
HPC presentation

Yoshitaka Sakurai (B4)

November 20, 2017



Paper

DCatch: Automatically Detecting Distributed Concurrency Bugs in

Cloud Systems

• Haopeng Liu(University of Chicago)

• Guangpu Li(University of Chicago)

• Jeffrey F. Lukman(University of Chicago)

• Jiaxin Li(University of Chicago)

• Shan Lu(University of Chicago)

• Haryadi S. Gunawi(University of Chicago)

• Chen Tian (Huawei R&D Center)

2 / 30



Introduction



Motivation

Distributed cloud software infrastructures have emerged as a

dominant backbone for modern applications.

But, it is challenging to guarantee reliablity due to wide-spreading

software bugs.

• DCbugs

• distributed concurrency bugs

• the most troublesome among all types of bugs in distributed

system

DCbugs are triggered by untimely interaction among nodes.

3 / 30



DCbugs in Hadoop

1. AM assign a task T to a container in NM

2. NM container tries to retrieve the content of task T from AM

3. T is canceled on the client’s request

4. NM container hangs (waiting forever for AM to return task T)
(T is already canceled in #3)

4 / 30



DCbugs is difficult to avoid,detect and debug

DCbugs is difficult to avoid, detect and debug

• non-deterministic

• hide in the huge staet space of distributed system spreading

across multiple nodes

This paper present the first attempts in building DCbug

detection tool for distributed systems.

5 / 30



Related work

Model checking

• Distributed system model checkers (dmck)

• dmck is powerful

• Dmck does not scale

• The more events included, the larger the state spaceto be

explored

Verification

• Strong solution (no false positive and negative)

• require thousands of lines of proof for every protocol

LCbug and DCbug detection

• LCbug is Local Concurrency bugs

• Many bug detectors for LCbug have been proposed
6 / 30



Opportunities

DCbugs have fundamentally similar root causes as LCbugs

• Both are conflicting accesses to the same memory location

7 / 30



DCbugs detection can re-use the theoretical foundation and work

flow of LCbugs detection.

• abstract the causality relationship in distributed system into

HB graph

• identify all pairs of concurrent conflicting memory access

based on HB graph and treat them as DCbugs candidates.

HB graph(Happens-Before Graph) is discribed below

8 / 30



Challenge

DCbugs is differ from LCbugs in several aspects

• More complicated timing relationship

• concurrent accesses are conducted not only at thread level but

also node level and event level

• Larger scales of system and bugs

• Distributed system naturally run at a larger scale than

single-machine

• the larger bug scale also demands new techniques in bug

impact analysis and bug exposing

• More subtle fault tolerance

• Distributed systems contain inherent redundancy and aim to

tolerate component failures.

• So it is difficult to judge what are truly harmful bugs

9 / 30



DCatch

This paper present DCatch

DCatch is a pilot solution in the world of DCbug detection The

design of the DCatch contains two stage

1. design HB model for distributed system

2. design DCatch tool components

10 / 30



DCatch Happens-Before(HB) Model



DCatch HB Model

Abstract a set of Happens Before rules.

o1
R⇒ o2

rule R represents one type of causality relationship between a pair

of operation

• This relation is transitive

• if o1 ⇒ o2 and o2 ⇒ o3 then o1 ⇒ o3

• if neither o1 ⇒ o2 nor o2 ⇒ o1 holds, they are concurrent.

11 / 30



Inter-node cuncurrency and communication

Nodes communicate with each other through message

Synchronus RPC(remote procedure call)

• node n1 call PRC function f implemented by node n2

• Rule-M rpc : Create(r , n1)
Mrpc

⇒ Begin(r , n2);

Rule-M rpc : End(r , n2)
Mrpc

⇒ Join(r , n1)

Asynchronous Socket

• node n1 sends a message m to node n2

• Rule-Msoc : Send(m, n1)
Msoc

⇒ Recv(m, n2)

12 / 30



Custom Push-Based Synchronization Protocol

• Node n1 updates a status s to a dedicated corrdination node

nc , and nc notifies all subscribed nodes n2 , about this update.

• Rule-Mpush : Update(s, n1) ⇒ Pushed(s, n2)

Decompose Rule-Mpush into three chains of causality relationship

• Update(s, n1) ⇒ Recv(s, nc)

• Recv(s, nc) ⇒ Send(s, nc)

• Send(s, nc) ⇒ Pushed(s, n2)

Custom Pull-Based Synchronization Protocol

• node n2 keeps polling n1, about status s in node n1

• Rule-Mpull : Update(s, n1)
Mpull

⇒ Pulled(s, n2)

13 / 30



Intra-node cuncurrencynd communication

Synchronus multi-threaded cuncurrency

• classic fork/join causality

• the creation of thread t happens before the execution of t

starts

• Rule-T fork : Create(t)
T fork

⇒ Begin(t)

• the end of thread t happens before the join of t

• Rule-T join : End(t)
T fork

⇒ Join(t)

Asynchronous event-driven concurrency

• event is created before begin

• Rule-E enq : Create(e)
E enq

⇒ Begin(e)

14 / 30



Sequential program ordering

• Rule-P req : o1
Preq

⇒ o2 if o1 occures before o2 during the

execution of a regular thread

• Rule-Pnreq : o1
Pnreq

⇒ o2 if o1 occures before o2 during the

execution of an event handler,a message handler, or an RPC

function

15 / 30



Example with No HB graph

• To understand the timing between R and W

• Use HB-Graph

16 / 30



Example with HB graph

W
Ppreg

⇒ Create(t)
T fork

⇒ Begin(t)
Preg

⇒
Create(OpenRegion,HMaster)

Mrpc

⇒ Begin(OpenRegion,HRS)
Pnreg

⇒
Create(e)

E enq

⇒ Begin(e)
Pnreg

⇒ Update(RS ...OPENED,HRS)
Mpush

⇒
Pushed(RS ...OPENED,HMaster)

Pnreg

⇒ R 17 / 30



DCatch tracing and trace analysis



DCatch tracing and trace analysis

Given Happens-Before Model, build the DCatch tool

1. Trace the necessary operations

2. Build the Happens-Before graphs and perform analysis on top

18 / 30



DCatch Tracing

DCatch produces a trace file at run time.

DCatch execute following tracing

• Memory-accesse tracing

• Exhaustive approach is too expensive

• Not trace all access

• DCbugs are triggered by inter-node interaction, not every

where in the software

• HB-related operation tracing

• Other tracing

• trace lock/unlock

19 / 30



HB-graph construction

HB-Graph

• DAG

• vertex v represents an operation o(v) recorded in DCatch
trace

• include memory access and HB-rule opration

• edge e v1
e−→ v2 represents v1 happens before v2

How to construct HB-Graph?

1. Execute application and generate trace file

2. From trace file, make vertex

3. Add edges following MTEP rules

20 / 30



DCbug candidate report

HB-Graph is huge

• 103 ∼ 106 nodes

• Naively analysis is too slow

To speed up analysis

• use the algorithm proposed by previous asynchronous race

detection work

• Effective Race Detection for Event-Driven Programs[OOPSLA

’13]

21 / 30



Staitc pruning



Static pruning

• Not all DCbug candidates can cause failures

• Avoid excessive false positive

• treat certain instructions in software as failure instruction

• failure instruction represent the occurrence of severe failure

To avoid excessive false positive...

• DCatch see if DCbug candidate impact towards the execution

of any failure instruction

• if DCatch fails to find any failure impact for DCbug

candidate, this DCbug candidate will be pruned out from the

DCatch bug list

22 / 30



DCbug triggering and validation



DCbug triggering and validation

DCatch bug report still may not be harmful. Because...

• Custom synchronization undefined by DCatch

• The concurrent execution may not lead to any failure

To reliably expose truly harmful DCbugs, build end-to-end

analysis-to-testing tool.

• an infrastructure that enable easy timing manipulation in

distributed systems

• an analysis tool that suggests how to use the infrastructure to

trigger a DCbug candidate

For DCbug candidate (s, t), this tool execute

• s → t

• t → s
23 / 30



Evaluation



Evaluation

• Benchmarks

• Cassanda

• HBase

• Hadoop

• ZooKeeper

• Machine

• Run each node of a distributed system in one virtual

machine(M1)

• A bug require twi physical machine (M1 & M2)

• Ubuntu14.04

• JVM1.7

• M1 : Xeon CPU E5-2620

• M2 : Core i7-3770

• 64GB

24 / 30



25 / 30



Bug detection result

• DCatch has successfully detected DCbugs for all benchmarks

• 5/32 is Benign bug report

• For 7/32, DCatch mistakenly reports

• some of them are unidentified RPC function

26 / 30



false-positive pruning

• Static pruning pruned out a big portion of DCbug candidates

• loop-based synchronization is effective

27 / 30



False negative discussion

DCatch could miss DCbugs for several reason

• Because of the configure of static pruning, DCatch miss silent

bug

• DCatch miss the DCbug between communication-related

memory accesses and communication-unrelated access

• DCatch may not process extreamly large traces

28 / 30



Performance

• DCatch tracing causes 1.9x ∼ 5.5x slowdown

• Static pruning is the most time consuming phase

29 / 30



Conclusion



Conclusion

• Designed automated DCbug detection tool for large real-world

distributed system

• DCatch HB model combine causaly relationship in single

machine system and distributed system

• DCatch is just a starting point in combating DCbugs

30 / 30


	Introduction
	Motivation

	DCatch Happens-Before(HB) Model
	DCatch tracing and trace analysis
	Staitc pruning
	DCbug triggering and validation
	Evaluation
	Conclusion

