High Performance Computing
10th Lecture

NOVEMBER 4, 2016
RIO YOKOTA LAB.
HIROKI NAGANUMA



Selected Paper

2014 1IEEE International Conference on Big Data

Large-scale Logistic Regression and Linear Support
Vector Machines Using Spark

Chieh-Yen Lin Cheng-Hao Tsai Ching-Pei Lee * Chih-Jen Lin
Dept. of Computer Science Dept. of Computer Science  Dept. of Computer Science  Dept. of Computer Science
National Taiwan Univ., Taiwan National Taiwan Univ., Taiwan  Univ. of Illinois, USA  National Taiwan Univ., Taiwan
101944006 @csie.ntu.edu.tw 101922025 @csie.ntu.edu.tw clee149@illinois.edu cjlin@csie.ntu.edu.tw

- Published in:
|IEEE International Conference on Big Data, 2014

- Date of Conferrence:

October 27-30, 2014

- http://www.csie.ntu.edu.tw/ " cilin/papers/spark-liblinear/spark-liblinear.pdf



http://www.csie.ntu.edu.tw/~cjlin/papers/spark-liblinear/spark-liblinear.pdf

Abstract

- Logistic regression and linear SYM are useful methods for
large-scale classification.
However, their distributed implementations have not been
well studied.



Abstract

- Logistic regression and linear SVM are useful methods for

large-scale classification.
However, their distributed implementations have not been

well studied.

- Recently, because of the inefficiency of the MapReduce

framework on iterative algorithms, Spark, an in-memory
cluster-computing platform, has been proposed.It has
emerged as a popular framework for large-scale data

processing and analytics.

Lightning-Fast Cluster Computing



Abstract

- Logistic regression and linear SYM are useful methods for
large-scale classification.However, their distributed
implementations have not been well studied.

- Recently, because of the inefficiency of the MapReduce
framework on iterative algorithms, Spark, an in-memory
cluster-computing platform, has been proposed.lt has
emerged as a popular framework for large-scale data
processing and analytics.

- In this work,consider a distributed Newton method for
solving logistic regression as well linear SYM and
implement it on Spark.



1. Introduction

2. Approach
3. Implementation design

4. Related Works

5. Discussions and Conclusions



Outline

1. Introduction
2. Approach
3. Implementation design

4. Related Works

5. Discussions and Conclusions



Linear Classification on One Computer

- Linear classification on one machine is a mature technique:
millions of data can be trained in a few seconds.



Linear Classification on One Computer

- Linear classification on one machine is a mature technique:
millions of data can be trained in a few seconds.

- What if the data are even bigger than the capacity of our
machine?



Linear Classification on One Computer

- Linear classification on one machine is a mature technique:
millions of data can be trained in a few seconds.

- What if the data are even bigger than the capacity of our
machine?

Solution 1: get a machine with larger memory/disk.
-> The data loading time would be too lengthy.




Linear Classification on One Computer

- Linear classification on one machine is a mature technique:
millions of data can be trained in a few seconds.

- What if the data are even bigger than the capacity of our
machine?

Solution 1: get a machine with larger memory/disk.
-> The data loading time would be too lengthy.

Solution 2: distributed training.
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Distributed Linear Classification

- In distributed training, data loaded in parallel to reduce
the 1/O time. (e.g. HDFS)

- With more machines, computation is faster.

- But communication and synchronization cost become
significant.

- To keep the training efficiency, we need to consider
algorithms with less communication cost, and examine
implementation details carefully.
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Distributed Linear Classification on

Apache Spark

- Why Spark?

Spark combines advantages of both frameworks.

Communications conducted in-memory.

Supports fault tolerance.

- However, Spark is new and still under development.
(2014)

- Therefore it is necessary to examine important
implementation issues to ensure efficiency.



Apache Spark

- Only the master-slave framework.
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Apache Spark

- Only the master-slave framework.

- Data fault tolerance: Hadoop Distributed File System

(Borthakur, 2008).
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Apache Spark

- Only the master-slave framework.

- Data fault tolerance: Hadoop Distributed File System
(Borthakur, 2008).

- Computation fault tolerance: Read-only Resilient
Distributed Datasets (RDD) and lineage (Zaharia et al.,
2012).

Basic idea: reconduct operations recorded in lineage on
immutable RDDs.



Apache Spark

- Llineage (Zaharia et al., 2012).

Spark firstly creates a logical plan (namely data dependency graph) for each application.
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Apache Spark

- Llineage (Zaharia et al., 2012).

Then it transforms the logical plan into a physical plan (a DAG graph of map/reduce stages
and map/reduce tasks).
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Apache Spark

- Llineage (Zaharia et al., 2012).

After that, concrete map/reduce tasks will be lanuched to process the input data.
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Apache Spark (skip)

- Llineage (Zaharia et al., 2012).

spark code example
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package org.apache.spark.examples
import java.util.Random
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.SparkContext._
/**
* Usage: GroupByTest [numMappers] [numKVPairs]
[valSize] [nhumReducers]
*/
object GroupByTest {
def mainCargs: Array[String]) {
val sparkConf = new SparkConf().setAppName("GroupBy
Test™)
var numMappers = 100
var numkKVPairs = 10000
var valSize = 1000
var numReducers = 36
val sc = new SparkContext(sparkConf)
val pairsl = sc.parallelize(@ until numMappers,
numMappers).flatMap { p =>
val ranGen = new Random
var arrl = new Array[(Int, Array[Byte])]
(numKVPairs)
for (i <- @ until numKVPairs) {
val byteArr = new Array[Byte](valSize)
ranGen.nextBytes(byteArr)
arrl(i) = (ranGen.nextInt(Int.MaxValue),
byteArr)
ks
arrl
}.cache
// Enforce that everything has been calculated and
in cache
pairsl.count
println(pairsl.groupByKey(numReducers).count)
sc.stop()
ks

}




Apache Spark (skip)

- Llineage (Zaharia et al., 2012).

spark code explanation

[1]. Initialize SparkConf.

[2]. Initialize numMappers=100, numKVPairs=10,000, valSize=1000, numReducers=
36.

[3]. Initialize SparkContext, which creates the necessary objects and actors for the
driver.

[4].Each mapper creats an arr1: Array[(Int, Byte[])], which has numKVPairs
elements. Each Int is a random integer, and each byte array's size is valSize. We can
estimate Size(arr1) = numKVPairs * (4 + valSize) = T0MB, so that Size(pairs1) =
numMappers * Size(arr1) =1000MB.

[5].Each mapper is instructed to cache its arr1 array into the memory.

[6].The action count() is applied to sum the number of elements in arr1 in all
mappers, the result is numMappers * numKVPairs = 1,000,000. This action triggers
the caching of arrls.

[7].groupByKey operation is performed on cached pairs1. The reducer number
(a.k.a., partition number) is numReducers. Theoretically, if hash(key) is evenly
distributed, each reducer will receive numMappers * numKVPairs / numReducer =

27,777 pairs of (Int, Array[Byte]), with a size of Size(pairs1) / numReducer = 27 MB.
[8].Reducer aggregates the records with the same Int key, the result is (Int,

List(Byte[], Byte[], ..., Byte[])).
[?].Finally, a count() action sums up the record number in each reducer, the final
result is actually the number of distinct integers in pairs]1.

package org.apache.spark.examples
import java.util.Random
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.SparkContext._
/**
* Usage: GroupByTest [numMappers] [numKVPairs]
[valSize] [nhumReducers]
*/
object GroupByTest {
def mainCargs: Array[String]) {
val sparkConf = new SparkConf().setAppName("GroupBy
Test™)
var numMappers = 100
var numkKVPairs = 10000
var valSize = 1000
var numReducers = 36
val sc = new SparkContext(sparkConf)
val pairsl = sc.parallelize(@ until numMappers,
numMappers).flatMap { p =>
val ranGen = new Random
var arrl = new Array[(Int, Array[Byte])]
(numKVPairs)
for (i <- @ until numKVPairs) {
val byteArr = new Array[Byte](valSize)
ranGen.nextBytes(byteArr)
arrl(i) = (ranGen.nextInt(Int.MaxValue),
byteArr)
ks
arrl
}.cache
// Enforce that everything has been calculated and
in cache
pairsl.count
println(pairsl.groupByKey(numReducers).count)
sc.stop()
ks
ks




Apache Spark

- Read-only Resilient Distributed Datasets (RDD)

RDD is a mechanism capable of holding the data to be repeatedly used in the memory.
MapReduce of Hadoop had been held, fault tolerance, data locality, scalability has taken
over as it is.

1.an RDD is a read-only, partitioned

collection of records.
[ lines ]
filter( .startsWith(“ERROR”
[ | (_] ( ) 2.an RDD has enough information
errors about how it was derived from other

l, filter(_.contains(“HDFS”)))
[ HDFS errors ]

y map(_.split(\t)(3)) . .
— 3.persistence and partitioning
[ time fields ]

datasets (its lineage)

4.lazy operations



Apache Spark

- Read-only Resilient Distributed Datasets (RDD)

reference

- Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-
Memory Cluster Computing

http://www-bcf.usc.edu/™” minlanyu/teach/csci599-fall12 /papers/

nsdi_spark.pdf

- My article of Qiita

hitp://qiita.com/Hirokill x/items/4£5129094da4c21955bc
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Logistic Regression and Linear Support

Vector Machine

Most linear classification models consider the following optimization problem

1 T l .
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Logistic Regression and Linear Support

Vector Machine

Most linear classification models consider the following optimization problem

regularizer loss function

The objective function f has two parts: the regularizer that controls the complexity of
the model, and the loss that measures the error of the model on the training data. The

loss function E(w;x,y:) is typically a convex function in w.



Logistic Regression and Linear Support

Vector Machine

Problem (1) is referred as L1-loss and L2-loss SYM if (2) and (3) is used, respectively.

It is known that (2) and (3) are differentiable while (2) is not and is thus more difficult to
optimize. Therefore, we focus on solving LR and L2-loss SYM in the rest of the paper.



Logistic Regression and Linear Support

Vector Machine

Problem (1) is referred as LR if (4) is used.

regularizer loss function

max (0,1 — y;w’ x;), 2)
) = ( Tx;)®>, and  (3)



Logistic Regression and Linear Support

Vector Machine

Most linear classification models consider the following optimization problem

1 T l .
swiw+C)  E(wiziy), (1)

mui,n f(w)

{(xi,yi)}li=1, xi € Rn, yi € {~1,1}, Vi, :Given a set of training label-instance pairs
C > 0 : User-specified parameter

E(w;x,y:) : loss function

max (0,1 — y;w’ x;), 2)
E(w;xi,y;) = { max(0,1 —y;wlx;)?, and  (3)
log (14 exp (—y;w’ z;)) . 4)

Use a trust region Newton method to minimize f(w) (Lin and Mor’e, 1999).



Trust Region Newton Method

- Trust region Newton method is a type of truncated Newton approach.

- We consider the trust region method (Lin and Mor e, 1999), which is a
truncated Newton method to deal with general bound-constrained
optimization problems (i.e., variables are in certain intervals).

- At each iteration of a trust region Newton method for minimizing f(w), we
have an iterate wt, a size At of the trust region, and a quadratic model.

Most linear classification models consider the following optimization problem

min  f(w) % Tw+CZZ_ S(wys,yi), (1)

To discuss Newton methods, we need the Hessian of f(w):




Truncated Newton method(skip)

- Trust region Newton method is a type of truncated Newton approach.

- To save time, one may use only an”approximate” Newton direction in the
early stages of the outer iterations.

- Such a technique is called truncated Newton method (or inexact Newton
method).



Newton Method (skip)

To discuss Newton methods, we need the Hessian of f(w):
f(z)

A

£@®) = £0) x (@ - 2®)

©)
- — 0 _ f@2)
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L1 _ 0 FEY)
f(z)
\ - n o of (¥
fla) ~ Y f;,(f; e

/

- Newton's method assumes that the function can be locally approximated as
a quadratic in the region around the optimum, and uses the first and second
derivatives to find the stationary point.

- In higher dimensions, Newton's method uses the gradient and the Hessian
matrix of second derivatives of the function to be minimized.



Trust Region Newton Method

At iteration t, given iterate wl and irust region At > 0, solve

mgn q:(d), subjectto ||d|| < Ay, (5)
1
a:(d) =V f(w') d+ 5d" V> f(w)d (6)

(6) is the second-order Taylor approximation of f(w' + d) — f(w?)

__ f(w'+d)—f(w") .

Pt = q:(d)
witl — wi+d if pr >0,
w' if pr <.

Adjust the trust region size by pt.

If nis large: V*f(w) € RN*N js too large to store.
Consider Hessian-free methods.



Trust Region Newton Method

At iteration t, given iterate wl and irust region At > 0, solve

mgn q:(d), subjectto ||d|| < Ay, (5)
1
a:(d) =V f(w') d+ 5d" V> f(w)d (6)

(6) is the second-order Taylor approximation of f(w' + d) — f(w?)

Because V2f(w) is too large to be formed and stored, a Hessian-free
approach of applying CG (Conjugate Gradient) iterations is used to
approximately solve (5) .

At each CG iteration we only need to obtain the Hessian-vector
product V2f(w)v with some vector v ¢ R" generated by the CG
procedure.



Trust Region Newton Method

Use a conjugate gradient (CG) method.

CG is an iterative method: only needs v2f(w)vfor some v € R™at

each iteration.(it’s not necessary to calculate V2f (wt))

Hessian-free methods.
For LR and SYM, at each CG iteration we compute

V2 f(w)v = v + OXT (D (Xv)). N X =[ey,...,z]"

is the data matrix and D is a diagonal matrix with values

determined by wi.



Conjugate gradient (CG) method (skip)

- an algorithm for the numerical solution of particular systems of
linear equations, namely those whose matrix is symmetric and
positive-definite.

Suppose we have some quadratic function
1 1 T
f(x) = Ex Ax+b' x+c

forx € R"withA € R™" and b, ¢ € R".

We can write any quadratic function in this form, as this generates all the coefficients x;x; as well
as linear and constant terms. In addition, we can assume that A = AT (A is symmetric). (If it were
not, we could just rewrite this with a symmetric A, since we could take the term for x;x; and the
term for x;x;, sum them, and then have A;; = A;; both be half of this sum.)

Taking the gradient of f, we obtain

Vf(x) = Ax + b,




Distributed Hessian-vector Products

- (8) is bottleneck which is the product between the Hessian matrix
rf(w) and the vector s

- This operation can possibly be parallelized in a distributed
environment as parallel vector products.

Algorithm 1 CG procedure for approximately solving (5)

1: Given s, <1,A;>0. Let d” = 0,7 = -V f(w'), and
g’ =r",

2: For i =0,1,... (inner iterations) N

3 If ||r?] <&V f(w")|], output d* = d' and stop.

4. Compute

u' =V f(w')s'. (8)
5: ||"'l|2/((8 )I )
6: d =d' + «o;8".

7. If ||d'“|| > A,, compute 7 such that ||d' +78'| = A,,

then olutput the vector d' = d' + 78" and stop.
1

8 r = ' - o u'.
o By =R
10: + + B;8'.




Distributed Hessian-vector Products

- first partition the data matrix X and the labels Y into disjoint p parts.

X =[Xy1,..., X",
v,
Y = diag(y1,...,y1) =

L . Yp-
- reformulate the function, the gradient and the Hessian- vector
products of (1) as follows.

fw) = pu w0y fw), O

Viw)=w+CY  _ Vfi(w), (10)

where V2f(w)v =v+ C’Z;l V2 fr(w)v, (11)
fr(w) = e, log (o (YeXrw)), (12)

Y fi(w) = (Yo X5)T (a (Vi Xpw) - ek) | (13)

V2 fr(w)v = X (Dy (Xxv)), (14)

Dy, = diag ((0 (Vi Xpw) —ey) /o (Ykaw)z) ,



Distributed Hessian-vector Products

Data matrix X is distributedly stored

partition 2 ==p

partition p == |

The functions fx, V/k and V2f, are the map functions operating on
the k-th partition. We can observe that for computing (12)-(14), only
the data partition Xkis needed in computing.

fr(w) = ef log (o (YrXsw)), (12)
Vfi(w) = (Vi Xi)" (0 (Vi Xpw) ' — ek) : (13)
V2 fr(w)v = X[ (D (Xxv)), (14)

D), = diag ((0 (Vi Xpw) —ey) /o (Ykaw)z) ,



Distributed Hessian-vector Products

Data matrix X is distributedly stored

partition 2 ==p

partition p == |

Vif(w)v =v+ CX" (D (Xv)). (7)
X"DXv = XD Xjv+---+ XpTDpov

- p 2 (#slave nodes) for parallelization.
- Two communications per operation:

1. Master sends wf and the current v to the slaves.

2. Slaves return X T Dj Xj v to master.
- The same scheme for computing function/gradient.
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Implementation design

- Spark is implemented in Scala, we use the same
language. So, The implementation of Spark LIBLINEAR
involves complicated design issues resulting from Java,
Scala and Spark.

For example, in contrast to traditional languages
like C and C++, similar expressions in Scala may
easily behave differently.

It is hence easy to introduce overheads in
developing Scala programs




Implementation design

- They analyze the following different implementation
issues for efficient computation, communication and
memory usage.

* Programming language:

o Loop structure

o Data encapsulation
* Operations on RDD:

o Using mapPartitions rather than map

o Caching intermediate information or not
* Communication:

o Using broadcast variables

o The cost of the reduce function



Implementation design

- They analyze the following different implementation
issues for efficient computation, communication and
memory usage.

® Progrqmming angque: related to JGVCI Gnd SCCIICI

o Loop structure
o Data encapsulation related to Spark

* Operations on RDD:

o Using mapPartitions rather than map
o Caching intermediate information or not

e Communication:

o Using broadcast variables
o The cost of the reduce function




Scala Issue: Loop structures

- From (12)-(14), clearly the computational bottleneck at
each node is on the products between the data matrix X,

(or X:) and a vector v.
To compute this matrix-vector product, a loop to conduct
inner products between all xe X.and v is executed many

times, it is the main computation in this algorithm.

fiu(w) = e;, log (0 (YiXrw)), (12)
ka(’w)E(Yka) ( (Ve Xpw) ™ 1—6k), (13)
V2 fe(w)v = X (D (Xiv)), (14)

Dy, = diag (( (Y Xrw) — eg) /o (Yka'w)2) ,



Scala Issue: Loop structures

- From (12)-(14), clearly the computational bottleneck at
each node is on the products between the data matrix X

(or X:) and a vector v.
To compute this matrix-vector product, a loop to conduct
inner products between all xe X.and v is executed many

times, it is the main computation in this algorithm.

- Although a for loop is the most straightforward way to
implement an inner product, unfortunately, it is known
that in Scala, a for loop may be slower than a while

loop.-



Scala Issue: Loop structures

- To study this issue, we discuss three methods to
implement the inner product: for-generator, for-range
and while.

for-generator

| for(element <— collection) { ... } |
for-range

| for(i < O to collection.length) { ... } |

while s

while(condition) {

1=1+1;



Experiment Data Information

TABLE 1. DATA INFORMATION: DENSITY IS THE AVERAGE RATIO OF
NON-ZERO FEATURES PER INSTANCE.
Data set #instances  F#£features density #nonzeros  ps Pe
ljcnn 49,990 22 59.09% 649,870 1
real-sim 72,309 20,958 0.25% 3,709,083 2
rcvi 20,242 47,236 0.16% 1,498,952 1
news20 19,996 1,355,191 0.03% 9,097,916 2
covtype 581,012 54 22.00% 6,901,775 32
webspam 350,000 254 33.52% 29,796,333 6 32
epsilon 400,000 2,000 100.00% 800,000,000 183
rcvit 677,399 47,236 0.16% 49,556,258 32
yahoo-japan 176,203 832,026 0.02% 23,506,415 5 32
yahoo-korea 460,554 3,052,939 0.01% 156,436,656 34

density: avg. ratio of non-zero features per instance.
p.: used for the experiments of loops and encapsulation
p.: applied for the rest. In the experiments of loops and encapsulation



Scala Issue: Loop structures

- Use one node in this experiment.

8- |
g —while
o . ---for-generator
£ N\ for-range
8 2 N T
X '0‘
.g . ..o
[ — Y %
2 -6 .0
@ %
% L A ..‘ " ..s )
E % 2 4 6 8 10 12 14
Training timq (seconds)
real-sim
2 .
—while
0 ---for-generator
--for-range

|
n

b

&

Relative function value difference (log)

o

1 2 3 4
Trainqu time (seconds)

jjcnn

n

—while
---for-generator
--for-range

o

1
s

Relative function value difference (log)

% 10 20 30 }
Training time (seconds)
news20
2 .
—while
o ---for—generator

8

c

o

2

B ey, ¢ for-range
o -2° Lo

2 v

g

c L

§ -4

g

3 -6- .

Q %
'-g' . %
g _8. " ’.- .“Q
& 0 1

2 3
Training time (seconds)

rcvl

g |

g —while

S oNg.. ---for-generator

5 e, for-range

g%

g

i

E -6+ . .... -

3

g % 50 100 50
Training time (seconds)
webspam

8= |

2 —while

g o ---for—-generator

5 --for-range

o -2

3

[v

>

g

5 K

-~ _6- .:0

(5] ;‘o.

2 o

o { e )

&5 100 150 200 250
Training time (seconds)

yahoo-japan



Scala Issue: Loop structures

- Use two nodes in this experiment.
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Scala Issue: Loop structures
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Scala Issue: Loop structures

- The translation comes with overheads and the combination
becomes complicated when more operations are applied.

- The optimization of a for expression has not been a focus
in Scala development because this expression is too

imperative to consist with the functional programming
principle.

- In contrast, a while loop is a loop rather than an
expression.



Scala Issue: Loop structures

- The translation comes with overheads and the combination
becomes complicated when more operations are applied.

- The optimization of a for expression has not been a focus
in Scala development because this expression is too
imperative to consist with the functional programming
principle.

- In contrast, a while loop is a loop rather than an
expression.

- The while loop is chosen to implement their software.



Scala Issue: Encapsulation

- follow LIBLINEAR to represent data as a sparse matrix,
where only non-zero entries are stored.
This strategy is important to handle large-scale data.
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- follow LIBLINEAR to represent data as a sparse matrix,
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For example, for a given 5-dimensional feature
vector (2, 0, 0, 8, 0), only two index- value pairs of
non-zero entries are stored.




Scala Issue: Encapsulation

- follow LIBLINEAR to represent data as a sparse matrix,
where only non-zero entries are stored.
This strategy is important to handle large-scale data.

For example, for a given 5-dimensional feature
vector (2, 0, 0, 8, 0), only two index- value pairs of
non-zero entries are stored.

- Investigate how to store the index-value information such as
“1:2"” and “4:8” in memory. The discussion is based on two

encapsulation implementations: the Class approach (CA)
and the Array approach (AA).



Scala Issue: Encapsulation

- CA encapsulates a pair of index and feature value into a
class, and maintains an array of class objects for each
Instance.

index|1 index2 o
valuel value?2
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- CA encapsulates a pair of index and feature value into a
class, and maintains an array of class objects for each
Instance.

index1 index2 o
valuel value2

- In contrast, AA directly uses two arrays to store indices and
feature values of an instance.



Scala Issue: Encapsulation

- CA encapsulates a pair of index and feature value into a
class, and maintains an array of class objects for each
Instance.

index1 index2 o
valuel value?2

- In contrast, AA directly uses two arrays to store indices and
feature values of an instance.

- AA is faster because it directly accesses indices and values,
while the CPU cache must access the pointers of class
objects first if CA is applied



RDD: Using mapPartitions rather than map 7

V2f(w)v =v+CX"' (D (Xv)). (7)

- The second term of the Hessian-vector product (7) can be
represented as the following form.

! l
T
Zi—l szzzwz V= E o a(ac,,;, Yi, W, 'v)a:i,

where a(yi,xi,w,v) = Di ixTj v, can be computed by either
map or mapPartitions.



RDD: Using mapPartitions rather than map 75

- The second term of the Hessian-vector product (7) can be
represented as the following form.

l l
T § :
Zi—l sz"'a"'wz U = i—1 a’(wia Yi, W, ’U)ﬂ:i,

where a(yi,xi,w,v) = Di ixTj v, can be computed by either
map or mapPartitions.

Algorithm 3 map implementation

1: data.map(new Function() {

2. call(z, y) { return a(z, y, w, v)x }
. }).reduce(new Function() {

call(a, b) { return a + b }

1)

A B W




RDD: Using mapPartitions rather than map 7

- Then map and reduce operations can be directly applied.

- Considerable overheads occur in the map operations
because for each instance x, an intermediate vector a(x, y,
w, V)xis created.

Algorithm 3 map implementation

1: data.map(new Function() {
2:  call(z, y) { return a(zx, y, w, v)x }
. }).reduce(new Function() {
call(a, b) { return a + b }
D

A 2 W




RDD: Using mapPartitions rather than map 77

- Then map and reduce operations can be directly applied.

- Considerable overheads occur in the map operations
because for each instance x, an intermediate vector a(x, y,
w, V)xis created.

- In addition to the above-mentioned overheads, the reduce
function in Algorithm 3 involves complicated computation.

Algorithm 3 map implementation

1: data.map(new Function() {
2:  call(z, y) { return a(zx, y, w, v)x }
. }).reduce(new Function() {
call(a, b) { return a + b }
: D)

thb)




RDD: Using mapPartitions rather than map 78

l l
T
Zi—l ;D x; v= E - a(x;, Yi, W, V)T,

where al(yi,xi,w,v) = Di ixTi v, can be computed by either
map or mapPartitions.

Algorithm 4 mapPartitions implementation

1: data.mapPartitions(new Function() {
2:  call(partition) {
partitionHv = new Dense Vector(n)
for each (x, y) in partition
partitionHv += a(x, y, w, v)x
}

}).reduce(new Function() {
call(a, b) { return a + b }

1)

WSt W




RDD: Using mapPartitions rather than map 79

- To avoid the overheads and the complicated additions of
sparse vectors, they consider the mapPartitions operation in
Spark.

Algorithm 4 mapPartitions implementation

1: data.mapPartitions(new Function() {
2:  call(partition) {
partitionHv = new Dense Vector(n)
for each (x, y) in partition
partitionHv += a(x, y, w, v)x
}

}).reduce(new Function() {
call(a, b) { return a + b }

1)

WSt W




RDD: Using mapPartitions rather than map s

- This setting ensures that computing a Hessian-vector
product involves only p intermediate vectors.

- The overheads of using map- Partitions is less than that of
using map with | intermediate vectors.

Algorithm 4 mapPartitions implementation

1: data.mapPartitions(new Function() {
2:  call(partition) {
partitionHv = new Dense Vector(n)
for each (x, y) in partition
partitionHv += a(x, y, w, v)x
}

}).reduce(new Function() {
call(a, b) { return a + b }

1)

WSt W




RDD: Using mapPartitions rather than map s

- Note that the technique of using mapPartitions can also be
applied to compute the gradient.

Algorithm 4 mapPartitions implementation

1: data.mapPartitions(new Function() {
2:  call(partition) {
partitionHv = new Dense Vector(n)
for each (x, y) in partition
partitionHv += a(x, y, w, v)x
}

}).reduce(new Function() {
call(a, b) { return a + b }

1)

WSt W




RDD: Using mapPartitions rather than map  s2

- Use 16 nodes in this experiment.
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the longer running time of map implies its higher
computation cost



RDD: Caching intermediate information or not s

- The calculations of (12)-(14) all involve the vector (Y. X.w).

- Instinctively, if this vector is cached and shared between
different operations, the training procedure can be more
efficient.

- In fact, the single-machine package LIBLINEAR uses this
strategy in their implementation of TRON.

fiu(w) = e;, log (0 (YiXrw)), (12)
Vfr(w) = (Yka) ( (Vi Xpw) " — 6k) : (13)
V2 fe(w)v = X (D (Xiv)), (14)

Dy = diag (( (Vi Xrw) —eg) /o (Yka'w)2) ;



RDD: Caching intermediate information or not s

- Spark does not allow any single operation to gather
information from two different RDDs and run a user-

specified function such as (12), (13) or (14).

- It is necessary to create one new RDD per iteration to store
both the training data and the information to be cached.

- Unfortunately, this approach incurs severe overheads in
copying the training data from the original RDD to the new
one.



RDD: Caching intermediate information or not ss

- Based on the above discussion, they decide not to cache (Y.
X.w) because recomputing them is more cost-effective.

- This example demonstrates that specific properties of a

parallel programming framework may strongly affect the
implementation.



RDD: Communication

In Algorithm 2, communication occurs at two places. The
first one is sending w and v from the master machine to the
slave machines, and the second one is reducing the results
of (12)-(14) to the master machine.

Algorithm 2 A distributed TRON algorithm for LR and SVM
1: Given w®, Ag, 1, €.

2: Fort=0,1,...

3:  The master ships w’ to every slave.

4:  Slaves compute fx(w’) and V fi(w") and reduce thenr — e Vi X 12
to the master. fr(w) og (0 (Vi Xiw)), . (12)

s I [V (wh)| < e, stop. V fu(w) = (Yka) (0 iXpw) " —ex),  (13)

6: Find d? by solving (5) using Algorithm 1. 0

7. Compute pr = f(wt”;f‘(t;t)f(wt) V2 fr(w)v = X (Dy, (Xxv)) (14)

8: Update w’ to w?t! according to Dy, = diag (( (Vi Xrw) — ex) /o (Ykaw)z) ,

w? if p; <.

9:  Obtain Ay by rules in [13].




RDD: Using Broadcast Variables

- In Spark, when an RDD is split into partitions, one single
operation on this RDD is divided into tasks working on
different partitions.

- Under this setting, many redundant communications occur
because just need to send a copy to each slave machine
but not each partition.

- In such a case where each partition shares the same
information from the master, it is recommended to use
broadcast variables



RDD: Using Broadcast Variables

- Use broadcast variables to improve.

Read-only variables shared among partitions in the
same node.

Cached in the slave machines.




RDD: The Cost of the reduce Function

- Slaves to master: Spark by default collect results from each
partition separately.

- Use the coalesce function: Merge partitions on the same
node before communication.
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RDD: The Cost of the reduce Function

Use 16 nodes in this experiment.
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Fig. 4. Broadcast variables and coalesce: We present running time (in seconds) versus the relative objective value difference. We run LR with C =1
on 16 nodes. Note that broadcast-cl represents the implementation with both broadcast variables and the coalesce function.



RDD: The Cost of the reduce Function

- for data with few features like covtype and webspam,
adopting broadcast variables slightly degrades the
efficiency because the communication cost is low and
broadcast variables introduce some overheads.

- Regarding the coalesce function, it is bene- ficial for all data
sefs.
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Related Works

- MLlib is a machine learning library implemented in Apache
Spark.

- A stochastic gradient method for LR and SYM (but default
batch size is the whole data).



Related Works

Use 16 nodes in this experiment.
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Fig. 6. Comparison with MLlib: We present running time (in seconds, log scale) versus the relative objective value difference. We run LR with C =1
on 16 nodes.



Related Works

- The convergence of MLIlib is rather slow in comparison with
Spark LIBLINEAR.

- The reason is that the GD method is known to have slow
convergence, while TRON enjoys fast quadratic local
convergence for LR. Note that as MLIlib requires more
iterations to converge, the communication cost is also

higher.



Related Works

- A C++/MPI implementation by Zhuang et al. (2014) of the
distributed trust region Newton algorithm in this paper.

- No fault tolerance.

- Should be faster than our implementation:

More computational e cient: implemented in C++.

More communicational e cient: the slave-slave
structure with all-reduce only communicates once
per operation.

- Should be faster, but need to know how large is the
difference.
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Related Works

- using multiple cores is not beneficial on yahoo-japan and
yahoo-korea.

- A careful profiling shows that the bottleneck of the training
time on these data sets is communication and using more
cores does not reduce this cost.
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Discussions and Conclusions

- Consider a distributed trust region Newton algorithm on
Spark for training LR and linear SYM.

- Many implementation issues are thoroughly studied with
careful empirical examinations.

- Implementation in this paper on Spark is competitive with
state-of-the-art packages. (2014)

- Spark LIBLINEAR is an distributed extension of LIBLINEAR
and it is available.






