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Background 2
Molecular Dynamics (MD)

e MD simulation calculate whole atoms
movement, and get atoms trajectory.

 MD simulation is popular and powerful tool
for analyzing proteins, DNA, and other
materials.
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* Long time simulation is required,
but its computational cost is high.
(e.g. 100ns/day)
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Background :
Quantum Mechanics (QM)

e QM consider effects of electron.

e QM simulation can calculate chemical reactions.

* High accuracy than MD simulation,
and very high Computational cost.

e Base theory : density functional theory(DFT).
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Background .

Force field
 Method of approximation to explain forces.

* Experimental model, ... etc.
(e.g. Lennard-Jones potential)

100
IE 50 L
2
>
2
I B S,
[}
c
2
8
[ ~50 Empirical
£ Lennard—-Jones -
-100 . . . .
3.0 4.0 5.0 6.0 7.0 8.0

R (A)
https://upload.wikimedia.org/wikipedia/commons/9/93/Arg
on_dimer_potential_and_Lennard-Jones.png



2016/10/14 HPC

Background 5
Ab Initio MD

* Potential energy and forces are obtained using QM.

* QM calculation is very expensive and
bottleneck of ab initio MD.
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Selected papers :

V. Botu, R. ramprasad,

“Adaptive Machine Learning Framework to
Accelerate Ab Initio Molecular Dynamics ”,
Int. J. Quantum Chem., 2015, 115,1075-1083.

e Ab initio Molecular Dynamics with Machine Learning

* Machine Learning model predicts energy and force fast.
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Introduction ;

Spend long time in  Sjte-to-site hopping
local minimum. IS a rare event.
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8

Similar configuration
(parameter) will have
similar properties
(energies, forces).

This energies and forces
can predict using
Machine Learning(ML).

Figure 1. a) A typical MD energy trajectory, with the green and orange regions identifying the quantum mechanical (QM) and machine learning (ML)
phases, respectively, of the adaptive learning framework. b) Expansion of the domain of applicability on-the-fly, if and when new configurations are visited.
) A flowchart of the adaptive learning framework. The green and orange arrows indicate the use of QM or ML models.



Introduction

e Similar configuration
— Use ML properties.

e Dissimilar configuration
—> Use QM method and train.

T
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Figure 1. a) A typical MD energy trajectory, with the green and orange regions identifying the quantum mechanical (QM) and machine learning (ML)
phases, respectively, of the adaptive learning framework. b) Expansion of the domain of applicability on-the-fly, if and when new configurations are visited.
¢) A flowchart of the adaptive learning framework. The green and orange arrows indicate the use of QM or ML models.
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Method & Models 1

* Learning Model
* Configuration - Feature vector

* Configuration decision engine
* |sit Predictable Configuration?
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Learning Model 1

Generate learning model for energy and each atom’s force.
n: length of fingerprint

* Fingerprint for energy:

C(n)= 1NZAf(n) (5)

* Fingerprint for force : V;(n) = {V(m), V" (), VZ (1)}

Vi =3"Le~ () £(r)), k€ {x,y.2) 6

Fingerprint include information of distance to near atoms.
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Learning Model
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Figure 2. Panel A: A homonuclear diatomic molecule displaying three different bond lengths. Panel B: The corresponding Gaussian smoothened radial dis-
tribution function (RDF) for each of the bonding environments. Panel C: Transformation of the RDF using Gaussian functions on an eta-grid as indicated by
the colored lines, into an atomic fingerprint. Panel D: The y-component of the direction resolved atomic fingerprint of an atom in the three bonding envi-
ronments. The fingerprints generated are for the atom indicated by * in Panel A.
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Learning Model 13

Kernel ridge regression

P=Y meH) ()

* 5-fold cross-validation
e o is determined by cross-validation
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Decision Engine 14

* If all finger print components is within range of
already trained finger print.

* More complex decision engine can be developed.
(not attempted in this paper.)

Predictable range
(normalized)

ARy

Figure 8. a) Parity plot showing accurate force prediction without any
retraining, and b) Direction resolved atomic fingerprint range compared to 1 2 3 4 5 6 7 8
the training dataset of the force model.

Index of Fingerprint
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Datasets (MD) 15

Simulating system

(i) defect-free bulk Aluminum

(ii) Bulk Aluminum containing vacancy
(iii) Clean (111) Aluminum surface

(iv) (111) Aluminum surface with adatom

(i) system

(111) : crystal orientation
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Datasets (ML) 16

* Energies:
2,000 configure for each system.

* Forces:
32,000 configure for (i),(ii) system.
64,000 configure for (iii),(iv) system.

Training data select randomly,
The remaining is test data.
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Results 5
Evaluation

* Error vs. Fingerprint vector size
* Error vs. Training data size

* Prediction accuracy ML vs. QM
* Retraining



Energy <1
Force < O.OSK

* Increasing fingerprint length
achieve accurate model.

* Error levels converging well
below numerical DFT noise.
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Figure 3. Energy a) and force b) error versus length of fingerprint size for
(i) defect-free bulk Al (ii) bulk Al containing a vacancy, (i) a clean (111) Al
surface, and (iv) the (111) surface with an Al adatom.



Results: Training data

Fingerprint size = 8 o

e Training cost scales as O(N3).
Optimizing data size is important
for accuracy and acceleration.
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Figure 4. Energy a) and force b) error versus training size for (i) defect-free
bulk Al, (ii) bulk Al containing a vacancy, (iii) a clean (111) Al surface, and
(iv) the (111) surface with an Al adatom.



2016/10/14 HPC

E T 2o

Training Data

System # configure for Energy # configure for Force

(i), (ii) 100 100

(iii), (iv) 100 750

meV

Table 1. Mean absolute error in energy and force predictions of the four Energy atom
Cagcy Force : < 0.05%
Case Energy (2&Y) Force (GATV)
(i) Defect-free bulk Al 0.04 (0.03) 0.02 (0.02)
(ii) Bulk Al w. vacancy 0.06 (0.02) 0.02 (0.02)
(iii) Clean (111) Al surface 0.16 (0.08) 0.03 (0.02)
(iv) (111) Surface w. adatom 0.22 (0.07) 0.03 (0.03)
Test error in bold and training error in brackets.




Results: ML vs. QM

Accuracy
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Figure 5. Parity plot for (i) defect-free bulk Al, (i) bulk Al containing a vacancy, (iii) a clean (111) Al surface, and (iv) the (111) surface with an Al adatom,
with energy a) and force b) predictions in the top and bottom rows, respectively. An eight component fingerprint, with 100 training configurations for the
energy models and 100 [for (i) and (ii)] and 750 [for (iii) and (iv)] training configurations for the force models were used.
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Results: ML vs. QM 2

Speed

e Each prediction takes roughly a millisecond

e DFT (numerical method) takes 45min
on 16 core machine.

“speed up on order of 10°”

Discussion of trade off ?? (accuracy vs. speed)
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Results: Retraining 23

Unpredictable configure : Transition state (TS)
Vacancy migration

1 stei 5 stei 10 stei 15 step 20 step

Figure 6. Vacancy migration within bulk Al. The structures shown correspond to steps 1, 5, 10, 15, and 20 along the 20-step trajectory.
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Results: Retraining(Energy) 24

% : Added to training data
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Figure 7. QM and ML energy, a)-c), and the range of crystal fingerprint components with respect to the training dataset, d)-f), of each image along the
vacancy migration trajectory. a) and d) with no retraining, b) and e) with the TS added to training and ¢) and f) with TS and image 1 and 5 added to the
training. x indicates the configurations added during retraining.
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Results: Retraining(Force) 25
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Figure 8.a) Parity plot showing accurate force prediction without any
retraining, and b) Direction resolved atomic fingerprint range compared to
the training dataset of the force model.

Forces are accurately predicted.
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Conclusions ’

* The authors supposed ab initio MD scheme with ML.
* ML scheme learns previously visited configuration.

* This adaptive strategy is applicable to nonmetallic
system.



