
1

High Performance Computing 
10th Lecture

NOVEMBER 4, 2016
RIO YOKOTA LAB.

HIROKI NAGANUMA

Selected Paper 2

- Published in:
 IEEE International Conference on Big Data, 2014  
 
- Date of Conferrence:
 October 27-30, 2014
 
- http://www.csie.ntu.edu.tw/~cjlin/papers/spark-liblinear/spark-liblinear.pdf

http://www.csie.ntu.edu.tw/~cjlin/papers/spark-liblinear/spark-liblinear.pdf

Abstract 3

- Logistic regression and linear SVM are useful methods for
large-scale classification. 
However, their distributed implementations have not been
well studied.

Abstract 4

- Logistic regression and linear SVM are useful methods for
large-scale classification. 
However, their distributed implementations have not been
well studied.

- Recently, because of the inefficiency of the MapReduce
framework on iterative algorithms, Spark, an in-memory
cluster-computing platform, has been proposed.It has
emerged as a popular framework for large-scale data
processing and analytics.

Abstract 5

- Logistic regression and linear SVM are useful methods for
large-scale classification.However, their distributed
implementations have not been well studied.

- Recently, because of the inefficiency of the MapReduce
framework on iterative algorithms, Spark, an in-memory
cluster-computing platform, has been proposed.It has
emerged as a popular framework for large-scale data
processing and analytics. 

- In this work,consider a distributed Newton method for
solving logistic regression as well linear SVM and
implement it on Spark.

Outline 6

1. Introduction

2. Approach

3. Implementation design

4. Related Works

5. Discussions and Conclusions

Outline 7

1. Introduction

2. Approach

3. Implementation design

4. Related Works

5. Discussions and Conclusions

Linear Classification on One Computer 8

- Linear classification on one machine is a mature technique:
 millions of data can be trained in a few seconds.

Linear Classification on One Computer 9

- Linear classification on one machine is a mature technique:
 millions of data can be trained in a few seconds.  
 
- What if the data are even bigger than the capacity of our  
 machine?

Linear Classification on One Computer 10

- Linear classification on one machine is a mature technique:
 millions of data can be trained in a few seconds.  
 
- What if the data are even bigger than the capacity of our  
 machine?

Solution 1: get a machine with larger memory/disk.
-> The data loading time would be too lengthy.

Linear Classification on One Computer 11

- Linear classification on one machine is a mature technique:
 millions of data can be trained in a few seconds.  
 
- What if the data are even bigger than the capacity of our  
 machine?

Solution 1: get a machine with larger memory/disk.
-> The data loading time would be too lengthy.

Solution 2: distributed training.

Distributed Linear Classification 12

- In distributed training, data loaded in parallel to reduce  
the I/O time. (e.g. HDFS)

Distributed Linear Classification 13

- In distributed training, data loaded in parallel to reduce  
the I/O time. (e.g. HDFS)

- With more machines, computation is faster.

Distributed Linear Classification 14

- In distributed training, data loaded in parallel to reduce  
the I/O time. (e.g. HDFS)

- With more machines, computation is faster.

- But communication and synchronization cost become
significant.

Distributed Linear Classification 15

- In distributed training, data loaded in parallel to reduce  
the I/O time. (e.g. HDFS)

- With more machines, computation is faster.

- But communication and synchronization cost become
significant.

- To keep the training efficiency, we need to consider
algorithms with less communication cost, and examine
implementation details carefully.

Distributed Linear Classification on
Apache Spark

16

- Train logistic regression (LR) and L2-loss linear support
vector machine (SVM) models on Apache Spark (Zaharia
et al., 2010).

Distributed Linear Classification on
Apache Spark

17

- Train logistic regression (LR) and L2-loss linear support
vector machine (SVM) models on Apache Spark (Zaharia
et al., 2010).

- Why Spark?

MPI (Snir and Otto, 1998) is efficient, but does not
support fault tolerance.

Distributed Linear Classification on
Apache Spark

18

- Train logistic regression (LR) and L2-loss linear support
vector machine (SVM) models on Apache Spark (Zaharia
et al., 2010).

- Why Spark?

MPI (Snir and Otto, 1998) is efficient, but does not
support fault tolerance.

MapReduce (Dean and Ghemawat, 2008) supports
fault tolerance, but is slow in communication.

Distributed Linear Classification on
Apache Spark

19

- Why Spark?

MPI (Snir and Otto, 1998) is efficient, but does not
support fault tolerance.

MapReduce (Dean and Ghemawat, 2008) supports
fault tolerance, but is slow in communication.

Spark combines advantages of both frameworks.

Distributed Linear Classification on
Apache Spark

20

- Why Spark?

MPI (Snir and Otto, 1998) is e cient, but does not
support fault tolerance.

MapReduce (Dean and Ghemawat, 2008) supports
fault tolerance, but is slow in communication.

Spark combines advantages of both frameworks.

Communications conducted in-memory.

Distributed Linear Classification on
Apache Spark

21

- Why Spark?

Spark combines advantages of both frameworks.

Communications conducted in-memory.

Supports fault tolerance.

- However, Spark is new and still under development.
(2014)

- Therefore it is necessary to examine important
implementation issues to ensure efficiency.

Apache Spark 22

- Only the master-slave framework.

Apache Spark 23

- Only the master-slave framework.

- Data fault tolerance: Hadoop Distributed File System
(Borthakur, 2008).

Apache Spark 24

- Only the master-slave framework.

- Data fault tolerance: Hadoop Distributed File System
(Borthakur, 2008).

- Computation fault tolerance:

Apache Spark 25

- Only the master-slave framework.

- Data fault tolerance: Hadoop Distributed File System
(Borthakur, 2008).

- Computation fault tolerance: Read-only Resilient
Distributed Datasets (RDD) and lineage (Zaharia et al.,
2012).  
Basic idea: reconduct operations recorded in lineage on
immutable RDDs.

Apache Spark 26

- Lineage (Zaharia et al., 2012).
Spark firstly creates a logical plan (namely data dependency graph) for each application.

Apache Spark 27

- Lineage (Zaharia et al., 2012).
Then it transforms the logical plan into a physical plan (a DAG graph of map/reduce stages
and map/reduce tasks).

Apache Spark 28

- Lineage (Zaharia et al., 2012).
 After that, concrete map/reduce tasks will be lanuched to process the input data.

Apache Spark (skip) 29

package org.apache.spark.examples
import java.util.Random
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.SparkContext._
/**
 * Usage: GroupByTest [numMappers] [numKVPairs]
[valSize] [numReducers]
 */
object GroupByTest {
 def main(args: Array[String]) {
 val sparkConf = new SparkConf().setAppName("GroupBy
Test")
 var numMappers = 100
 var numKVPairs = 10000
 var valSize = 1000
 var numReducers = 36
 val sc = new SparkContext(sparkConf)
 val pairs1 = sc.parallelize(0 until numMappers,
numMappers).flatMap { p =>
 val ranGen = new Random
 var arr1 = new Array[(Int, Array[Byte])]
(numKVPairs)
 for (i <- 0 until numKVPairs) {
 val byteArr = new Array[Byte](valSize)
 ranGen.nextBytes(byteArr)
 arr1(i) = (ranGen.nextInt(Int.MaxValue),
byteArr)
 }
 arr1
 }.cache
 // Enforce that everything has been calculated and
in cache
 pairs1.count
 println(pairs1.groupByKey(numReducers).count)
 sc.stop()
 }
}

GroupByTest.scala- Lineage (Zaharia et al., 2012).
spark code example

30

package org.apache.spark.examples
import java.util.Random
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.SparkContext._
/**
 * Usage: GroupByTest [numMappers] [numKVPairs]
[valSize] [numReducers]
 */
object GroupByTest {
 def main(args: Array[String]) {
 val sparkConf = new SparkConf().setAppName("GroupBy
Test")
 var numMappers = 100
 var numKVPairs = 10000
 var valSize = 1000
 var numReducers = 36
 val sc = new SparkContext(sparkConf)
 val pairs1 = sc.parallelize(0 until numMappers,
numMappers).flatMap { p =>
 val ranGen = new Random
 var arr1 = new Array[(Int, Array[Byte])]
(numKVPairs)
 for (i <- 0 until numKVPairs) {
 val byteArr = new Array[Byte](valSize)
 ranGen.nextBytes(byteArr)
 arr1(i) = (ranGen.nextInt(Int.MaxValue),
byteArr)
 }
 arr1
 }.cache
 // Enforce that everything has been calculated and
in cache
 pairs1.count
 println(pairs1.groupByKey(numReducers).count)
 sc.stop()
 }
}

GroupByTest.scala

[1]. Initialize SparkConf.
[2]. Initialize numMappers=100, numKVPairs=10,000, valSize=1000, numReducers=
36.
[3]. Initialize SparkContext, which creates the necessary objects and actors for the
driver.
[4].Each mapper creats an arr1: Array[(Int, Byte[])], which has numKVPairs
elements. Each Int is a random integer, and each byte array's size is valSize. We can
estimate Size(arr1) = numKVPairs * (4 + valSize) = 10MB, so that Size(pairs1) =
numMappers * Size(arr1) ＝1000MB.

[5].Each mapper is instructed to cache its arr1 array into the memory.
[6].The action count() is applied to sum the number of elements in arr1 in all
mappers, the result is numMappers * numKVPairs = 1,000,000. This action triggers
the caching of arr1s.
[7].groupByKey operation is performed on cached pairs1. The reducer number
(a.k.a., partition number) is numReducers. Theoretically, if hash(key) is evenly
distributed, each reducer will receive numMappers * numKVPairs / numReducer ＝

27,777 pairs of (Int, Array[Byte]), with a size of Size(pairs1) / numReducer = 27MB.
[8].Reducer aggregates the records with the same Int key, the result is (Int,
List(Byte[], Byte[], ..., Byte[])).
[9].Finally, a count() action sums up the record number in each reducer, the final
result is actually the number of distinct integers in pairs1.

- Lineage (Zaharia et al., 2012).
spark code explanation

Apache Spark (skip)

Apache Spark 31

- Read-only Resilient Distributed Datasets (RDD)

RDD is a mechanism capable of holding the data to be repeatedly used in the memory. 
MapReduce of Hadoop had been held, fault tolerance, data locality, scalability has taken
over as it is.

1.an RDD is a read-only, partitioned
collection of records.

2.an RDD has enough information
about how it was derived from other
datasets (its lineage)

3.persistence and partitioning

4.lazy operations

Apache Spark 32

- Read-only Resilient Distributed Datasets (RDD)

reference

- Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-
Memory Cluster Computing 
http://www-bcf.usc.edu/~minlanyu/teach/csci599-fall12/papers/
nsdi_spark.pdf  

- My article of Qiita 
http://qiita.com/Hiroki11x/items/4f5129094da4c91955bc

http://www-bcf.usc.edu/~minlanyu/teach/csci599-fall12/papers/nsdi_spark.pdf
http://qiita.com/Hiroki11x/items/4f5129094da4c91955bc

Outline 33

1. Introduction

2. Approach

3. Implementation design

4. Related Works

5. Discussions and Conclusions

Logistic Regression and Linear Support
Vector Machine

34

Most linear classification models consider the following optimization problem

{(xi,yi)}li=1, xi ∈ Rn, yi ∈ {−1,1}, ∀i, :Given a set of training label-instance pairs  
C > 0 : User-specified parameter

ξ(w;xi,yi) : loss function

Logistic Regression and Linear Support
Vector Machine

35

Most linear classification models consider the following optimization problem

The objective function f has two parts: the regularizer that controls the complexity of
the model, and the loss that measures the error of the model on the training data. The
loss function ξ(w;xi,yi) is typically a convex function in w.

regularizer loss function

Logistic Regression and Linear Support
Vector Machine

36

regularizer loss function

Problem (1) is referred as L1-loss and L2-loss SVM if (2) and (3) is used, respectively.

It is known that (2) and (3) are differentiable while (2) is not and is thus more difficult to
optimize. Therefore, we focus on solving LR and L2-loss SVM in the rest of the paper.

Logistic Regression and Linear Support
Vector Machine

37

regularizer loss function

Problem (1) is referred as LR if (4) is used.

Logistic Regression and Linear Support
Vector Machine

38

Most linear classification models consider the following optimization problem

{(xi,yi)}li=1, xi ∈ Rn, yi ∈ {−1,1}, ∀i, :Given a set of training label-instance pairs  
C > 0 : User-specified parameter

ξ(w;xi,yi) : loss function

Use a trust region Newton method to minimize f(w) (Lin and Mor é, 1999).

Trust Region Newton Method 39

- Trust region Newton method is a type of truncated Newton approach.

- We consider the trust region method (Lin and Mor´e, 1999), which is a
truncated Newton method to deal with general bound-constrained
optimization problems (i.e., variables are in certain intervals).

- At each iteration of a trust region Newton method for minimizing f(w), we
have an iterate wt, a size ∆t of the trust region, and a quadratic model.

Most linear classification models consider the following optimization problem

To discuss Newton methods, we need the Hessian of f(w):

Truncated Newton method(skip) 40

- Trust region Newton method is a type of truncated Newton approach.

- To save time, one may use only an“approximate” Newton direction in the
early stages of the outer iterations.

- Such a technique is called truncated Newton method (or inexact Newton
method).

Newton Method (skip) 41

- Newton's method assumes that the function can be locally approximated as
a quadratic in the region around the optimum, and uses the first and second
derivatives to find the stationary point.

- In higher dimensions, Newton's method uses the gradient and the Hessian
matrix of second derivatives of the function to be minimized.

To discuss Newton methods, we need the Hessian of f(w):

Trust Region Newton Method

At iteration t, given iterate wt and trust region ∆t > 0, solve

42

(6) is the second-order Taylor approximation of

Adjust the trust region size by ρt.
If n is large: ∈ Rn×n is too large to store.
Consider Hessian-free methods.

Trust Region Newton Method

At iteration t, given iterate wt and trust region ∆t > 0, solve

43

(6) is the second-order Taylor approximation of

Because is too large to be formed and stored, a Hessian-free
approach of applying CG (Conjugate Gradient) iterations is used to
approximately solve (5) .

At each CG iteration we only need to obtain the Hessian-vector
product with some vector generated by the CG
procedure.

Use a conjugate gradient (CG) method.

CG is an iterative method: only needs for some at
each iteration.(it’s not necessary to calculate ∇2f (wt))

For LR and SVM, at each CG iteration we compute

is the data matrix and D is a diagonal matrix with values
determined by wt.

Trust Region Newton Method 44

Hessian-free methods.

- an algorithm for the numerical solution of particular systems of
linear equations, namely those whose matrix is symmetric and
positive-definite.

Conjugate gradient (CG) method (skip) 45

Distributed Hessian-vector Products

- (8) is bottleneck which is the product between the Hessian matrix
r2f(wt) and the vector si

- This operation can possibly be parallelized in a distributed
environment as parallel vector products.

46

Distributed Hessian-vector Products

- first partition the data matrix X and the labels Y into disjoint p parts.

- reformulate the function, the gradient and the Hessian- vector
products of (1) as follows.

47

Distributed Hessian-vector Products

Data matrix X is distributedly stored

The functions and are the map functions operating on
the k-th partition. We can observe that for computing (12)-(14), only
the data partition Xk is needed in computing.

48

Distributed Hessian-vector Products

- p ≥ (#slave nodes) for parallelization.
- Two communications per operation:

1. Master sends wt and the current v to the slaves.
2. Slaves return X T Di Xi v to master.

- The same scheme for computing function/gradient.

Data matrix X is distributedly stored

49

Outline 50

1. Introduction

2. Approach

3. Implementation design

4. Related Works

5. Discussions and Conclusions

Implementation design 51

- In this section, they study implementation issues for their  
software.

Implementation design 52

- In this section, they study implementation issues for their  
software.

- They name their distributed TRON implementation Spark
LIBLINEAR because algorithmically it is an extension of
the TRON implementation in the software LIBLINEAR[10]

Implementation design 53

- In this section, they study implementation issues for their  
software.

- They name their distributed TRON implementation Spark
LIBLINEAR because algorithmically it is an extension of
the TRON implementation in the software LIBLINEAR[10]

- Spark is implemented in Scala, we use the same
language. So, The implementation of Spark LIBLINEAR
involves complicated design issues resulting from Java,
Scala and Spark.

Implementation design 54

- Spark is implemented in Scala, we use the same
language. So, The implementation of Spark LIBLINEAR
involves complicated design issues resulting from Java,
Scala and Spark.

Implementation design 55

- Spark is implemented in Scala, we use the same
language. So, The implementation of Spark LIBLINEAR
involves complicated design issues resulting from Java,
Scala and Spark.

For example, in contrast to traditional languages
like C and C++, similar expressions in Scala may
easily behave differently.

Implementation design 56

- Spark is implemented in Scala, we use the same
language. So, The implementation of Spark LIBLINEAR
involves complicated design issues resulting from Java,
Scala and Spark.

For example, in contrast to traditional languages
like C and C++, similar expressions in Scala may
easily behave differently.

It is hence easy to introduce overheads in
developing Scala programs

Implementation design 57

- They analyze the following different implementation
issues for efficient computation, communication and
memory usage.

•Programming language:  
 ◦ Loop structure 
 ◦ Data encapsulation  
•Operations on RDD: 
 ◦ Using mapPartitions rather than map
 ◦ Caching intermediate information or not  
•Communication: 
 ◦ Using broadcast variables 
 ◦ The cost of the reduce function

Implementation design 58

- They analyze the following different implementation
issues for efficient computation, communication and
memory usage.

•Programming language:  
 ◦ Loop structure 
 ◦ Data encapsulation  
•Operations on RDD: 
 ◦ Using mapPartitions rather than map
 ◦ Caching intermediate information or not  
•Communication: 
 ◦ Using broadcast variables 
 ◦ The cost of the reduce function

related to Java and Scala

related to Spark

59

- From (12)-(14), clearly the computational bottleneck at
each node is on the products between the data matrix Xk

(or Xk
T) and a vector v.  

To compute this matrix-vector product, a loop to conduct
inner products between all xi ∈ Xk and v is executed many
times, it is the main computation in this algorithm.

Scala Issue: Loop structures

60

- From (12)-(14), clearly the computational bottleneck at
each node is on the products between the data matrix Xk

(or Xk
T) and a vector v.  

To compute this matrix-vector product, a loop to conduct
inner products between all xi ∈ Xk and v is executed many
times, it is the main computation in this algorithm.

- Although a for loop is the most straightforward way to
implement an inner product, unfortunately, it is known
that in Scala, a for loop may be slower than a while
loop.2

Scala Issue: Loop structures

61

- To study this issue, we discuss three methods to
implement the inner product: for-generator, for-range
and while.

for-generator

for-range

while

Scala Issue: Loop structures

62Experiment Data Information

density: avg. ratio of non-zero features per instance.  
ps : used for the experiments of loops and encapsulation  
pe : applied for the rest. In the experiments of loops and encapsulation

Scala Issue: Loop structures 63

- Use one node in this experiment.

Scala Issue: Loop structures 64

- Use two nodes in this experiment.

Scala Issue: Loop structures 65

two nodesone node

The reason is that when data is split between two nodes,
each node requires conducting fewer loops.

66

- The translation comes with overheads and the combination
becomes complicated when more operations are applied.  

- The optimization of a for expression has not been a focus
in Scala development because this expression is too
imperative to consist with the functional programming
principle.

- In contrast, a while loop is a loop rather than an
expression.

Scala Issue: Loop structures

67

- The translation comes with overheads and the combination
becomes complicated when more operations are applied.  

- The optimization of a for expression has not been a focus
in Scala development because this expression is too
imperative to consist with the functional programming
principle.

- In contrast, a while loop is a loop rather than an
expression.

- The while loop is chosen to implement their software.

Scala Issue: Loop structures

68

- follow LIBLINEAR to represent data as a sparse matrix,
where only non-zero entries are stored.  
This strategy is important to handle large-scale data.

Scala Issue: Encapsulation

69

- follow LIBLINEAR to represent data as a sparse matrix,
where only non-zero entries are stored.  
This strategy is important to handle large-scale data.

Scala Issue: Encapsulation

For example, for a given 5-dimensional feature
vector (2, 0, 0, 8, 0), only two index- value pairs of
non-zero entries are stored.

70

- follow LIBLINEAR to represent data as a sparse matrix,
where only non-zero entries are stored.  
This strategy is important to handle large-scale data.

Scala Issue: Encapsulation

For example, for a given 5-dimensional feature
vector (2, 0, 0, 8, 0), only two index- value pairs of
non-zero entries are stored.

- Investigate how to store the index-value information such as
“1:2” and “4:8” in memory. The discussion is based on two
encapsulation implementations: the Class approach (CA)
and the Array approach (AA).

71

- CA encapsulates a pair of index and feature value into a
class, and maintains an array of class objects for each
instance.

Scala Issue: Encapsulation

72

- CA encapsulates a pair of index and feature value into a
class, and maintains an array of class objects for each
instance.

Scala Issue: Encapsulation

- In contrast, AA directly uses two arrays to store indices and
feature values of an instance.

73

- CA encapsulates a pair of index and feature value into a
class, and maintains an array of class objects for each
instance.

Scala Issue: Encapsulation

- In contrast, AA directly uses two arrays to store indices and
feature values of an instance.

- AA is faster because it directly accesses indices and values,
while the CPU cache must access the pointers of class
objects first if CA is applied

74

- The second term of the Hessian-vector product (7) can be
represented as the following form.

RDD: Using mapPartitions rather than map

where a(yi,xi,w,v) = Di,ixTi v, can be computed by either
map or mapPartitions.

75

- The second term of the Hessian-vector product (7) can be
represented as the following form.

where a(yi,xi,w,v) = Di,ixTi v, can be computed by either
map or mapPartitions.

RDD: Using mapPartitions rather than map

76

- Then map and reduce operations can be directly applied.
- Considerable overheads occur in the map operations

because for each instance xi, an intermediate vector a(xi, yi,
w, v)xi is created.

RDD: Using mapPartitions rather than map

77

- In addition to the above-mentioned overheads, the reduce
function in Algorithm 3 involves complicated computation.

- Then map and reduce operations can be directly applied.
- Considerable overheads occur in the map operations

because for each instance xi, an intermediate vector a(xi, yi,
w, v)xi is created.

RDD: Using mapPartitions rather than map

78

where a(yi,xi,w,v) = Di,ixTi v, can be computed by either
map or mapPartitions.

RDD: Using mapPartitions rather than map

79

- To avoid the overheads and the complicated additions of
sparse vectors, they consider the mapPartitions operation in
Spark.

RDD: Using mapPartitions rather than map

80

- This setting ensures that computing a Hessian-vector
product involves only p intermediate vectors.

- The overheads of using map- Partitions is less than that of
using map with l intermediate vectors.

RDD: Using mapPartitions rather than map

81

- Note that the technique of using mapPartitions can also be
applied to compute the gradient.

RDD: Using mapPartitions rather than map

82RDD: Using mapPartitions rather than map

- Use 16 nodes in this experiment.

- the longer running time of map implies its higher
computation cost

83

- The calculations of (12)-(14) all involve the vector (Yk Xk w). 

- Instinctively, if this vector is cached and shared between
different operations, the training procedure can be more
efficient.  

- In fact, the single-machine package LIBLINEAR uses this
strategy in their implementation of TRON.

RDD: Caching intermediate information or not

84

- Spark does not allow any single operation to gather
information from two different RDDs and run a user-
specified function such as (12), (13) or (14).

- It is necessary to create one new RDD per iteration to store
both the training data and the information to be cached.

- Unfortunately, this approach incurs severe overheads in
copying the training data from the original RDD to the new
one.

RDD: Caching intermediate information or not

85

- Based on the above discussion, they decide not to cache (Yk

Xk w) because recomputing them is more cost-effective.

- This example demonstrates that specific properties of a
parallel programming framework may strongly affect the
implementation.

RDD: Caching intermediate information or not

86

- In Algorithm 2, communication occurs at two places. The
first one is sending w and v from the master machine to the
slave machines, and the second one is reducing the results
of (12)-(14) to the master machine.

RDD: Communication

87

- In Spark, when an RDD is split into partitions, one single
operation on this RDD is divided into tasks working on
different partitions.

- Under this setting, many redundant communications occur
because just need to send a copy to each slave machine
but not each partition.

- In such a case where each partition shares the same
information from the master, it is recommended to use
broadcast variables

RDD: Using Broadcast Variables

88

- Use broadcast variables to improve.

RDD: Using Broadcast Variables

Read-only variables shared among partitions in the
same node.

Cached in the slave machines.

89RDD: The Cost of the reduce Function

- Slaves to master: Spark by default collect results from each
partition separately.

- Use the coalesce function: Merge partitions on the same
node before communication.

90RDD: The Cost of the reduce Function

Use 16 nodes in this experiment.

Fig. 4. Broadcast variables and coalesce: We present running time (in seconds) versus the relative objective value difference. We run LR with C = 1
on 16 nodes. Note that broadcast-cl represents the implementation with both broadcast variables and the coalesce function.

91RDD: The Cost of the reduce Function

- for data with few features like covtype and webspam,
adopting broadcast variables slightly degrades the
efficiency because the communication cost is low and
broadcast variables introduce some overheads.

- Regarding the coalesce function, it is bene- ficial for all data
sets.

Outline 92

1. Introduction

2. Approach

3. Implementation design

4. Related Works

5. Discussions and Conclusions

Related Works 93

- MLlib is a machine learning library implemented in Apache
Spark.

- A stochastic gradient method for LR and SVM (but default
batch size is the whole data).

Related Works 94

Use 16 nodes in this experiment.

Fig. 6. Comparison with MLlib: We present running time (in seconds, log scale) versus the relative objective value difference. We run LR with C = 1
on 16 nodes.

Related Works 95

- The convergence of MLlib is rather slow in comparison with
Spark LIBLINEAR.

- The reason is that the GD method is known to have slow
convergence, while TRON enjoys fast quadratic local
convergence for LR. Note that as MLlib requires more
iterations to converge, the communication cost is also
higher.

Related Works 96

- A C++/MPI implementation by Zhuang et al. (2014) of the
distributed trust region Newton algorithm in this paper.

- No fault tolerance.

- Should be faster than our implementation:

More computational e cient: implemented in C++.
More communicational e cient: the slave-slave
structure with all-reduce only communicates once
per operation.

- Should be faster, but need to know how large is the
difference.

Related Works 97

m means multi-core

Related Works

m means multi-core

98

Related Works 99

m means multi-core

Related Works 100

m means multi-core

- using multiple cores is not beneficial on yahoo-japan and
yahoo-korea.

- A careful profiling shows that the bottleneck of the training
time on these data sets is communication and using more
cores does not reduce this cost.

Outline 101

1. Introduction

2. Approach

3. Implementation design

4. Related Works

5. Discussions and Conclusions

Discussions and Conclusions 102

- Consider a distributed trust region Newton algorithm on
Spark for training LR and linear SVM.

Discussions and Conclusions 103

- Consider a distributed trust region Newton algorithm on
Spark for training LR and linear SVM.

- Many implementation issues are thoroughly studied with
careful empirical examinations.

Discussions and Conclusions 104

- Consider a distributed trust region Newton algorithm on
Spark for training LR and linear SVM.

- Many implementation issues are thoroughly studied with
careful empirical examinations.

- Implementation in this paper on Spark is competitive with
state-of-the-art packages. (2014)

Discussions and Conclusions 105

- Consider a distributed trust region Newton algorithm on
Spark for training LR and linear SVM.

- Many implementation issues are thoroughly studied with
careful empirical examinations.

- Implementation in this paper on Spark is competitive with
state-of-the-art packages. (2014)

- Spark LIBLINEAR is an distributed extension of LIBLINEAR
and it is available.

