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l  This paper shows how to make the best use of 
SSD in storage systems with insights based on the 
design and implementation of a high performance 
hybrid storage system, called Hystor.  
Ø SSD should play a major role as an independent storage 
where the best suitable data are adaptively and timely 
migrated in and retained.  

Ø  It can also be effective to serve as a write-back buffer. 

Abstract 
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l  Hystor: A Hybrid Storage System 
l  Hystor manages both SSDs and HDDs as one single block 

device with minimal changes to existing OS kernels.  
l  Monitoring I/O access patterns at runtime 

Ø  Hystor can effectively identify following blocks and store them in SSD 
﹣  (1)Blocks that can result in long latencies 
﹣  (2)Blocks that are semantically critical (e.g. file system metadata) 

l  In order to further leverage the exceptionally high 
performance of writes in the state-of-the-art SSD, SSD is 
also used as write-back buffer 
Ø  To speed up write requests 

l  This Study on Hystor implemented in the Linux kernel 
2.6.25.8 shows 
Ø  it can take advantage of the performance merits of SSDs with only a 

few lines of changes to the stock Linux kernel.  

Abstract - What is the Hystor? -  
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l  SSDs are becoming an important part of high-performance 
storage systems 

Introduction 
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‘Gordon‘ Supercomputer 
@San Diego Supercomputer Center(SDSC) 

•  A flash-based supercomputer [ASPLOS’09] 
 
•  Adopting 256TB of flash memory as storage* 
 
•  $20 million funding from the National Science 

Foundation (NSF) 

* http://www.internetnews.com/hardware/article.php/3847456  



l SSD’s disadvantages 
Ø Relatively high price and low capacity 
﹣ E.g. around $12/GB (32GB Intel® X25-E SSD) 

•  100 times more expensive than a typical commodity 
HDD 

Introduction 
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http://www.storagesearch.com/
semico-art1.html  



l  It’s Unsuitable to built a storage system 
completely based on SSDs 
Ø Especially, for most commercial and daily operated 
systems 

l  Authors believe that SSDs should be a means to 
enhance the existing HDD-based storage 
Ø Only by finding the fittest position in storage systems, it’s 
possible to strike a right balance between performance 
and cost 

Introduction 
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Thus... 



l  Contributions of this work 
Ø  Identifying an effective metric to represent the 
performance-critical blocks by considering both temporal 
locality and data access patterns  

Ø Design of an efficient mechanism to profile and maintain 
detailed data access history for a long-term optimization  

Ø A comprehensive design and implementation of a high 
performance hybrid storage system 
﹣ improving performance for accesses to the high-cost data blocks, 
semantically-critical (file system metadata) blocks, and write-
intensive workloads with minimal changes to existing systems 

Introduction 
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l SSD vs. HDD 

SSD Performance Advantages 
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Intel® X25-E SSD  Seagate® Cheetah® HDD 
Capacity 32GB 73GB 
Interface SATA2 (3.0Gb/s) LSI® MegaRaid® 8704 SAS card  

Read Bandwidth 250MB/sec 125MB/sec 
Write Bandwidth 180MB/sec 125MB/sec 



l  Intel® Open Storage Toolkit* 
Ø generates four typical workloads: Random Read/Write, 
Sequential Read/Write) 

SSD Performance Advantages 
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*M. P. Mesnier. Intel open storage toolkit. http://www.sourceforge.org/projects/intel-iscsi 

RND Read/Write: 7.7 times and 28.5 higher bandwidths than on the HDD (Request size 4KB) 

28.5times 
7.7times 



l This experimental result shows 
Ø Achievable performance benefits are highly access 
patterns 

Ø   exceptionally high write performance on the SSD (up to 
194MB/sec) 

Ø Random write can achieve almost identical performance 
as sequential write 

Ø Writes on the SSD can quickly reach a rather high 
bandwidth (around 180MB/sec) with a relatively small 
request size (32KB) for both random and sequential 
workloads  

SSD Performance Advantages 
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l Two key issues that must be considered in 
the design of Hystor, based on these 
observations 
Ø Need to recognize workload access patterns to identify 
the most high-cost data blocks, especially those blocks 
being randomly accessed by small requests 
﹣ It cause the worst performance for HDDs.  

Ø To leverage the SSD as a write-back buffer to handle 
writes 
﹣ Need not to treat random writes specifically, since random/
sequential write performance are almost same 

SSD Performance Advantages 
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l Many workloads have a small data set 
Ø Contributing a large percentage of the 
aggregate latency in data access 

l Hystor’s critical task is 
Ø to identify the most performance-critical blocks 

High-Cost Data Blocks 
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Thus... 



l Prior work - Experiences in building a software-based 
SATF scheduler [Tech. Rep. ECSL-TR81, 2001.] -  
Ø  Maintaining an on-line hard disk model to predict the latency for 

each incoming request 

Ø  Heavily depending on precise hard disk modeling based on 
detailed specification data 
﹣  it is often unavailable in practice 

Ø  As the HDD internals become more complicated(e.g. disk 
cache), it’s difficult  
﹣  to accurately model a modern hard disk 
﹣  to precisely predict the I/O latency for each disk access 

Identifying high-cost blocks 
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l Author’s approach 
Ø Using a pattern-related metric as indicator to 
indirectly infer(≒ estimate) access cost without need 
of knowing the exact latencies 

Ø Associating each data block with a selected metric 
and update the metric value by observing access to 
the data block 

l The approach’s key issue 
Ø Selected metric should have a strong correlation to 
access latency 
﹣ to effectively estimate the relative access latencies 
associated to blocks 
﹣ to identify the relatively high-cost data blocks 

Identifying high-cost blocks 
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l Four candidates (Note considering their 
combinations) 
Ø Request size 
Ø Frequency 
Ø Seek distance 
Ø Reuse distance 

l  In order to evaluate how highly these 
candidates are correlated to access latencies, 
blktrace* tool is used 
Ø This tool collects I/O traces on an HDD for a variety 
of workloads 

Indicator Metrics 
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*Blktrace. http://linux.die.net/man/8/blktrace.  



l  Accumulated HDD latency of sectors sorted in descending 
order by using candidate metrics in TPC-H workload 

l  The closer a curve is to the latency curve, the better the 
corresponding metric is 
Ø  Frequency/Request Size is most effective one 

Indicator Metrics 
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l  Frequency: Temporal locality 
Ø This metric is used to avoid the cache pollution problem 
for handling weak-locality workload [USENIX’05] 

l  Request Size: Access pattern 
Ø The average access latency per block is highly correlated 
to request size 
﹣ Because a large request can effectively amortize the seek and 
rotational latency over many blocks  

Ø The request size also reflects workload access patterns 
﹣ the sequence of data accesses observed at the block device 
level is an optimized result of multiple upper-level components 
(e.g. the I/O scheduler attempts to merge consecutive small 
requests into a large one) 

Ø Small requests also tend to incur high latency  
﹣ Because they are more likely to be intervened by other requests  

Indicator Metrics ‒ Frequency/Request Size -  

21 
Frequency/Request Size metric performs consistently the best in 
various workloads and works well  
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l To use the metric values to profile data 
access history, two critical challenges must 
be addressed 
Ø How to represent the metric values in a 
compact and efficient way  

Ø How to maintain such history information for 
each block of a large-scale storage space (e.g. 
Terabytes)  

Maintaining Access History 
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l The Block Table [FAST’05] 
Ø Similar to the page table used in virtual memory 
management  

Ø It has three levels 
﹣ Block Global Directory (BGD) 

•  represents the storage space segmented in units of 
regions 

﹣ Block Middle Directory (BMD)  
•  represents the storage space segmented in units of sub-
regions 

﹣ Block Table Entry (BTE) 
•  represents the storage space segmented in units of 
blocks 

Author’s Approach 
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The Block Table 
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00 
Logical Block Number (LBN) 

BGD BMD BTE 

BGD index BMD index BTE index 
11 01 

4KB page 

Name Feature 
Unique field (16-bit) Tracking the # of BTE entries belonging to 

data access information 
Counter field (16-bit) Recording data access information 
Flag field (16-bit) Recording other properties of a block (e.g. 

Whether a block is a metadata block) 



l  Inverse bitmap 
Ø A technique to encode the request size and 
frequency in the block table 

Ø When a block is accessed by a request of N 
sectors, an invers bitmap (b) is calculated using 
the following equation: 

Representing Indicator Metric 
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l  Inverse bitmap (b) 
Ø  representing the size for a given request  

l Counter value of each entry at each level 
of the block table 
Ø representing the indicator metric frequency/
request size  
﹣ Upon an incoming request, the counter of the 
corresponding entry is incremented by b 

Representing Indicator Metric 
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l Main Architecture 
Ø Three Major components: Remapper, Monitor, 
and Data mover 

The Design of Hystor 
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Mover 

Block Device Driver 

Monitor 
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l  Remapper: maintaining a mapping table to track 
the original location of blocks on the SSD  

Main Architecture 
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l Monitor: collecting I/O requests and updates the 
block table to profile workload access patterns  

Main Architecture 
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Memory 
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The monitor can run in either 
kernel mode or user mode 



l  Data mover: issuing I/O commands to the block 
devices and updating the mapping table 
accordingly to reflect the most recent changes  

Main Architecture 
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l  Remap area 
Ø  maintaining the identified critical blocks, such as 

the high-cost data blocks and file system metadata 
blocks 

Ø  All requests, including both reads and writes, to the 
blocks in the remap area are directed to the SSD 

l  Write-back area 
Ø  a buffer to temporarily hold dirty data of incoming 

write requests  
Ø  All other requests are directed to the HDD 
Ø  Blocks in the write-back area are periodically 

synchronized to the HDD and recycled for serving 
incoming writes  

SSD Space Management 
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Write-back 
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Metadata 



l Two types of blocks can be remapped to 
the SSD 
Ø the high-cost data blocks 
﹣ they are identified by analyzing data access history 
using the block table  

Ø file system metadata blocks 
﹣ they are identified through available semantic 
information in OS kernels  

Managing the Remap Area 

34 



A pseudo code of identifying candidate 
blocks(high-cost blocks) 
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  1 counter():   // the counter value of an entry  
  2 total_cnt(): // the aggregate value of counters of a block table page  
  3  
  4 sort_unique_asc():    // sort entries by unique values  
  5 sort_counter_dsc():  // sort entries by counter values  
  6 quota:                     // the num. of available SSD blocks  
  7 sort_unique_asc(bgd_page);  /* sort bgd entries */  
  8 bgd_count = total_cnt(bgd_page); 
  9 for each bgd entry && quota > 0; do  
10     bmd_quota = quota*counter(bgd)/bgd_count;  /* get the bmd page */  
11     bgd_count -= counter(bgd); 
12     quota -= bmd_quota;  
13  
14     bmd_page = bgd->bmd;  
15     sort_unique_asc(bmd_page);  /* sort bmd entries */  
16     bmd_count = total_cnt(bmd_page); 
17     for each bmd entry && bmd_quota > 0; do  
18         bte_quota = bmd_quota*counter(bmd)/bmd_count;  
19         bmd_count -= counter(bmd); 
20         bmd_quota -= bte_quota;  
21  
22         bte_page = bmd->bte;  
23         sort_counter_dsc(bte_page); 
24         for each bte entry && bte_quota > 0; do  
25             add bte to the update(candidate) list;  
26             bte_quota --;  
27         done  
28         bmd_quota += bte_quota;  /* unused quota */  
29     done  
30     quota += bmd_quota; /* unused quota */  
31 done  

•  Recursively determination of the 
hottest blocks in the region 

•  Allocate SSD space to the regions 
correspondingly  



l  A conservative approach to leverage the 
information that is already available in the existing 
OS kernels.  
Ø To modify a single line at the block layer to leverage this 
available information by tagging incoming requests for 
metadata blocks  

Ø Need not to change to file systems or applications 

Ø When the remapper receives a request,  
﹣ the incoming request’s tags are checked  
﹣ the requested blocks are marked in the block table (using the flag 
field of BTE entries)  

Identifying Metadata Blocks 
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l  The blocks in the write-back area are managed in 
two lists  
Ø  clean list  
Ø dirty list  

l When a write request arrives,  
Ø ① SSD blocks are allocated from clean list 
Ø ② The new dirty blocks are written into the SSD and 
added onto the dirty list 

Ø ③ If the # of dirty blocks in the write-back area reaches a 
high watermark, these block are written-back to the HDD 
until reaching a low water-mark  
﹣ There is a counter to track the # of dirty blocks in the write-back 
area 

Ø ④ Cleaned blocks are placed onto the clean list for reuse  

Managing the Write-back Area  
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l  Hystor is prototyped with about 2,500 Lines of code 
Ø  In the Linux kernel 2.6.25.8 as a stand-alone kernel module  

l  Remapper  
Ø  Based on the software RAID 

l  Monitor (No need any modifications in the Linux kernel) 
Ø  User-mode 

﹣ implemented as a user-level daemon thread with about 2,400 lines 
of code 

Ø  Kernel-mode 
﹣ It consists of 4,800 lines of code 

l  Kernel Changes  
Ø  only about 50 lines of code are inserted in the stock Linux 

kernel 

Implementation 
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l  Experimental System 

Evaluation 
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CPU 2.66GHz Intel® CoreTM 2 Quad  
Main Memory 4GB 
Mother Board Intel® D975BX  

Intel® X25-E SSD  Seagate® Cheetah® HDD 
Capacity 32GB 73GB 
Interface SATA2 (3.0Gb/s) LSI® MegaRaid® 8704 SAS card  

Read Bandwidth 250MB/sec 125MB/sec 
Write Bandwidth 180MB/sec 125MB/sec 

OS FedoraTM Core 8 with the Linux kernel 2.6.25.8  
File System Ext3 (default configuration) 

Linux I/O scheduler No-op (for SSDs), CFQ (for HDDs) 
On-device Caches Enable (all the storage devices) 

The Other Configurations Default Values 



l Benchmark: Postmark* 
Ø small random data accesses-intensive 

Evaluation - execution time - 

41 
*Postmark. A new file system benchmark (1997).  
 http://www.netapp.com/tech_library/3022.html  

The worst case 
(4.2 times slower) •  SSD Size: 20%, 40%, 60%, 80%, and 100% of 

the working-set size (X-axis) 

•  Normalizing to execution time of running on 
the SSD-only system (Y-axis) 

•  29% reduction (SSD size 310MB) 



l Benchmark: Postmark 
l Y-axis: Hit ratio of I/O requests observed at 
the remapper (hit: A request to blocks resident in the SSD) 

Evaluation - hit ratio -  
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•  Hit ratio is improved from 79% to 91% 
(SSD size 310MB) 



l Benchmark: Email* 
Ø  intensive synchronous writes with different append sizes and locations 

based on realistic mail distribution function 
Ø  a more skewed distribution of latencies 
Ø  Most data accesses are small random writes 

Evaluation 
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* S. Shah and B. D. Noble. A study of e-mail patterns. In Software Practice and Experience, volume 37(14), 2007.  

Hit ratio Execution time 
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* S. Shah and B. D. Noble. A study of e-mail patterns. In Software Practice and Experience, volume 37(14), 2007.  

Hit ratio Execution time 

18.8 times slower 



l Benchmark: Email* 
Ø  intensive synchronous writes with different append sizes and locations 

based on realistic mail distribution function 
Ø  a more skewed distribution of latencies 
Ø  Most data accesses are small random writes 

Evaluation 

45 

* S. Shah and B. D. Noble. A study of e-mail patterns. In Software Practice and Experience, volume 37(14), 2007.  
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With no write-back area, the performance is slightly 
worse than the HDD-only system  
(SSD size 27MB: 20% of the working-set size) 

12.4% 
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* S. Shah and B. D. Noble. A study of e-mail patterns. In Software Practice and Experience, volume 37(14), 2007.  

Hit ratio Execution time 

With no write-back area, the performance is slightly 
worse than the HDD-only system  
(SSD size 27MB: 20% of the working-set size) 

12.4% 
Because of 
•  additional I/O operations  
•  increased probability of split requests  
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based on realistic mail distribution function 
Ø  a more skewed distribution of latencies 
Ø  Most data accesses are small random writes 
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* S. Shah and B. D. Noble. A study of e-mail patterns. In Software Practice and Experience, volume 37(14), 2007.  

Hit ratio Execution time 

the write-back area 
behaves like a small 
cache to capture some 
short-term data reuse 



l Benchmark: TPC-H Q1 (query 1 from the TPC-H 
database benchmark suite)* 
Ø more sequential data accesses and less I/O intensive 
than the other workloads 

Evaluation 

48 Execution time 

* Transaction Processing Performance Council. TPC Benchmark (2008) http://www.tpc.org/tpch/  

Hit ratio 



l Benchmark: TPC-H Q1 (query 1 from the TPC-H 
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Ø more sequential data accesses and less I/O intensive 
than the other workloads 

Evaluation 
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* Transaction Processing Performance Council. TPC Benchmark (2008) http://www.tpc.org/tpch/  

Hit ratio 

Only 16% slower 



l Benchmark: TPC-H Q1 (query 1 from the TPC-H 
database benchmark suite)* 
Ø more sequential data accesses and less I/O intensive 
than the other workloads 

Evaluation 

50 Execution time 

* Transaction Processing Performance Council. TPC Benchmark (2008) http://www.tpc.org/tpch/  

Hit ratio 

2-5% slowdown compared 
to running on HDD  

About 30~40% hit ratio 

When the SSD size is small, the write-back 
area may introduce extra traffic  



l  Hystor identifies metadata blocks of file systems 
and remaps them to the SSD 
Ø How does such an optimization improve performance? 

l  Comparison the performance of Hystor with and 
without optimization for file system metadata 
blocks 
Ø With optimization: Hystor-Metadata  
Ø Without optimization: Hystor-No-Metadata 

Evaluation 
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l  Intel® Open Storage Toolkit 
Ø generating two workloads, which randomly read 4KB data 
each time until 16MB and 32MB of data are read  

Evaluation 

52 

•  Both approaches eventually can 
speed up the two workloads by 
about 20 seconds  

•  Hystor-Metadata can achieve high 
performance with a much smaller 
SSD space  

•  For the workload reading 32MB 
data, Hystor-Metadata identifies 
and remaps nearly all indirect 
blocks to the SSD with just 32MB 
of SSD space  



l  This result shows 
Ø  optimization for metadata blocks can effectively improve 
system performance with only a small amount of SSD 
space 
﹣ especially for metadata-intensive workloads  

Ø  high-cost cold misses can be avoided 
﹣ due to proactively identifying these semantically critical 
blocks (file system metadata blocks) at an early stage  

Evaluation 
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l  Scrubbing - Dirty blocks buffered in the write-back area 
have to be written back to the HDD in the background 

l  Each scrub operation can cause two additional I/O 
operations  
Ø A read from the SSD  
Ø A write to the HDD  

l  How does scrubbing affect performance? 
Ø Here, email is used for the evaluation 

﹣ Because of the worst case for scrubs 

Evaluation 
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l  X-axis: Various configurations of the SSD size (% of the 
working-set size) and HDD-only system 

l  Y-axis: Request arrival rate in email 
Ø  Demand: requests by upper-layer components 
Ø  Scrubs: requests by internal scrubbing daemon 

Evaluation 
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High rate reasons 
•  a large request in Hystor 

may split into several 
small ones to different 
devices  

•  two additional I/O 
operations are needed 
for each scrub  
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Evaluation 
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•  Increasing to 80% of the 
working-set size, the arrival 
rate of scrub requests 
drops by nearly 25% on the 
SSD due to less frequent 
scrubbing 

•  The arrival rate of demand 
requests increases 
•  Reduction of execution 

time 
•  The # of demand 

requests remains 
unchanged 



l  X-axis: Various configurations of the SSD size (% of the 
working-set size) and HDD-only system 

l  Y-axis: Request arrival rate in email 
Ø  Demand: requests by upper-layer components 
Ø  Scrubs: requests by internal scrubbing daemon 

Evaluation 
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•  These requests happen in 
the background  
•  The performance 

impact on the 
foreground jobs is 
minimal  



l This result shows 
Ø Although a considerable increase of request arrival rate 
is resident on both storage devices, conducting 
background scrubbing causes minimal performance 
impact, even for write-intensive workloads.  

Evaluation 
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l  Chunk size 
Ø  Large: desirable for reducing memory overhead of the 
mapping table and the block table  

Ø Small: effectively improving utilization of the SSD space 
﹣ a large chunk may contain both hot and cold data 

l  So, how does chunk size affect performance? 

Evaluation 
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l  Chunk size: 4KB(8 sector), 16KB(32 sector) 
l Write-back fraction: 20% 

Evaluation 
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•  With a large chunk size (16KB), the 
performance of email degrades 
significantly 
•  most of the requests in email 

are small 
•  hot and cold data could co-

exist in a large chunk → miss 
rate increases 



l This result shows 
Ø For a small-capacity SSD 
﹣ a small chunk size should be used to avoid wasting 
precious SSD space  

Ø For a large-capacity SSD 
﹣ It’s possible to use a large chunk size and afford the 
luxury of increased internal fragmentation in order to 
reduce overhead 

l  In general 
Ø a small chunk size (e.g. 4KB) is normally 
sufficient for optimizing performance 
﹣  So is Hystor (default 4KB) 

62 

Evaluation 
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l  Need to find the fittest position of SSDs in the existing 
systems to strike a right balance between performance and 
cost  

l  This work shows 
Ø  It’s possible to identify the data that are best suitable to be held 

in SSD by using a simple yet effective metric  
Ø  High-cost data blocks can be efficiently maintained in the block 

table at a low cost  
Ø  SSDs should play a major role in the storage hierarchy by 

adaptively and timely retaining performance- and semantically-
critical data  

Ø  It’s also effective to use SSD as a write-back buffer for 
incoming write requests  

Ø  Hystor can effectively leverage the performance merits of SSDs 
with minimized system changes  

Conclusion 
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l Pros 
Ø Exploratory evaluations were executed in detail 
﹣ E.g. SSD performance, Indicator Metric... 

Ø A lot of detailed evaluation results about Hystor 
Ø Simple yet smart approach to improve system 
performance 

l Cons 
Ø Few figures (Section5, Section6) 
Ø I would like to know how different a hardware 
implementation is 

Impression 
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