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- Logistic regression and linear SVM are useful methods for 
large-scale classification.However, their distributed 
implementations have not been well studied. 

- Recently, because of the inefficiency of the MapReduce 
framework on iterative algorithms, Spark, an in-memory 
cluster-computing platform, has been proposed.It has 
emerged as a popular framework for large-scale data 
processing and analytics. 
  

- In this work,consider a distributed Newton method for 
solving logistic regression as well linear SVM and 
implement it on Spark. 
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- Linear classification on one machine is a mature technique: 
 millions of data can be trained in a few seconds.   
 
- What if the data are even bigger than the capacity of our  
  machine? 

Solution 1: get a machine with larger memory/disk.  
-> The data loading time would be too lengthy.  

Solution 2: distributed training. 
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- In distributed training, data loaded in parallel to reduce  
the I/O time. (e.g. HDFS) 

- With more machines, computation is faster. 

- But communication and synchronization cost become 
significant.  

- To keep the training efficiency, we need to consider 
algorithms with less communication cost, and examine 
implementation details carefully.  
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- Why Spark?

MPI (Snir and Otto, 1998) is e cient, but does not 
support fault tolerance. 

MapReduce (Dean and Ghemawat, 2008) supports 
fault tolerance, but is slow in communication. 

Spark combines advantages of both frameworks. 

Communications conducted in-memory. 
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- Why Spark?

Spark combines advantages of both frameworks. 

Communications conducted in-memory. 

Supports fault tolerance.  

- However, Spark is new and still under development.
(2014) 

- Therefore it is necessary to examine important 
implementation issues to ensure efficiency.
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- Only the master-slave framework.  

- Data fault tolerance: Hadoop Distributed File System 
(Borthakur, 2008).  

- Computation fault tolerance: Read-only Resilient 
Distributed Datasets (RDD) and lineage (Zaharia et al., 
2012).  
Basic idea: reconduct operations recorded in lineage on 
immutable RDDs.  
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- Lineage (Zaharia et al., 2012). 
Spark firstly creates a logical plan (namely data dependency graph) for each application.
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- Lineage (Zaharia et al., 2012). 
Then it transforms the logical plan into a physical plan (a DAG graph of map/reduce stages 
and map/reduce tasks). 
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- Lineage (Zaharia et al., 2012). 
 After that, concrete map/reduce tasks will be lanuched to process the input data.
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package org.apache.spark.examples
import java.util.Random
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.SparkContext._
/**
  * Usage: GroupByTest [numMappers] [numKVPairs] 
[valSize] [numReducers]
  */
object GroupByTest {
  def main(args: Array[String]) {
    val sparkConf = new SparkConf().setAppName("GroupBy 
Test")
    var numMappers = 100
    var numKVPairs = 10000
    var valSize = 1000
    var numReducers = 36
    val sc = new SparkContext(sparkConf)
    val pairs1 = sc.parallelize(0 until numMappers, 
numMappers).flatMap { p =>
      val ranGen = new Random
      var arr1 = new Array[(Int, Array[Byte])]
(numKVPairs)
      for (i <- 0 until numKVPairs) {
        val byteArr = new Array[Byte](valSize)
        ranGen.nextBytes(byteArr)
        arr1(i) = (ranGen.nextInt(Int.MaxValue), 
byteArr)
      }
      arr1
    }.cache
    // Enforce that everything has been calculated and 
in cache
    pairs1.count
    println(pairs1.groupByKey(numReducers).count)
    sc.stop()
  }
}

GroupByTest.scala- Lineage (Zaharia et al., 2012). 
spark code example
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package org.apache.spark.examples
import java.util.Random
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.SparkContext._
/**
  * Usage: GroupByTest [numMappers] [numKVPairs] 
[valSize] [numReducers]
  */
object GroupByTest {
  def main(args: Array[String]) {
    val sparkConf = new SparkConf().setAppName("GroupBy 
Test")
    var numMappers = 100
    var numKVPairs = 10000
    var valSize = 1000
    var numReducers = 36
    val sc = new SparkContext(sparkConf)
    val pairs1 = sc.parallelize(0 until numMappers, 
numMappers).flatMap { p =>
      val ranGen = new Random
      var arr1 = new Array[(Int, Array[Byte])]
(numKVPairs)
      for (i <- 0 until numKVPairs) {
        val byteArr = new Array[Byte](valSize)
        ranGen.nextBytes(byteArr)
        arr1(i) = (ranGen.nextInt(Int.MaxValue), 
byteArr)
      }
      arr1
    }.cache
    // Enforce that everything has been calculated and 
in cache
    pairs1.count
    println(pairs1.groupByKey(numReducers).count)
    sc.stop()
  }
}

GroupByTest.scala

[1]. Initialize SparkConf. 
[2]. Initialize numMappers=100, numKVPairs=10,000, valSize=1000, numReducers= 
36. 
[3]. Initialize SparkContext, which creates the necessary objects and actors for the 
driver. 
[4].Each mapper creats an arr1: Array[(Int, Byte[])], which has numKVPairs 
elements. Each Int is a random integer, and each byte array's size is valSize. We can 
estimate Size(arr1) = numKVPairs * (4 + valSize) = 10MB, so that Size(pairs1) = 
numMappers * Size(arr1) ＝1000MB. 

[5].Each mapper is instructed to cache its arr1 array into the memory. 
[6].The action count() is applied to sum the number of elements in arr1 in all 
mappers, the result is numMappers * numKVPairs = 1,000,000. This action triggers 
the caching of arr1s. 
[7].groupByKey operation is performed on cached pairs1. The reducer number 
(a.k.a., partition number) is numReducers. Theoretically, if hash(key) is evenly 
distributed, each reducer will receive numMappers * numKVPairs / numReducer ＝ 

27,777 pairs of (Int, Array[Byte]), with a size of Size(pairs1) / numReducer = 27MB. 
[8].Reducer aggregates the records with the same Int key, the result is (Int, 
List(Byte[], Byte[], ..., Byte[])). 
[9].Finally, a count() action sums up the record number in each reducer, the final 
result is actually the number of distinct integers in pairs1.

- Lineage (Zaharia et al., 2012). 
spark code explanation

Apache Spark (skip) 
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- Read-only Resilient Distributed Datasets (RDD) 

RDD is a mechanism capable of holding the data to be repeatedly used in the memory. 
MapReduce of Hadoop had been held, fault tolerance, data locality, scalability has taken 
over as it is.

1.an RDD is a read-only, partitioned 
collection of records.  

2.an RDD has enough information 
about how it was derived from other 
datasets (its lineage)  

3.persistence and partitioning 

4.lazy operations 



Apache Spark  32

- Read-only Resilient Distributed Datasets (RDD) 

reference 

- Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-
Memory Cluster Computing 
http://www-bcf.usc.edu/~minlanyu/teach/csci599-fall12/papers/
nsdi_spark.pdf  

- My article of Qiita 
http://qiita.com/Hiroki11x/items/4f5129094da4c91955bc

http://www-bcf.usc.edu/~minlanyu/teach/csci599-fall12/papers/nsdi_spark.pdf
http://qiita.com/Hiroki11x/items/4f5129094da4c91955bc
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Most linear classification models consider the following optimization problem 

{(xi,yi)}li=1, xi ∈ Rn, yi ∈ {−1,1}, ∀i, :Given a set of training label-instance pairs  
C > 0 : User-specified parameter   

ξ(w;xi,yi) : loss function 
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Most linear classification models consider the following optimization problem 

The objective function f  has two parts: the regularizer that controls the complexity of 
the model, and the loss that measures the error of the model on the training data. The 
loss function ξ(w;xi,yi)  is typically a convex function in w.

regularizer loss function



Logistic Regression and Linear Support 
Vector Machine 

36

regularizer loss function

Problem (1) is referred as L1-loss and L2-loss SVM if (2) and (3) is used, respectively.  

It is known that (2) and (3) are differentiable while (2) is not and is thus more difficult to 
optimize. Therefore, we focus on solving LR and L2-loss SVM in the rest of the paper. 
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regularizer loss function

Problem (1) is referred as LR if (4) is used.



Logistic Regression and Linear Support 
Vector Machine 

38

Most linear classification models consider the following optimization problem 

{(xi,yi)}li=1, xi ∈ Rn, yi ∈ {−1,1}, ∀i, :Given a set of training label-instance pairs  
C > 0 : User-specified parameter   

ξ(w;xi,yi) : loss function 

Use a trust region Newton method to minimize f(w) (Lin and Mor é, 1999). 
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- Trust region Newton method is a type of truncated Newton approach. 

- We consider the trust region method (Lin and Mor´e, 1999), which is a 
truncated Newton method to deal with general bound-constrained 
optimization problems (i.e., variables are in certain intervals). 

- At each iteration of a trust region Newton method for minimizing f(w), we 
have an iterate wt, a size ∆t of the trust region, and a quadratic model.

Most linear classification models consider the following optimization problem 

To discuss Newton methods, we need the Hessian of f(w):
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- Trust region Newton method is a type of truncated Newton approach.

- To save time, one may use only an“approximate” Newton direction in the 
early stages of the outer iterations.  

- Such a technique is called truncated Newton method (or inexact Newton 
method).
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- Newton's method assumes that the function can be locally approximated as 
a quadratic in the region around the optimum, and uses the first and second 
derivatives to find the stationary point. 

- In higher dimensions, Newton's method uses the gradient and the Hessian 
matrix of second derivatives of the function to be minimized.

To discuss Newton methods, we need the Hessian of f(w):
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At iteration t, given iterate wt and trust region ∆t > 0, solve
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(6) is the second-order Taylor approximation of 

Adjust the trust region size by ρt.  
If n is large:             ∈ Rn×n is too large to store.  
Consider Hessian-free methods. 
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(6) is the second-order Taylor approximation of 

Because            is too large to be formed and stored, a Hessian-free 
approach of applying CG (Conjugate Gradient) iterations is used to 
approximately solve (5) .

At each CG iteration we only need to obtain the Hessian-vector 
product            with some vector            generated by the CG 
procedure.



Use a conjugate gradient (CG) method. 

CG is an iterative method: only needs            for some           at 
each iteration.(it’s not necessary to calculate ∇2f (wt )) 

For LR and SVM, at each CG iteration we compute  

is the data matrix and D is a diagonal matrix with values 
determined by wt. 

Trust Region Newton Method  44

Hessian-free methods.



- an algorithm for the numerical solution of particular systems of 
linear equations, namely those whose matrix is symmetric and 
positive-definite.

Conjugate gradient (CG) method (skip) 45



Distributed Hessian-vector Products 

- (8) is bottleneck which is the product between the Hessian matrix 
r2f(wt) and the vector si  

- This operation can possibly be parallelized in a distributed 
environment as parallel vector products.  

46



Distributed Hessian-vector Products 

- first partition the data matrix X and the labels Y into disjoint p parts. 

- reformulate the function, the gradient and the Hessian- vector 
products of (1) as follows.

47



Distributed Hessian-vector Products 

Data matrix X is distributedly stored 

The functions             and          are the map functions operating on 
the k-th partition. We can observe that for computing (12)-(14), only 
the data partition Xk is needed in computing. 

48



Distributed Hessian-vector Products 

- p ≥ (#slave nodes) for parallelization.  
- Two communications per operation:  

1. Master sends wt and the current v to the slaves.  
2. Slaves return X T Di Xi v to master.  

- The same scheme for computing function/gradient. 

Data matrix X is distributedly stored 

49
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- Spark is implemented in Scala, we use the same 
language. So, The implementation of Spark LIBLINEAR 
involves complicated design issues resulting from Java, 
Scala and Spark.  

For example, in contrast to traditional languages 
like C and C++, similar expressions in Scala may 
easily behave differently.  

It is hence easy to introduce overheads in 
developing Scala programs   
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- They analyze the following different implementation 
issues for efficient computation, communication and 
memory usage. 

•Programming language:  
   ◦ Loop structure 
   ◦ Data encapsulation  
•Operations on RDD: 
   ◦ Using mapPartitions rather than map  
   ◦ Caching intermediate information or not  
•Communication: 
   ◦ Using broadcast variables 
   ◦ The cost of the reduce function 
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- They analyze the following different implementation 
issues for efficient computation, communication and 
memory usage. 

•Programming language:  
   ◦ Loop structure 
   ◦ Data encapsulation  
•Operations on RDD: 
   ◦ Using mapPartitions rather than map  
   ◦ Caching intermediate information or not  
•Communication: 
   ◦ Using broadcast variables 
   ◦ The cost of the reduce function 

related to Java and Scala 

related to Spark  
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- From (12)-(14), clearly the computational bottleneck at 
each node is on the products between the data matrix Xk 

(or Xk
T ) and a vector v.  

To compute this matrix-vector product, a loop to conduct 
inner products between all xi ∈ Xk and v is executed many 
times, it is the main computation in this algorithm.

Scala Issue: Loop structures  
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- From (12)-(14), clearly the computational bottleneck at 
each node is on the products between the data matrix Xk 

(or Xk
T ) and a vector v.  

To compute this matrix-vector product, a loop to conduct 
inner products between all xi ∈ Xk and v is executed many 
times, it is the main computation in this algorithm. 

- Although a for loop is the most straightforward way to 
implement an inner product, unfortunately, it is known 
that in Scala, a for loop may be slower than a while 
loop.2 

Scala Issue: Loop structures  
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- To study this issue, we discuss three methods to 
implement the inner product: for-generator, for-range 
and while. 

for-generator

for-range

while

Scala Issue: Loop structures  



62Experiment Data Information 

density: avg. ratio of non-zero features per instance.  
ps : used for the experiments of loops and encapsulation  
pe : applied for the rest. In the experiments of loops and encapsulation 
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- Use one node in this experiment. 
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- Use two nodes in this experiment. 
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two nodesone node

The reason is that when data is split between two nodes, 
each node requires conducting fewer loops. 
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- The translation comes with overheads and the combination 
becomes complicated when more operations are applied.  

- The optimization of a for expression has not been a focus 
in Scala development because this expression is too 
imperative to consist with the functional programming 
principle. 

- In contrast, a while loop is a loop rather than an 
expression.

Scala Issue: Loop structures  
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- The translation comes with overheads and the combination 
becomes complicated when more operations are applied.  

- The optimization of a for expression has not been a focus 
in Scala development because this expression is too 
imperative to consist with the functional programming 
principle. 

- In contrast, a while loop is a loop rather than an 
expression. 

- The while loop is chosen to implement their software. 

Scala Issue: Loop structures  
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- follow LIBLINEAR to represent data as a sparse matrix, 
where only non-zero entries are stored.  
This strategy is important to handle large-scale data. 

Scala Issue: Encapsulation  

For example, for a given 5-dimensional feature 
vector (2, 0, 0, 8, 0), only two index- value pairs of 
non-zero entries are stored. 

- Investigate how to store the index-value information such as 
“1:2” and “4:8” in memory. The discussion is based on two 
encapsulation implementations: the Class approach (CA) 
and the Array approach (AA).  
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- CA encapsulates a pair of index and feature value into a 
class, and maintains an array of class objects for each 
instance.

Scala Issue: Encapsulation  
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- CA encapsulates a pair of index and feature value into a 
class, and maintains an array of class objects for each 
instance.

Scala Issue: Encapsulation  

- In contrast, AA directly uses two arrays to store indices and 
feature values of an instance.
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- CA encapsulates a pair of index and feature value into a 
class, and maintains an array of class objects for each 
instance.

Scala Issue: Encapsulation  

- In contrast, AA directly uses two arrays to store indices and 
feature values of an instance.

- AA is faster because it directly accesses indices and values, 
while the CPU cache must access the pointers of class 
objects first if CA is applied  
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- The second term of the Hessian-vector product (7) can be 
represented as the following form. 

RDD: Using mapPartitions rather than map   

where a(yi,xi,w,v) = Di,ixTi v, can be computed by either 
map or mapPartitions. 
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- Then map and reduce operations can be directly applied. 
- Considerable overheads occur in the map operations 

because for each instance xi, an intermediate vector a(xi, yi, 
w, v)xi is created. 

RDD: Using mapPartitions rather than map   
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- In addition to the above-mentioned overheads, the reduce 
function in Algorithm 3 involves complicated computation. 

- Then map and reduce operations can be directly applied. 
- Considerable overheads occur in the map operations 

because for each instance xi, an intermediate vector a(xi, yi, 
w, v)xi is created. 

RDD: Using mapPartitions rather than map   



78

where a(yi,xi,w,v) = Di,ixTi v, can be computed by either 
map or mapPartitions. 

RDD: Using mapPartitions rather than map   
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- To avoid the overheads and the complicated additions of 
sparse vectors, they consider the mapPartitions operation in 
Spark. 

RDD: Using mapPartitions rather than map   
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- This setting ensures that computing a Hessian-vector 
product involves only p intermediate vectors.  

- The overheads of using map- Partitions is less than that of 
using map with l intermediate vectors. 

RDD: Using mapPartitions rather than map   



81

- Note that the technique of using mapPartitions can also be 
applied to compute the gradient.  

RDD: Using mapPartitions rather than map   
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- Use 16 nodes in this experiment. 

- the longer running time of map implies its higher 
computation cost  
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- The calculations of (12)-(14) all involve the vector (Yk Xk w). 

- Instinctively, if this vector is cached and shared between 
different operations, the training procedure can be more 
efficient.  

- In fact, the single-machine package LIBLINEAR uses this 
strategy in their implementation of TRON. 

RDD: Caching intermediate information or not  
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- Spark does not allow any single operation to gather 
information from two different RDDs and run a user-
specified function such as (12), (13) or (14).  

- It is necessary to create one new RDD per iteration to store 
both the training data and the information to be cached.  

- Unfortunately, this approach incurs severe overheads in 
copying the training data from the original RDD to the new 
one. 

RDD: Caching intermediate information or not  
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- Based on the above discussion, they decide not to cache (Yk 

Xk w) because recomputing them is more cost-effective.  

- This example demonstrates that specific properties of a 
parallel programming framework may strongly affect the 
implementation.  

RDD: Caching intermediate information or not  
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- In Algorithm 2, communication occurs at two places. The 
first one is sending w and v from the master machine to the 
slave machines, and the second one is reducing the results 
of (12)-(14) to the master machine. 

RDD: Communication  
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- In Spark, when an RDD is split into partitions, one single 
operation on this RDD is divided into tasks working on 
different partitions.  

- Under this setting, many redundant communications occur 
because just need to send a copy to each slave machine 
but not each partition.  

- In such a case where each partition shares the same 
information from the master, it is recommended to use 
broadcast variables 

RDD: Using Broadcast Variables  
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- Use broadcast variables to improve. 

RDD: Using Broadcast Variables  

Read-only variables shared among partitions in the 
same node.

Cached in the slave machines.



89RDD: The Cost of the reduce Function   

- Slaves to master: Spark by default collect results from each 
partition separately. 

- Use the coalesce function: Merge partitions on the same 
node before  communication.  



90RDD: The Cost of the reduce Function   

Use 16 nodes in this experiment. 

Fig. 4. Broadcast variables and coalesce: We present running time (in seconds) versus the relative objective value difference. We run LR with C = 1 
on 16 nodes. Note that broadcast-cl represents the implementation with both broadcast variables and the coalesce function. 



91RDD: The Cost of the reduce Function   

- for data with few features like covtype and webspam, 
adopting broadcast variables slightly degrades the 
efficiency because the communication cost is low and 
broadcast variables introduce some overheads. 

- Regarding the coalesce function, it is bene- ficial for all data 
sets. 
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- MLlib is a machine learning library implemented in Apache 
Spark.  

- A stochastic gradient method for LR and SVM (but default 
batch size is the whole data). 
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Use 16 nodes in this experiment. 

Fig. 6. Comparison with MLlib: We present running time (in seconds, log scale) versus the relative objective value difference. We run LR with C = 1 
on 16 nodes. 
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- The convergence of MLlib is rather slow in comparison with 
Spark LIBLINEAR.  

- The reason is that the GD method is known to have slow 
convergence, while TRON enjoys fast quadratic local 
convergence for LR. Note that as MLlib requires more 
iterations to converge, the communication cost is also 
higher.  
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- A C++/MPI implementation by Zhuang et al. (2014) of the 
distributed trust region Newton algorithm in this paper. 

- No fault tolerance. 

- Should be faster than our implementation:  

More computational e cient: implemented in C++.
More communicational e cient: the slave-slave 
structure with all-reduce only communicates once 
per operation.

- Should be faster, but need to know how large is the 
difference.  
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m means multi-core

- using multiple cores is not beneficial on yahoo-japan and 
yahoo-korea.  

- A careful profiling shows that the bottleneck of the training 
time on these data sets is communication and using more 
cores does not reduce this cost.  
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- Consider a distributed trust region Newton algorithm on 
Spark for training LR and linear SVM. 

- Many implementation issues are thoroughly studied with 
careful empirical examinations. 

- Implementation in this paper on Spark is competitive with 
state-of-the-art packages. (2014)

- Spark LIBLINEAR is an distributed extension of LIBLINEAR 
and it is available. 




