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Abstract

• The	most	popular	machine-learning	algorithms	for	
large	amounts	of	data	are	CNNs	and	DNNs.
• Computationally	and	memory	intensive.
• Their	memory	footprint	is	not	beyond	the	capacity	of	
the	on-chip	storage.

• This	article	introduced	a	custom	multi-chip	
machine-learning	architecture.
• Achieve	a	speedup	of	450.65x	over	a	GPU.
• Reduce	the	energy	by	150.31x	on	average	for	a	64-chip	
system.
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1.	Introduction

• Machine-Learning	algorithms	are	popular	in	many	
applications	and	cloud	services.
• Deep	Learning	(Convolutional	and	Deep	Neural	
Networks)	has	been	used	in	a	broad	range	of	
applications.
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Deep	Learning	Accelerators

• Some	research	groups	designed	accelerators	for	
heterogeneous	multi-cores.
• Neural	network	accelerator	for	multi-layer	perceptrons
• Hardware	neural	network	for	approximating	any	
program	function
• Accelerator	for	Deep	Learning	(for	CNNs	and	DNNs)

• These	accelerators	have	neural	network	size	
limitations.
• Only	few	tens	of	neurons	can	be	executed.
• Neurons	and	synapses	intermediate	values	have	to	be	
stored	in	the	main	memory.
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Contributions	of	This	Paper

• Presented	an	architecture
• Composed	of	interconnected	nodes,	each	containing	
computational	logic,	eDRAM,	and	the	router	fabric.
• The	node	is	implemented	down	to	the	place	and	route	
at	28nm

• Evaluated	it	with	up	to	64	nodes
• Using	the	largest	existing	neural	network	layers.
• Possible	to	achieve	450.65x	speed-up
• 150.31x	energy	reduction
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2.	State-of-the-art	Machine-
Learning	Techniques
• The	most	popular	machine-learning	algoritms are	
CNNs	and	DNNs.
• CNNs	and	DNNs	are	also	distinguished	by	their	
implementation	of	convolutional	layers	detailed	
thereafter.
• CNN:	Particularly	efficient	for	image	applications	and	
any	application	which	can	benefit	from	the	implicit	
translation	invariance	properties	of	their	convolutional	
layers.
• DNN:	more	complex	neural	networks	but	widely	
applicable	to	speech	recognition,	web	search,	etc.
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A.	Main	Layer	Types

• A	CNN	or	a	DNN	is	a	sequence	of	multiple	instances	
of	four	types	of	layers.
• Convolutional	layers	(CONV)
• Local	response	normalization	layers	(LRN)	
• Pooling	layers	(POOL)
• Classifier	layers	(CLASS)
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Convolutional	Layers	(CONV)

• They	implement	a	set	of	filters	to	identify	
characteristic	elements	of	the	input	data.
• Filter	is	defined	by	Kx *	Ky coefficients	(kernel).
• Form	the	layer	synaptic	weights	from	learning.

• DNN:	The	kernels	usually	have	different	synaptic	
values	for	each	output	neuron.
• CNN:	The	kernels	are	shared	across	all	neurons	of	
the	same	output	feature	map.
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Local	Response	Normalization	
Layers	(LRN)
• LRN	implements	competition	between	neurons	at	
the	same	location,	but	in	different	(neighbor)	
feature	maps.
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Pooling	Layers	(POOL)

• They	compute	the	max	or	average	over	a	number	
of	neighbor	points.
• Reduce	the	input	layer	dimensionality,	which	allows	
coarse-grain	features	to	emerge
• Identified	by	filters	in	the	next	convolutional	layers.
• They	have	no	learned	parameter	(no	synaptic	weight).

14



Classifier	Layers	(CLASS)

• The	result	of	the	sequence	of	CONV,	POOL	and	LRN	
layers	is	then	fed	to	one	or	multiple	these	layers.
• Typically	fully	connected	to	its	Ni inputs	(and	it	has	No
outputs)	

• They	correlate	the	different	features	extracted	from	
the	other	steps	and	the	output	categories.
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B.	Benchmarks

• Used	10	of	the	popular	
layers	as	benchmarks.
• The	sliding	window	
strides	of	CONV	are	1,	
but	the	first	CONV	layer	
of	the	full	NN,	where	
they	are	4.
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C.	Inference	vs.	Training

• A	frequent	and	important	misconception	about	
neural	networks	is	that	on-line	learning is	necessary	
for	many	applications.
• On-line	learning:	training	or	backward
• Off-line	learning:	testing	or	feed-forward

• Designed	the	architecture	to	support	the	most	
common	learning	algorithms	in	order	to	also	serve	
as	an	accelerator	for	machine-learning	researchers.	

17



3.	The	GPU	Option

• The	most	favored	approach	for	implementing	CNNs	
and	DNNs	are	GPUs.
→	Implemented	in	CUDA	the	layers.	
→	Also	implemented	in	C++	as	baseline.	
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GPU	Performance

• The	GPU	can	provide	a	speedup	of	58.82x	over	a	
SIMD	on	average.
• The	GPU	is	particularly	efficient	on	LRN	layers.
• It	has	a	dedicated	exponential	instruction,	a	
computation	which	accounts	for	most	the	LRN	execution	
time	on	SIMD.
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GPU	Problems

• GPU	area	cost	is	high
• The	number	of	hardware	operators.
• The	need	to	remain	reasonably	general-purpose.

• The	total	execution	time	remains	large	
• Up	to	18.03	seconds	in	the	CLASS1	layer.
• Not	compatible	with	the	milliseconds	response	time	
required	by	many	industrial	applications.

• The	GPU	energy	efficiency	is	moderate
• With	an	average	power	of	over	74.93W	for	the	NVIDIA	
K20M	GPU.
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4.	The	Accelerator	Option

• Recently,	the	DianNao[1] accelerator	was	proposed	
for	the	fast	and	low-energy	execution	of	the	
inference	of	large	CNNs	and	DNNs.
• Reimplemented a	cycle-level	bit-level	version	of	
DianNao,	and	we	use	the	memory	latency	
parameters.
• Introduced	even	larger	classifier	layers
• They	are	large	convolutional	layers	with	respectively	
shared	and	private	kernels.
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DianNao Architecture

• Neural	Functional	Unit	
(NFU):	a	pipelined	
version	of	the	typical	
computations.
• NBin,	NBout:	
input/output	buffer	for	
input/output	neurons.
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5.	A	Machine-Learning	
Supercomputer
• We	design	the	architecture	around	the	central	
property,	specific	to	DNNs	and	CNNs,	that	the	total	
memory	footprint	of	their	parameters,	while	large	
(up	to	tens	of	GB),	can	be	fully	mapped	to	on-chip	
storage	in	a	multi-chip	system	with	a	reasonable	
number	of	chips.	
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A.	Overview

• Adopted	the	following	design	principles	to	tackle	
memory	storage	and	bandwidth	issue.
1. Synapses	are	always	stored	close	to	the	neurons	which	will	

use	them,	minimizing	data	movement,	saving	both	time	
and	energy.

2. Asymmetric	architecture	where	each	node	footprint	is	
massively	biased	towards	storage	rather	than	computations.

3. Transfer	neurons	values	rather	than	synapses	values	
because	the	former	are	orders	of	magnitude	fewer.

4. Enable	high	internal	bandwidth	by	breaking	down	the	local	
storage	into	many	tiles.

• The	general	architecture	is	a	set	of	nodes,	one	per	chip,	
all	identical,	arranged	in	a	classic	mesh	topology.	
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B.	Node

• Synapses	Close	to	Neurons
• High	Internal	Bandwidth
• Configurability	(Layers,	Inference	vs.	Training)
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Synapses	Close	to	Neurons

• To	locate	the	storage	for	synapses	close	to	neurons	
and	to	make	it	massive	is	fundamental	for	the	
architecture.
• For	both	inference	and	training.
• Having	all	synapses	next	to	computational	operators	
provides	little	data	transfers	and	high	internal	
bandwidth.	
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eDRAM Layout

• Split	the	eDRAM into	four	banks	and	interleaved	
the	synapses	rows	among	the	four	banks.
• Placed	and	routed	this	design	at	28nm.
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High	Internal	Bandwidth

• Adopt	a	tile-based	design	to	
avoid	this	congestion.
• The	output	neurons	are	
spread	out	in	the	different	
tiles.
• Each	NFU	can	
simultaneously	process	16	
input	neurons	of	16	output	
neurons.
• All	the	tiles	are	connected	
through	a	fat	tree	for	
broadcasting	and	collecting.
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Transferring	Neuron	Values

• The	intermediate	values	of	these	neurons	are	saved	
back	locally	in	the	tile	eDRAM.
• When	the	computation	of	an	output	neuron	is	
finished,	the	value	is	sent	through	the	fat	tree	to	
the	center	of	the	chip	to	the	corresponding	central	
eDRAM bank.	
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Configurability
(Layers,	Inference	vs.	Training)
• Adapt	the	tile,	and	the	NFU	pipeline	in	particular,	to	
the	different	layers	and	the	execution	mode.
• Both	inference	and	training

• NFU	is	decomposed	into	a	number	of	hardware	
blocks.
• adder	block	
• multiplier	block
• max	block
• transfer	block
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Fixed-Point	Computations

• Each	hardware	block	is	designed	to	allow	the	
aggregation	of	16-bit	operators	into	fewer	32-bit	
operators.
• The	overhead	cost	of	aggregable operators	is	very	low.
• They	may	either	reduce	the	accuracy	and/or	increase	
the	convergence	of	training.	
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C.	Interconnect

• The	amount	of	communications	is	not	a	bottleneck	
except	for	a	few	layers	and	many-node	systems.
• Neurons	are	the	only	values	transferred	and	heavily	
reused	within	each	node.

• Used	commercially	available	high-performance	
interfaces	and	a	HyperTransport (HT)	2.0	IP	block.
• Topology:	2D	mesh
• Each	chip	must	connect	to	four	neighbors	via	four	HT2.0	
IP	blocks.
• May	be	later	revisited	in	favor	of	a	more	efficient	3D.
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Router

• Next	to	the	central	block	of	the	tile,	we	implement	
the	router	(Figure	5	at	p.28)
• Wormhole	routing
• Five	input/output	ports	
• Each	input	port	contains	8	virtual	channels	
• The	router	has	four	pipeline	stages:	RC,	VA,	SA,	ST
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D.	Overall	Characteristics

• 16	tiles	per	node	
• 4	eDRAM banks	contains	1024	rows	of	4096	bits	
per	tile
• The	total	eDRAM capacity	in	one	tile	is	2MB

• Clock	the	NFU	at	the	same	frequency	(606MHz) as	
the	eDRAM available	in	the	28nm	technology
• To	avoid	the	circuit	and	time	overhead	of	asynchronous	
transfers	
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E.	Programming,	Code	Generation	
and	Multi-Node	Mapping
• These	node	instructions	themselves	drive	the	
control	of	each	tile.
• The	control	circuit	of	each	node	generates	tile	
instructions	and	sends	them	to	each	tile.	
• The	spirit	of	a	node	or	tile	instruction	is	to	perform	the	
same	layer	computations	on	a	set	of	contiguous input	
data.

• The	control	provides	processing	one	row at	a	time
or	batch	learning	modes.
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E.	Programming,	Control	and	
Code	Generation
• The	programming	
requirements	are	low,	the	
architecture	essentially	
has	to	be	configured	and	
the	input	data	is	fed	in.
• The	input	data	is	initially	
partitioned	across	nodes	
and	stored	in	a	central	
eDRAM bank.

• The	neural	network	
configuration	is	
implemented	in	the	form	
of	a	sequence	of	node	
instructions.
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E.	Multi-Node	Mapping
• At	the	end	of	a	layer,	each	node	contains	a	set	of	
output	neurons	values,	stored	back	in	the	central	
eDRAM.
• The	input	neurons	are	distributed	across	all	nodes,	
in	the	form	of	3D	rectangles	corresponding	to	all	
feature	maps	of	a	subset	of	a	layer.
• Finally,	communications	can	be	high	for	classifier	
layers	because	each	output	neuron	uses	all	input	
neurons.	
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6.	Methodlogy

• For	a	series	of	experiments,	the	following	tools	are	
used.
• Verilog	(CAD	Tools)
• Time,	eDRAM and	inter-node	measurements
• GPU

• To	maximize	the	quality	of	the	baseline,	the	
following	programming	environment	are	used.
• CUDA	Convnet	
• Intel	SIMD	CPU
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A.	Measurements

• Verilog	(CAD	Tools)
• Synopsys	Design	Compiler	for	the	synthesis	
• ICC	Compiler	for	the	layout
• Synopsys	PrimeTimePX	for	power	consumption	estimation

• Time,	eDRAM and	inter-node	measurement
• VCS	to	simulate	the	node	RTL	
• eDRAMmodel	which	includes	destructive	reads	
• Periodic refresh of a	banked eDRAM running
• Cycle-level Booksim2.0	interconnectionnetwork	simulator

• GPU (as	a	baseline)
• NVIDIA	K20M	GPU	of	Section	III	
• Report	its	own	power	usage
• Used	CUDA	SDK	5.5	to	compile	the	CUDA	version	of	neural	network	
codes
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B.	Baseline

• Extracted	the	CUDA	versions	from	CUDA	Convnet (a	
tuned	open-source	version).
• To	maximize	the	baseline	quality.

• Compared	it	against	the	C++	version	run	on	the	
Intel	SIMD	CPU.
• To	assess	the	quality	of	this	baseline

• Compared	the	SIMD	version	against	a	non-SIMD	
version	
• To	observe	an	average	speedup	of	the	SIMD	version
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7.	Experiment	Results

• In	this	chapter,	the	following	characteristics	and	
result	of	experiments	are	presented.
• The	main	characteristics	of	the	node	layout.
• The	performance and	energy	results of	the	multi-chip	
system.	
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A.	Main	Characteristics

• Chip	area
• 44.53%	is	used	by	the	16	tiles
• 26.02%	by	the	four	HT	IPs
• 11.66%	by	the	central	block	
(including	4MB	eDRAM,	router	
and	control	logic)	

• (47.55%	by	memory	cells	)
• The	peak	power	consumption:	
15.97	W
• tiles:	38.53%
• memory	cells	(tile	eDRAMs +	
central	eDRAM):	38.30%	

• combinational	logic:	37.97%
• registers:	19.25%
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B.	Performance

• Compared	to	the	GPU	
baseline,	the	speedup	is	
up	to	2595.23x	for	64	
nodes	in	CONV1	layer.
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C.	Energy	Consumption

• These	architectures	can	
reduce	the	energy	by	up	to	
330.56x	for	inference.
• The	minimum	energy	
improvement	is	47.66x	for	
CLASS1	with	64	nodes.

• For	these	layers,	the	energy	
benefit	remains	relatively	stable	
as	the	number	of	nodes	is	
scaled	up.

• For	training	and	initialization,	
the	energy	reduction	of	our	
architecture	with	respect	to	
the	GPU	baseline	on	training	
is	up	to	180.42x.
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8.	Related	Work
(Machine-Learning)
• Services	that	are	computationally	intensive,	and	
considering	the	energy	and	operating	costs	of	data	
centers,	custom	architectures	could	help	from	both	a	
performance	and	energy	perspective.
• But	such	web	services	are	only	the	most	visible	
applications.
• Even	there	is	an	inherit	risk	in	hardware,

• Hardware	can	rapidly	evolve	with	machine-learning	progress,	
much	like	it	currently	(and	rapidly)	evolves	with	technology	
progress.

• That	hardware	needs	not	implement	and	follow	each	and	
every	evolution.

• End	users	are	already	accustomed	to	the	notion	of	software	
libraries,	and	they	can	always	choose	between	fast	library.
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Related	Work
(Custom	Accelerators)
• Architecture	customization	is	increasingly	viewed	as	
one	of	the	most	promising	paths	forward.	
• Closer	to	the	target	algorithms	of	this	paper,	a	
number	of	studies	have	recently	advocated	the	
notion	of	neural	network	accelerators
• Either	to	approximate	any	function	of	a	program,	for	
signal-processing	tasks	or	specifically	for	machine-
learning	tasks	
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Related	Work
(Large-Scale	Custom	Architectures)
• There	are	few	examples	of	custom	architectures	
targeting	large-scale	neural	networks.	
• A wafer-scale	design	capable	of	implementing	
thousands	of	neurons	and	millions	of	synapses.	
• The	SpiNNaker system	is	a	multi-chip	supercomputer	
where	each	node	contains	20+	ARM9	cores	linked	by	an	
asynchronous	network.
• The	IBM	Cognitive	Chip	is	a	functional	chip	capable	of	
implementing	256	neurons	and	256K	synapses.

• Their	goal	is	the	emulation	of	biological	neurons,	
not	machine-learning	tasks.
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9.	Conclusions

• Showed	the	possibility	to	design	a	multi-chip	
architecture	for	CNNs	and	DNNs.
• Outperform	a	single	GPU	by	up	to	450.65x.
• Reduce	energy	by	up	to	150.31x	using	64	nodes.

• On	both	GPUs	and	recently	proposed	accelerators,	
such	algorithms	exhibit	good	speedups	and	area	
savings	respectively,	but	they	remain	largely	
bandwidth-limited.
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Future	Work

• To	improve	that	architecture:
• Increasing	the	clock	frequency	of	the	NFU.
• Multi-dimensional	torus	interconnects	to	improve	the	
scalability	of	large	classifier	layers.
• Investigating	more	flexible	control	in	the	form	of	a	
simple	VLIW	core	per	node.
• Associated	toolchain.

• A	tape-out	of	a	node	chip	is	planned	soon.
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My	Impression

• The	architecture	well	considers	Deep	Learning	
layers	and	algorithms.
• Four	types	of	layers	(CONV,	LRN,	POOL,	CLASS)
• It	minimizes	communication	overhead	by	the	
characteristic	of	neural	network	structure.

• The	performance	evaluations	are	performed	only	in	
simulators.
• Actual	machine	experiments	should	be	performed	even	
a	few	nodes.
• What	if	we	run	thousands	of	those	nodes?
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