phase for the same job (viz., 3.5 hours when compared to 1.75
hours).
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Evalua2on	  With	  Synthe2c	  Benchmark	

•  Evaluated	  Sailfish	  for	  handling	  1TB~16TB	  data	  
– Packing	  intermediate	  data	  in	  chunks	  	  
– Overheads	  imposed	  by	  chunksorter	  daemon	  	  
– System	  effects	  of	  aggre-‐	  ga2ng	  map	  output	  on	  a	  
rack-‐wide	  basis	  
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Changing	  intermediate	  volume	

•  Intermediate	  data	  
scales	  linearly	  even	  
handling	  maximum	  of	  
volume(64TB).	  
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Figure 8: Variation in job run-time with
the volume of intermediate data. Note that
the axes are log-scale.
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Figure 9: Data read per retrieval by
a reduce task with Stock Hadoop and
Sailfish.
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Figure 10: Disk read throughput in the re-
duce phase with Sailfish is higher and
hence reduce phase is faster (int. data size
= 16TB).

Note that our implementation of Sailfish can be tuned fur-
ther. For instance, rather than sorting individual chunks when they
become stable, multiple chunks can be locally aggregated and sorted.
This optimization increases the length of the “sorted runs” which
can lead to better scale/performance. That is, when compared to
Figure 9, this optimization can increase the data read per retrieval
at larger values of intermediate data size.

Finally, there is also the issue of implementation differences be-
tween the two systems when transporting intermediate data. Based
on the above results (coupled with the observation that there is no
data skew), much of the gains in Sailfish are due to better disk
I/O in the reduce phase. Therefore, unless the I/O sizes in both
systems are comparable, we do not believe the implementation dif-
ferences have a significant impact on performance.

6.2.3 Effectiveness of I-files

For a given I-file our atomic record append implementation tries
to minimize the number of chunks required for storing the interme-
diate data. The experimental results validated the implementation.
The chunk allocation policy ensured that the number of chunks per
I-file was close to optimal (i.e., size of I-file /KFS chunksize).
Furthermore, except for the last chunk of an I-file, the remaining
chunks were over 99% full. This is key to our strategy of maximiz-
ing batching: a metric discussed in Section 4.2.4 was the number
of files used to store intermediate data.

6.2.4 Chunk sorting overheads

For I-files, whenever a chunk becomes stable, the chunkserver
utilizes the chunksorter daemon to sort the records in the chunk.
The chunksorter daemon is I/O intensive and performs largely se-
quential I/O: First, it spends approximately 2-4 seconds loading a
128MB chunk of data into RAM. Second, it spends approximately
1-2 seconds sorting the keys using a radix trie algorithm. Finally, it
spends approximately 2-4 seconds writing the sorted data back to
disk4.

6.2.5 Impact of network-based aggregation

The improvements in the reduce phase of execution with Sailfish
come at the expense of an additional network transfer. During the
map phase, in Stock Hadoop, a map task writes its output to the
local filesystem’s buffer cache (which writes the data to disk asyn-
chronously). With Sailfish, the map output is committed to
RAM on remote machines (and the chunkserver aggregates and

4Since writing out the sorter output file is a large sequential
I/O, as a performance optimization, our implementation uses the
posix_fallocate()API for contiguous disk space allocation.

writes to disk asynchronously). This additional network transfer
causes the map phase of execution to be higher by about 10%.

From a practical standpoint, aggregating map output on per-rack
basis (see Section 5.4) minimizes the impact of the additional traf-
fic on the network for two reasons. First, clusters for data inten-
sive computing are configured with higher intra-rack connectivity
when compared to inter-rack capacity. For instance, in Yahoo!’s
clusters, the connectivity is 1Gbps between any pair of intra-rack
nodes when compared to 200Mbps between inter-rack nodes. Sec-
ond, due to locality optimizations in the Hadoop job scheduler (i.e.,
schedule tasks where the data is stored) the intra-rack capacity is
relatively unused and Sailfish leverages the unused capacity.

Finally, network capacity within the datacenter is slated to sub-
stantially increase over the next few years. Clusters with 10Gbps
inter-node connectivity (on a small scale) have been deployed [25];
larger clusters with such connectivity will be commonplace. We ex-
pect Sailfish to be deployed in such settings, where maximiz-
ing the achievable disk subystem bandwidth and in turn effectively
utilizing the available network bandwidth becomes paramount.

6.3 Evaluation With Actual Jobs

For this part of the study we first construct a job mix by develop-
ing a simple taxonomy for classifying Map-Reduce jobs in general.
Our taxonomy is based on an analysis of jobs we see in Yahoo!’s
clusters (see Section 6.3.1). Using this taxonomy, we handpicked
a representative mix of jobs to drive an evaluation using actual
datasets and jobs (from data mining, data analytics pipelines) run
in production clusters at Yahoo!. We then present the results of our
evaluation.

6.3.1 Constructing a Job Mix

Based on conversations with our users as well as an analysis of our
cluster workloads, we use the following taxonomy for classifying
MapReduce jobs in general:

1. Skew in map output: Data compression is commonly used
in practice, and users organize their data so as to obtain high
compression ratios. As a result, the number of input records
processed by various map tasks can be substantially different,
and this impacts the size of the output of the task.

2. Skew in reduce input: These are jobs for which some parti-
tions get more data than others. The causes for skew include
poor choice of partitioning function, low entropy in keys, etc.

3. Incremental computation: Incremental computation is a
commonly used paradigm in data intensive computing en-
vironments. A typical use case is creating a sliding window
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Frequency	  of	  data	  retrivals	

•  Fixing	  the	  number	  of	  I-‐
files	  gained	  high	  
performance.	  
–  The	  numbers	  of	  chunks	  
and	  reduce	  tasks	  per	  I-‐
file	  are	  increased.	
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Figure 8: Variation in job run-time with
the volume of intermediate data. Note that
the axes are log-scale.
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Figure 9: Data read per retrieval by
a reduce task with Stock Hadoop and
Sailfish.
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Figure 10: Disk read throughput in the re-
duce phase with Sailfish is higher and
hence reduce phase is faster (int. data size
= 16TB).

Note that our implementation of Sailfish can be tuned fur-
ther. For instance, rather than sorting individual chunks when they
become stable, multiple chunks can be locally aggregated and sorted.
This optimization increases the length of the “sorted runs” which
can lead to better scale/performance. That is, when compared to
Figure 9, this optimization can increase the data read per retrieval
at larger values of intermediate data size.

Finally, there is also the issue of implementation differences be-
tween the two systems when transporting intermediate data. Based
on the above results (coupled with the observation that there is no
data skew), much of the gains in Sailfish are due to better disk
I/O in the reduce phase. Therefore, unless the I/O sizes in both
systems are comparable, we do not believe the implementation dif-
ferences have a significant impact on performance.

6.2.3 Effectiveness of I-files

For a given I-file our atomic record append implementation tries
to minimize the number of chunks required for storing the interme-
diate data. The experimental results validated the implementation.
The chunk allocation policy ensured that the number of chunks per
I-file was close to optimal (i.e., size of I-file /KFS chunksize).
Furthermore, except for the last chunk of an I-file, the remaining
chunks were over 99% full. This is key to our strategy of maximiz-
ing batching: a metric discussed in Section 4.2.4 was the number
of files used to store intermediate data.

6.2.4 Chunk sorting overheads

For I-files, whenever a chunk becomes stable, the chunkserver
utilizes the chunksorter daemon to sort the records in the chunk.
The chunksorter daemon is I/O intensive and performs largely se-
quential I/O: First, it spends approximately 2-4 seconds loading a
128MB chunk of data into RAM. Second, it spends approximately
1-2 seconds sorting the keys using a radix trie algorithm. Finally, it
spends approximately 2-4 seconds writing the sorted data back to
disk4.

6.2.5 Impact of network-based aggregation

The improvements in the reduce phase of execution with Sailfish
come at the expense of an additional network transfer. During the
map phase, in Stock Hadoop, a map task writes its output to the
local filesystem’s buffer cache (which writes the data to disk asyn-
chronously). With Sailfish, the map output is committed to
RAM on remote machines (and the chunkserver aggregates and

4Since writing out the sorter output file is a large sequential
I/O, as a performance optimization, our implementation uses the
posix_fallocate()API for contiguous disk space allocation.

writes to disk asynchronously). This additional network transfer
causes the map phase of execution to be higher by about 10%.

From a practical standpoint, aggregating map output on per-rack
basis (see Section 5.4) minimizes the impact of the additional traf-
fic on the network for two reasons. First, clusters for data inten-
sive computing are configured with higher intra-rack connectivity
when compared to inter-rack capacity. For instance, in Yahoo!’s
clusters, the connectivity is 1Gbps between any pair of intra-rack
nodes when compared to 200Mbps between inter-rack nodes. Sec-
ond, due to locality optimizations in the Hadoop job scheduler (i.e.,
schedule tasks where the data is stored) the intra-rack capacity is
relatively unused and Sailfish leverages the unused capacity.

Finally, network capacity within the datacenter is slated to sub-
stantially increase over the next few years. Clusters with 10Gbps
inter-node connectivity (on a small scale) have been deployed [25];
larger clusters with such connectivity will be commonplace. We ex-
pect Sailfish to be deployed in such settings, where maximiz-
ing the achievable disk subystem bandwidth and in turn effectively
utilizing the available network bandwidth becomes paramount.

6.3 Evaluation With Actual Jobs

For this part of the study we first construct a job mix by develop-
ing a simple taxonomy for classifying Map-Reduce jobs in general.
Our taxonomy is based on an analysis of jobs we see in Yahoo!’s
clusters (see Section 6.3.1). Using this taxonomy, we handpicked
a representative mix of jobs to drive an evaluation using actual
datasets and jobs (from data mining, data analytics pipelines) run
in production clusters at Yahoo!. We then present the results of our
evaluation.

6.3.1 Constructing a Job Mix

Based on conversations with our users as well as an analysis of our
cluster workloads, we use the following taxonomy for classifying
MapReduce jobs in general:

1. Skew in map output: Data compression is commonly used
in practice, and users organize their data so as to obtain high
compression ratios. As a result, the number of input records
processed by various map tasks can be substantially different,
and this impacts the size of the output of the task.

2. Skew in reduce input: These are jobs for which some parti-
tions get more data than others. The causes for skew include
poor choice of partitioning function, low entropy in keys, etc.

3. Incremental computation: Incremental computation is a
commonly used paradigm in data intensive computing en-
vironments. A typical use case is creating a sliding window
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Disk	  throughput	

•  Sailfish	  has	  twice	  as	  fast	  
as	  Stock	  Hadoop.	  
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Figure 8: Variation in job run-time with
the volume of intermediate data. Note that
the axes are log-scale.
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Figure 9: Data read per retrieval by
a reduce task with Stock Hadoop and
Sailfish.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  0.5  1  1.5  2  2.5  3  3.5  4

D
is

k
 R

ea
d
 T

h
ro

u
g
h
p
u
t 

(M
B

/s
)

Time (in hours)

Stock Hadoop
Sailfish

Figure 10: Disk read throughput in the re-
duce phase with Sailfish is higher and
hence reduce phase is faster (int. data size
= 16TB).

Note that our implementation of Sailfish can be tuned fur-
ther. For instance, rather than sorting individual chunks when they
become stable, multiple chunks can be locally aggregated and sorted.
This optimization increases the length of the “sorted runs” which
can lead to better scale/performance. That is, when compared to
Figure 9, this optimization can increase the data read per retrieval
at larger values of intermediate data size.

Finally, there is also the issue of implementation differences be-
tween the two systems when transporting intermediate data. Based
on the above results (coupled with the observation that there is no
data skew), much of the gains in Sailfish are due to better disk
I/O in the reduce phase. Therefore, unless the I/O sizes in both
systems are comparable, we do not believe the implementation dif-
ferences have a significant impact on performance.

6.2.3 Effectiveness of I-files

For a given I-file our atomic record append implementation tries
to minimize the number of chunks required for storing the interme-
diate data. The experimental results validated the implementation.
The chunk allocation policy ensured that the number of chunks per
I-file was close to optimal (i.e., size of I-file /KFS chunksize).
Furthermore, except for the last chunk of an I-file, the remaining
chunks were over 99% full. This is key to our strategy of maximiz-
ing batching: a metric discussed in Section 4.2.4 was the number
of files used to store intermediate data.

6.2.4 Chunk sorting overheads

For I-files, whenever a chunk becomes stable, the chunkserver
utilizes the chunksorter daemon to sort the records in the chunk.
The chunksorter daemon is I/O intensive and performs largely se-
quential I/O: First, it spends approximately 2-4 seconds loading a
128MB chunk of data into RAM. Second, it spends approximately
1-2 seconds sorting the keys using a radix trie algorithm. Finally, it
spends approximately 2-4 seconds writing the sorted data back to
disk4.

6.2.5 Impact of network-based aggregation

The improvements in the reduce phase of execution with Sailfish
come at the expense of an additional network transfer. During the
map phase, in Stock Hadoop, a map task writes its output to the
local filesystem’s buffer cache (which writes the data to disk asyn-
chronously). With Sailfish, the map output is committed to
RAM on remote machines (and the chunkserver aggregates and

4Since writing out the sorter output file is a large sequential
I/O, as a performance optimization, our implementation uses the
posix_fallocate()API for contiguous disk space allocation.

writes to disk asynchronously). This additional network transfer
causes the map phase of execution to be higher by about 10%.

From a practical standpoint, aggregating map output on per-rack
basis (see Section 5.4) minimizes the impact of the additional traf-
fic on the network for two reasons. First, clusters for data inten-
sive computing are configured with higher intra-rack connectivity
when compared to inter-rack capacity. For instance, in Yahoo!’s
clusters, the connectivity is 1Gbps between any pair of intra-rack
nodes when compared to 200Mbps between inter-rack nodes. Sec-
ond, due to locality optimizations in the Hadoop job scheduler (i.e.,
schedule tasks where the data is stored) the intra-rack capacity is
relatively unused and Sailfish leverages the unused capacity.

Finally, network capacity within the datacenter is slated to sub-
stantially increase over the next few years. Clusters with 10Gbps
inter-node connectivity (on a small scale) have been deployed [25];
larger clusters with such connectivity will be commonplace. We ex-
pect Sailfish to be deployed in such settings, where maximiz-
ing the achievable disk subystem bandwidth and in turn effectively
utilizing the available network bandwidth becomes paramount.

6.3 Evaluation With Actual Jobs

For this part of the study we first construct a job mix by develop-
ing a simple taxonomy for classifying Map-Reduce jobs in general.
Our taxonomy is based on an analysis of jobs we see in Yahoo!’s
clusters (see Section 6.3.1). Using this taxonomy, we handpicked
a representative mix of jobs to drive an evaluation using actual
datasets and jobs (from data mining, data analytics pipelines) run
in production clusters at Yahoo!. We then present the results of our
evaluation.

6.3.1 Constructing a Job Mix

Based on conversations with our users as well as an analysis of our
cluster workloads, we use the following taxonomy for classifying
MapReduce jobs in general:

1. Skew in map output: Data compression is commonly used
in practice, and users organize their data so as to obtain high
compression ratios. As a result, the number of input records
processed by various map tasks can be substantially different,
and this impacts the size of the output of the task.

2. Skew in reduce input: These are jobs for which some parti-
tions get more data than others. The causes for skew include
poor choice of partitioning function, low entropy in keys, etc.

3. Incremental computation: Incremental computation is a
commonly used paradigm in data intensive computing en-
vironments. A typical use case is creating a sliding window
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Evalua2on	  With	  Actual	  Jobs	

•  Classify	  MapReduce	  jobs	  with	  these	  taxonomy:	  
– Skew	  in	  map	  output	  (e.g.	  data	  compression)	  
– Skew	  in	  reduce	  input	  (e.g.	  data	  par22on)	  
–  Incremental	  computa2on	  (e.g.	  join)	  
– Big	  data	  (e.g.	  handling	  huge	  daily	  logs)	  
– Data	  explosion	  (e.g.	  ad-‐campaign	  by	  geo-‐loca2on)	  
– Data	  reduc2on	  (e.g.	  sta2s2cal	  narrowing	  down)	
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List	  of	  experiment	  jobs	

Job Name Job Characteristics Operators Input size Int. data size # of mappers # of reducers Run time
Stock Hadoop Sailfish Stock Hadoop Sailfish

LogCount Data reduction COUNT 1.1TB 0.04TB 400 512 512 0:11 0:14
LogProc Skew in map output GROUP BY 1.1TB 1.1TB 400 1024 1024 3:27 0:37
LogRead Skew in reduce input GROUP BY 1.1TB 1.1TB 400 512 800 0:58 0:40
NdayModel Incr. computation JOIN 3.54TB 3.54TB 2000 4096 4096 2:18 0:42
BehaviorModel Big data job COGROUP 3.6TB 9.47TB 4000 4096 5120 4:55 3:15
ClickAttribution Big data job COGROUP, 6.8TB 8.2TB 21259 4096 4096 6:00 5:00

FILTER

SegmentExploder Data explosion COGROUP, 14.1TB 25.2TB 42092 16384 13824 13:20 8:48
FLATTEN,

FILTER

Table 3: Characteristics of the jobs used in the experiments. The data sizes are post-compression. The job run times reported in
this table are end-to-end (i.e., from start to finish). As data volumes scale, Sailfish outperforms Stock Hadoop between 20% to a
factor of 5. See Figure 11 for a break-down in the time spent in Map/Reduce phases of the job.
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Figure 12: Distribution of map task run
time for NdayModel job. Skew in map
output sizes affects task completion times
for both Stock Hadoop and Sailfish,
but the impact for Stock Hadoop is much
higher.
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Figure 13: Distribution of the size of the
intermediate data files in LogRead job.
For this job there is a skew in distribution
of data across partitions (i.e., skew in re-
ducer input).
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Figure 14: For the LogRead job
Sailfish handles skew in interme-
diate data by assigning reduce tasks in
proportion to the data in the I-file (see
Figure 13).

6.3.3 Impact of data loss in I-files

In our setting the intermediate data is not replicated: Stock Hadoop
does not implement it and for a fair comparison, we did not enable
replication for I-files. Hence, in the event of data loss (viz., caused
by a disk failure), the lost data has to be regenerated via recompu-
tation. When a disk fails, the required recomputations on the two
systems are:

• Stock Hadoop: Since map tasks store their output on the local
disks by arbitrarily choosing a drive, the expected number of

recomputes is: # of tasks run on a node
# of drives on a node .

• Sailfish: With 512 I-files and 30 machines per rack,
with per-rack I-files, a map task running on a node will write
to all the chunkservers in the rack. Since a chunkserver on
a node arbitrarily chooses a drive to store a chunk file, the

expected number of recomputes is: # of tasks run on a rack
# of drives on a node .

Though these recompute tasks can be run in parallel, their effect
on job runtimes is data dependent. For jobs where there is a skew
in map output, the cost of recompute with Stock Hadoop is much
higher than Sailfish. For instance, for the LogProc job in
which over 90% of the job run-time is in the map phase of com-
putation, recomputes can cause the overall job run-time to nearly
double: The run-time with Stock Hadoop increases from 2 :18 to
4 :06, while with Sailfish it increases from 0 :42 to 1 :08. For
the other jobs where there is no skew in map output, regenerating
the lost data requires about 1 to 2 waves of map task execution
which causes a 10-20% increase in job runtime in either system.

7 Related Work

The performance of Hadoop Map-Reduce framework has been stud-
ied recently [16, 22, 27]. In [22], they find that Hadoop job perfor-
mance is affected by factors such as, lack of a schema which im-
pacts selection queries, lack of an index which affects join perfor-
mance, and data parsing overheads. Reference [12] shows how to
improve Hadoop performance by augmenting data with a schema
as well as an index and then using the augmented information to
substantially speed up select/join operators. These mechanisms are
applicable with Sailfish as well. In [16], they identify addi-
tional factors that affect Hadoop performance such as, I/O mode
for accessing data from disk, and task scheduling. The paper also
describes ways to tune these factors to improve performance by 2.5
to 3.5x. The same paper also notes that another potential source
of performance improvement is in modifying how the intermedi-
ate data is handled. Our work addresses this aspect and our results
demonstrate substantial gains.

TritonSort [24, 25] was developed for doing large-scale data sort-
ing. Recently, in an effort that parallels our Sailfish work, the
TritonSort architecture has been extended with a Map-Reduce im-
plementation called ThemisMR [23]. While an experimental com-
parison of the two systems is outside the scope of this paper, we
briefly describe the ThemisMR design and then contrast it with
Sailfish. The design goals of ThemisMR are similar to some
our objectives in building Sailfish: (1) ThemisMR focuses on
optimizing disk subsystem performance when handling intermedi-
ate data at scale and (2) ThemisMR tries to mitigate skew in reducer
input. With ThemisMR, a Map-Reduce computation consists of
two distinct phases, namely map and shuffle followed by sort and
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Elapsed	  2me	  of	  Map	  and	  Reduce	

•  There	  are	  between	  20%	  
to	  5x	  speed-‐ups.	  
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Figure 11: Time spent in the Map and Reduce phases of execu-
tion for the various MapReduce jobs. At scale, Sailfish (S)
outperforms Stock Hadoop (H) between 20% to a factor of 5.

over a dataset. For instance, for behavioral targeting, N -day
models of user behavior are created by a key-based join of a
1-day model with the previous N -day model.

4. Big data: These are data mining jobs that process vast amounts
of data, e.g., jobs that process a day of server logs (where the
daily log volume is about 5TB in size). With these jobs, the
output is proportional to the input (i.e., for each input record,
the job generates an output record of proportional size).

5. Data explosion: These are jobs for which the output of the
map step is a multiple of the input size. For instance, to
analyze the effectiveness of an online ad-campaign by geo-
location (e.g., impressions by (1) country, (2) state, (3) city),
the map task emits multiple records for each input record.

6. Data reduction: These are jobs in which the computation
involves a data reduction step which causes the intermediate
data size (and job output) to be a fraction of the job input.
For example, there are jobs that compute statistics over the
data by processing a few TB of input but producing only a
few GB of output.

Table 3 shows the jobs that we handpicked for our evaluation. We
note that several of these are Pig scripts containing joins and co-
grouping, and produce large amounts of intermediate data. Of these
jobs, BehaviorModel, ClickAttribution are CPU and data inten-
sive, while the rest are data intensive. Finally, note that in all of
these jobs, with the exception of LogCount, there is no reduction
in the intermediate data size when compared to the job input’s size.

6.3.2 Evaluation With Representative Jobs

Hadoop best practices [19] recommend using compression to min-
imize the amount of I/O when handling intermediate data. Hence,
for this set of experiments, for handling intermediate data we en-
abled LZO-based compression with Stock Hadoop and extended
our Sailfish implementation to support an LZO codec.

Table 3 shows the data volumes for the various jobs as well
as the number of map/reduce tasks. Note that multiple waves of
map/reduce tasks per job is common.

For this set of experiments, the workbuilder was configured
to assign upto 2GB of data per reduce task (independent of the
job). This value represents a trade-off between fault-tolerance (i.e.,
amount of computation that has to be re-done when a reducer fails)
versus performance (i.e., a large value implies fewer reducers, pos-
sibly improving disk performance due to larger sequential I/Os). As

part of follow-on work [8], we are exploring ways of eliminating
this parameter. This would then allow the reduce phase of execu-
tion to be adapted completely dynamically based on the available
cluster resources (viz., CPUs).

Figure 11 shows the results of running the various jobs using
Stock Hadoop as well as Sailfish. Our results show that as
the volume of intermediate data scales, job completion times with
Sailfish are between 20% to 5x faster when compared to the
same job run with Stock Hadoop. There are three aspects to the
gains:

• Using I-files for aggregation: In terms of the reduce phase
of computation, except for the LogProc and LogRead jobs
in which the volume of intermediate data is relatively low
(see Table 3), for the remaining jobs there is a substantial
speedup with Sailfish. The speedup in the reduce phase
is due to the better batching of intermediate data in I-files,
similar to what we observed with Benchmark.

• Decoupling sorting from map task execution: From our
job mix, we found that skew in map output impacted Log-
Proc and NdayModel jobs: (1) in the LogProc job, a few
of the map tasks generated as much as 30GB of data, and
(2) in the NdayModel job, which involves a JOIN of an N -
day dataset with a 1-day dataset, about half the map tasks
that processed files from the N -day dataset generated about
10GB of data while the remaining tasks generated 450MB of
data. Figure 12 shows the distribution of map task comple-
tion times for NdayModel job. While the skew affects map
task completion times in both Stock Hadoop and Sailfish,
the impact on Stock Hadoop due to the sorting overheads in-
curred by map tasks is much higher. This result validates
one of our design choices: decoupling the sort of map output
from map task execution. In these experiments, particularly
for the LogProc job, such a separation yielded upto a 5x im-
provement in application run-time.

• Making reduce phase dynamic: Dynamically determining
the number of reduce tasks and their work assignment in a
data dependent manner helps in skew handling as well as in
automatically exploiting the parallelism in the reduce phase.
We illustrate these effects using the LogRead job in which
there is a skew in the intermediate data (particularly, as Fig-
ure 13 shows, partitions 0-200 had more data than the rest—
4.5GB vs 0.5GB). As shown in Table 3 Sailfish used
more reduce tasks than Stock Hadoop (800 compared to 512),
and proportionately more reducers were assigned to those
partitions (i.e., as shown in Figure 14, with 2GB of data per
reduce task, I-file0 to I-file200 were assigned 3 reducers per
I-file while the remaining I-files were assigned 1 reducer
apiece). As a result, by better exploiting the available paral-
lelism, the reduce phase in Sailfish is much faster com-
pared to Stock Hadoop. Our approach realizes these benefits
in a seamless manner without re-partitioning the intermediate
data and simplifies program tuning.

Finally, to study the effect of change in data volume, we ran the
ClickAttribution job using Sailfish where we increased the in-
put data size (from 25% to 100%). We found that the workbuilder
deamon automatically caused the number of reduce tasks to in-
crease proportionately (i.e., from 4096 to 8192) in a data dependent
manner.
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Speed-‐up	  aspects	

•  Using	  I-‐files	  for	  aggrega2on	  
•  Decoupling	  sor2ng	  from	  map	  task	  execu2on	  
•  Making	  reduce	  phase	  dynamic	
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Using	  I-‐files	  for	  aggrega2on	

•  There	  is	  a	  substan2al	  speedup	  with	  Sailfish	  for	  
the	  remaining	  jobs.	  
– bexer	  batching	  of	  intermediate	  data	  in	  I-‐files,	  
similar	  to	  what	  we	  observed	  with	  this	  benchmark.	  

•  In	  LogProc	  and	  LogRead	  jobs,	  not	  speedup.	  
– The	  volume	  of	  intermediate	  data	  is	  rela2vely	  low.	  
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Decoupling	  sor2ng	  from	  map	  task	  execu2on	  

•  In	  LogProc	  and	  
NdayModel	  jobs,	  skew	  in	  
map	  output	  impacted.	  

Job Name Job Characteristics Operators Input size Int. data size # of mappers # of reducers Run time
Stock Hadoop Sailfish Stock Hadoop Sailfish

LogCount Data reduction COUNT 1.1TB 0.04TB 400 512 512 0:11 0:14
LogProc Skew in map output GROUP BY 1.1TB 1.1TB 400 1024 1024 3:27 0:37
LogRead Skew in reduce input GROUP BY 1.1TB 1.1TB 400 512 800 0:58 0:40
NdayModel Incr. computation JOIN 3.54TB 3.54TB 2000 4096 4096 2:18 0:42
BehaviorModel Big data job COGROUP 3.6TB 9.47TB 4000 4096 5120 4:55 3:15
ClickAttribution Big data job COGROUP, 6.8TB 8.2TB 21259 4096 4096 6:00 5:00

FILTER

SegmentExploder Data explosion COGROUP, 14.1TB 25.2TB 42092 16384 13824 13:20 8:48
FLATTEN,

FILTER

Table 3: Characteristics of the jobs used in the experiments. The data sizes are post-compression. The job run times reported in
this table are end-to-end (i.e., from start to finish). As data volumes scale, Sailfish outperforms Stock Hadoop between 20% to a
factor of 5. See Figure 11 for a break-down in the time spent in Map/Reduce phases of the job.
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Figure 12: Distribution of map task run
time for NdayModel job. Skew in map
output sizes affects task completion times
for both Stock Hadoop and Sailfish,
but the impact for Stock Hadoop is much
higher.
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Figure 13: Distribution of the size of the
intermediate data files in LogRead job.
For this job there is a skew in distribution
of data across partitions (i.e., skew in re-
ducer input).
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Figure 14: For the LogRead job
Sailfish handles skew in interme-
diate data by assigning reduce tasks in
proportion to the data in the I-file (see
Figure 13).

6.3.3 Impact of data loss in I-files

In our setting the intermediate data is not replicated: Stock Hadoop
does not implement it and for a fair comparison, we did not enable
replication for I-files. Hence, in the event of data loss (viz., caused
by a disk failure), the lost data has to be regenerated via recompu-
tation. When a disk fails, the required recomputations on the two
systems are:

• Stock Hadoop: Since map tasks store their output on the local
disks by arbitrarily choosing a drive, the expected number of

recomputes is: # of tasks run on a node
# of drives on a node .

• Sailfish: With 512 I-files and 30 machines per rack,
with per-rack I-files, a map task running on a node will write
to all the chunkservers in the rack. Since a chunkserver on
a node arbitrarily chooses a drive to store a chunk file, the

expected number of recomputes is: # of tasks run on a rack
# of drives on a node .

Though these recompute tasks can be run in parallel, their effect
on job runtimes is data dependent. For jobs where there is a skew
in map output, the cost of recompute with Stock Hadoop is much
higher than Sailfish. For instance, for the LogProc job in
which over 90% of the job run-time is in the map phase of com-
putation, recomputes can cause the overall job run-time to nearly
double: The run-time with Stock Hadoop increases from 2 :18 to
4 :06, while with Sailfish it increases from 0 :42 to 1 :08. For
the other jobs where there is no skew in map output, regenerating
the lost data requires about 1 to 2 waves of map task execution
which causes a 10-20% increase in job runtime in either system.

7 Related Work

The performance of Hadoop Map-Reduce framework has been stud-
ied recently [16, 22, 27]. In [22], they find that Hadoop job perfor-
mance is affected by factors such as, lack of a schema which im-
pacts selection queries, lack of an index which affects join perfor-
mance, and data parsing overheads. Reference [12] shows how to
improve Hadoop performance by augmenting data with a schema
as well as an index and then using the augmented information to
substantially speed up select/join operators. These mechanisms are
applicable with Sailfish as well. In [16], they identify addi-
tional factors that affect Hadoop performance such as, I/O mode
for accessing data from disk, and task scheduling. The paper also
describes ways to tune these factors to improve performance by 2.5
to 3.5x. The same paper also notes that another potential source
of performance improvement is in modifying how the intermedi-
ate data is handled. Our work addresses this aspect and our results
demonstrate substantial gains.

TritonSort [24, 25] was developed for doing large-scale data sort-
ing. Recently, in an effort that parallels our Sailfish work, the
TritonSort architecture has been extended with a Map-Reduce im-
plementation called ThemisMR [23]. While an experimental com-
parison of the two systems is outside the scope of this paper, we
briefly describe the ThemisMR design and then contrast it with
Sailfish. The design goals of ThemisMR are similar to some
our objectives in building Sailfish: (1) ThemisMR focuses on
optimizing disk subsystem performance when handling intermedi-
ate data at scale and (2) ThemisMR tries to mitigate skew in reducer
input. With ThemisMR, a Map-Reduce computation consists of
two distinct phases, namely map and shuffle followed by sort and
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Making	  reduce	  phase	  dynamic	
Job Name Job Characteristics Operators Input size Int. data size # of mappers # of reducers Run time

Stock Hadoop Sailfish Stock Hadoop Sailfish

LogCount Data reduction COUNT 1.1TB 0.04TB 400 512 512 0:11 0:14
LogProc Skew in map output GROUP BY 1.1TB 1.1TB 400 1024 1024 3:27 0:37
LogRead Skew in reduce input GROUP BY 1.1TB 1.1TB 400 512 800 0:58 0:40
NdayModel Incr. computation JOIN 3.54TB 3.54TB 2000 4096 4096 2:18 0:42
BehaviorModel Big data job COGROUP 3.6TB 9.47TB 4000 4096 5120 4:55 3:15
ClickAttribution Big data job COGROUP, 6.8TB 8.2TB 21259 4096 4096 6:00 5:00

FILTER

SegmentExploder Data explosion COGROUP, 14.1TB 25.2TB 42092 16384 13824 13:20 8:48
FLATTEN,

FILTER

Table 3: Characteristics of the jobs used in the experiments. The data sizes are post-compression. The job run times reported in
this table are end-to-end (i.e., from start to finish). As data volumes scale, Sailfish outperforms Stock Hadoop between 20% to a
factor of 5. See Figure 11 for a break-down in the time spent in Map/Reduce phases of the job.
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Figure 12: Distribution of map task run
time for NdayModel job. Skew in map
output sizes affects task completion times
for both Stock Hadoop and Sailfish,
but the impact for Stock Hadoop is much
higher.
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Figure 13: Distribution of the size of the
intermediate data files in LogRead job.
For this job there is a skew in distribution
of data across partitions (i.e., skew in re-
ducer input).
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Figure 14: For the LogRead job
Sailfish handles skew in interme-
diate data by assigning reduce tasks in
proportion to the data in the I-file (see
Figure 13).

6.3.3 Impact of data loss in I-files

In our setting the intermediate data is not replicated: Stock Hadoop
does not implement it and for a fair comparison, we did not enable
replication for I-files. Hence, in the event of data loss (viz., caused
by a disk failure), the lost data has to be regenerated via recompu-
tation. When a disk fails, the required recomputations on the two
systems are:

• Stock Hadoop: Since map tasks store their output on the local
disks by arbitrarily choosing a drive, the expected number of

recomputes is: # of tasks run on a node
# of drives on a node .

• Sailfish: With 512 I-files and 30 machines per rack,
with per-rack I-files, a map task running on a node will write
to all the chunkservers in the rack. Since a chunkserver on
a node arbitrarily chooses a drive to store a chunk file, the

expected number of recomputes is: # of tasks run on a rack
# of drives on a node .

Though these recompute tasks can be run in parallel, their effect
on job runtimes is data dependent. For jobs where there is a skew
in map output, the cost of recompute with Stock Hadoop is much
higher than Sailfish. For instance, for the LogProc job in
which over 90% of the job run-time is in the map phase of com-
putation, recomputes can cause the overall job run-time to nearly
double: The run-time with Stock Hadoop increases from 2 :18 to
4 :06, while with Sailfish it increases from 0 :42 to 1 :08. For
the other jobs where there is no skew in map output, regenerating
the lost data requires about 1 to 2 waves of map task execution
which causes a 10-20% increase in job runtime in either system.

7 Related Work

The performance of Hadoop Map-Reduce framework has been stud-
ied recently [16, 22, 27]. In [22], they find that Hadoop job perfor-
mance is affected by factors such as, lack of a schema which im-
pacts selection queries, lack of an index which affects join perfor-
mance, and data parsing overheads. Reference [12] shows how to
improve Hadoop performance by augmenting data with a schema
as well as an index and then using the augmented information to
substantially speed up select/join operators. These mechanisms are
applicable with Sailfish as well. In [16], they identify addi-
tional factors that affect Hadoop performance such as, I/O mode
for accessing data from disk, and task scheduling. The paper also
describes ways to tune these factors to improve performance by 2.5
to 3.5x. The same paper also notes that another potential source
of performance improvement is in modifying how the intermedi-
ate data is handled. Our work addresses this aspect and our results
demonstrate substantial gains.

TritonSort [24, 25] was developed for doing large-scale data sort-
ing. Recently, in an effort that parallels our Sailfish work, the
TritonSort architecture has been extended with a Map-Reduce im-
plementation called ThemisMR [23]. While an experimental com-
parison of the two systems is outside the scope of this paper, we
briefly describe the ThemisMR design and then contrast it with
Sailfish. The design goals of ThemisMR are similar to some
our objectives in building Sailfish: (1) ThemisMR focuses on
optimizing disk subsystem performance when handling intermedi-
ate data at scale and (2) ThemisMR tries to mitigate skew in reducer
input. With ThemisMR, a Map-Reduce computation consists of
two distinct phases, namely map and shuffle followed by sort and

Job Name Job Characteristics Operators Input size Int. data size # of mappers # of reducers Run time
Stock Hadoop Sailfish Stock Hadoop Sailfish

LogCount Data reduction COUNT 1.1TB 0.04TB 400 512 512 0:11 0:14
LogProc Skew in map output GROUP BY 1.1TB 1.1TB 400 1024 1024 3:27 0:37
LogRead Skew in reduce input GROUP BY 1.1TB 1.1TB 400 512 800 0:58 0:40
NdayModel Incr. computation JOIN 3.54TB 3.54TB 2000 4096 4096 2:18 0:42
BehaviorModel Big data job COGROUP 3.6TB 9.47TB 4000 4096 5120 4:55 3:15
ClickAttribution Big data job COGROUP, 6.8TB 8.2TB 21259 4096 4096 6:00 5:00

FILTER

SegmentExploder Data explosion COGROUP, 14.1TB 25.2TB 42092 16384 13824 13:20 8:48
FLATTEN,

FILTER

Table 3: Characteristics of the jobs used in the experiments. The data sizes are post-compression. The job run times reported in
this table are end-to-end (i.e., from start to finish). As data volumes scale, Sailfish outperforms Stock Hadoop between 20% to a
factor of 5. See Figure 11 for a break-down in the time spent in Map/Reduce phases of the job.
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Figure 12: Distribution of map task run
time for NdayModel job. Skew in map
output sizes affects task completion times
for both Stock Hadoop and Sailfish,
but the impact for Stock Hadoop is much
higher.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0  50  100  150  200  250  300  350  400

D
at

a 
S

iz
e 

(i
n
 M

B
)

Partition #

Figure 13: Distribution of the size of the
intermediate data files in LogRead job.
For this job there is a skew in distribution
of data across partitions (i.e., skew in re-
ducer input).
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Figure 14: For the LogRead job
Sailfish handles skew in interme-
diate data by assigning reduce tasks in
proportion to the data in the I-file (see
Figure 13).

6.3.3 Impact of data loss in I-files

In our setting the intermediate data is not replicated: Stock Hadoop
does not implement it and for a fair comparison, we did not enable
replication for I-files. Hence, in the event of data loss (viz., caused
by a disk failure), the lost data has to be regenerated via recompu-
tation. When a disk fails, the required recomputations on the two
systems are:

• Stock Hadoop: Since map tasks store their output on the local
disks by arbitrarily choosing a drive, the expected number of

recomputes is: # of tasks run on a node
# of drives on a node .

• Sailfish: With 512 I-files and 30 machines per rack,
with per-rack I-files, a map task running on a node will write
to all the chunkservers in the rack. Since a chunkserver on
a node arbitrarily chooses a drive to store a chunk file, the

expected number of recomputes is: # of tasks run on a rack
# of drives on a node .

Though these recompute tasks can be run in parallel, their effect
on job runtimes is data dependent. For jobs where there is a skew
in map output, the cost of recompute with Stock Hadoop is much
higher than Sailfish. For instance, for the LogProc job in
which over 90% of the job run-time is in the map phase of com-
putation, recomputes can cause the overall job run-time to nearly
double: The run-time with Stock Hadoop increases from 2 :18 to
4 :06, while with Sailfish it increases from 0 :42 to 1 :08. For
the other jobs where there is no skew in map output, regenerating
the lost data requires about 1 to 2 waves of map task execution
which causes a 10-20% increase in job runtime in either system.

7 Related Work

The performance of Hadoop Map-Reduce framework has been stud-
ied recently [16, 22, 27]. In [22], they find that Hadoop job perfor-
mance is affected by factors such as, lack of a schema which im-
pacts selection queries, lack of an index which affects join perfor-
mance, and data parsing overheads. Reference [12] shows how to
improve Hadoop performance by augmenting data with a schema
as well as an index and then using the augmented information to
substantially speed up select/join operators. These mechanisms are
applicable with Sailfish as well. In [16], they identify addi-
tional factors that affect Hadoop performance such as, I/O mode
for accessing data from disk, and task scheduling. The paper also
describes ways to tune these factors to improve performance by 2.5
to 3.5x. The same paper also notes that another potential source
of performance improvement is in modifying how the intermedi-
ate data is handled. Our work addresses this aspect and our results
demonstrate substantial gains.

TritonSort [24, 25] was developed for doing large-scale data sort-
ing. Recently, in an effort that parallels our Sailfish work, the
TritonSort architecture has been extended with a Map-Reduce im-
plementation called ThemisMR [23]. While an experimental com-
parison of the two systems is outside the scope of this paper, we
briefly describe the ThemisMR design and then contrast it with
Sailfish. The design goals of ThemisMR are similar to some
our objectives in building Sailfish: (1) ThemisMR focuses on
optimizing disk subsystem performance when handling intermedi-
ate data at scale and (2) ThemisMR tries to mitigate skew in reducer
input. With ThemisMR, a Map-Reduce computation consists of
two distinct phases, namely map and shuffle followed by sort and
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•  Dinamically	  determining	  
the	  number	  of	  reduce	  
tasks	  helps	  in	  skew	  
handling.	  

•  More	  reducers	  were	  
assigned	  to	  par22ons	  
with	  large	  data.	  



Conclusions	  from	  Results	

•  I-‐files	  enable	  bexer	  batching	  of	  intermediate	  
data.	  
– Sailfish	  provides	  bexer	  scale	  than	  Stock	  Hadoop.	
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7.	  Related	  Work	

•  TritonSort	  
– Using	  MapReduce	  implementa2on	  “ThemisMR”.	  
–  It	  considers	  a	  point	  in	  the	  small	  design	  space.	  

•  Starfish	  
– Profiling	  has	  to	  be	  run	  to	  obtain	  suitable	  
parameter	  values.	  
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8.	  Summary	

•  Sailfish	  is	  an	  alternate	  MapReduce	  framework	  
to	  aggregate	  intermediate	  data.	  
– Developed	  I-‐files	  as	  distributed	  filesystem.	  
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Future	  Work	

•  Add	  a	  feedback	  loop	  to	  the	  reduce	  phase	  of	  
Sailfish	  to	  re-‐par22on	  the	  key-‐boundary	  work.	  

•  Evaluate	  mechanisms	  for	  replica2ng	  
intermediate	  data.	  

•  Have	  I-‐files	  to	  provide	  new	  opportuni2es	  for	  
debugging	  (e.g.	  saving	  valuable	  programmer	  
2me	  with	  reducing	  phase	  of	  a	  job).	
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My	  Impressions	

Strong	  Points	
•  Considers	  large-‐scale	  data	  

and	  clusters.	  
–  It	  will	  be	  applicable	  to	  system	  

handling	  larger	  data.	  

•  Sailfish	  framework	  has	  good	  
scalability	  compared	  to	  
current	  Hadoop.	

Weak	  Points	
•  Used	  only	  limited	  data	  and	  

situa2ons	  (Yahoo!	  data	  set).	  
•  Not	  compared	  with	  other	  

frameworks	  than	  Stock	  
Hadoop.	

53	



Thank	  you	  for	  listening	
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