High Performance Computing 2015

Kento Teranishi Tokyo Institute of Technology Dept. of mathematical and computing sciences

Reviewed Paper

 Asynchronous parallel stochastic gradient descent: a numeric core for scalable distributed machine learning algorithms

[MLHPC '15 Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments Article No. 1]

Janis Keuper and Franz-Josef Pfreundt Fraunhofer ITWM Competence Center High Performance Computing Kaiserslautern, Germany

Outline

- 1. Introduction
- 2. Gradient Descent Optimization
- 3. Asynchronous Communication
- 4. The ASGD Algolithm
- 5. Experiments
- 6. Conclusions

1.Introduction

- The enduring success of Big Data applications is leading to a change in paradigm for machine learning research objectives.
- This presentation propose a novel, lock-free parallelization method for the computation of SGD for large scale machine learning algorithms on cluster environments.

2.Gradient Descent Optimization

- Algorithm for supervised learning
- dataset $X = \{x_0, ..., x_m\}$
- semantic labels $Y = \{y_0, \dots, y\}$
- model function *w*
- loss function $x_j(w)$ evaluate the quality of w
- step size ε

$$w_{t+1} = w_t - \varepsilon \partial_w x_j(w_t)$$

Batch Optimization

$Ala {x_0}$	gorithm 1 BATCH optimization with samples $X = \{1, \dots, x_m\}$, iterations T , steps size ϵ and states w
1:	for all $t = 0 \dots T$ do
2:	Init $w_{t+1} = 0$
3:	update $w_{t+1} = w_t - \epsilon \sum_{(X_i \in X)} \partial_w x_j(w_t)$
4:	$w_{t+1} = w_{t+1}/ X $

- The numerically easiest way to solve most gradient descent optimization problems
- A MapReduce parallelization for many BATCH optimized machine learning algorithms introduced by [5]

Stochastic Gradient Descent(SGD)

Algorithm 2 SGD with samples $X = \{x_0, \ldots, x_m\}$, iterations T, steps size ϵ and states w

Require: $\epsilon > 0$

- 1: for all $t = 0 \dots T$ do
- 2: **draw** $j \in \{1 \dots m\}$ uniformly at random

3: update
$$w_{t+1} \leftarrow w_t - \epsilon \partial_w x_j(w_t)$$

4: return w_T

• Online learning

Parallel SGD

Algorithm 3 SimuParallelSGD with samples X = $\{x_0, \ldots, x_m\}$, iterations T, steps size ϵ , number of threads n and states wRequire: $\epsilon > 0, n > 1$ 1: define $H = \lfloor \frac{m}{n} \rfloor$ 2: randomly partition X, giving H samples to each node 3: for all $i \in \{1, ..., n\}$ parallel do randomly shuffle samples on node i4: 5: init $w'_0 = 0$ for all t = 0...T do 6: 7: get the tth sample on the ith node and compute 8: update $w_{t+1}^i \leftarrow w_t^i - \epsilon \Delta_t(w_t^i)$ 9: aggregate $v = \frac{1}{n} \sum_{i=1}^{n} w_i^i$ 10: return v

 $\Delta_j(w_t) := \partial_w x_j(w_t).$

Mini-Batch SGD

Algorithm 4 Mini-Batch SGD with samples $X = \{x_0, \ldots, x_m\}$, iterations T, steps size ϵ , number of threads n and mini-batch size b

Require: $\epsilon > 0$

- 1: for all $t = 0 \dots T$ do
- 2: **draw** mini-batch $M \leftarrow b$ samples from X
- 3: $Init\Delta w_t = 0$
- 4: for all $x \in M$ do
- 5: **aggregate update** $\Delta w \leftarrow \partial_w x_j(w_t)$
- 6: **update** $w_{t+1} \leftarrow w_t \epsilon \Delta w_t$

7: return w_T

3.Asynchronous Communication

- Typical synchronous model (left)
- Single-sided asynchronous communication model (right)

- I: Threads finished the computation of its local mini-batch update.
- II: Threads receives an update. When its local mini-batch update.
- III : Potential data race

Global Address Space Programming Interface (GASPI)

- GASPI uses one-sided RDMA driven communication with remote completion to provide a scalable, flexible and failure tolerant parallelization framework.
- GASPI favors an asynchronous communication model

4.The ASGD Algorithm

Parameters

- T defines the size of the data partition for each threads.
- ε sets the gradient step size.
- b sets the size of the mini-batch aggregation.
- I gives the number of SGD iterations for each thread.

Initialization

- The data is split into working packages of size T and distributed to the worker threads.
- A control thread generates initial, problem dependent values for w₀ and communicates w₀ to all workers.

Updating (1 external buffer per thread)

$$\overline{\Delta_t(w_{t+1}^i)} = w_t^i - \frac{1}{2}\left(w_t^i + w_{t'}^j\right) + \Delta_t(w_{t+1}^i)$$

- The local state w_t^i of thread i at iteration t is updated by an externally modified step $\overline{\Delta_t(w_{t+1}^i)}$
- $w_{t'}^{j}$: unknown iteration t' at some random thread j

Updating (N external buffers per thread)

$$\overline{\Delta_t(w_{t+1}^i)} = w_t^i - \frac{1}{|N|+1} \left(\sum_{n=1}^N (w_{t'}^n) + w_t^i \right) + \Delta_t(w_{t+1}^i),$$

where $|N| := \sum_{n=0}^N \lambda(w_{t'}^n), \quad \lambda(w_{t'}^n) = \begin{cases} 1 & \text{if } \|w_{t'}^n\|_2 > 0\\ 0 & \text{otherwise} \end{cases}$

Parzen-Window Optimization

$$\delta(i,j) := \begin{cases} 1 & \text{if } \|(w_t^i - \epsilon \Delta w_t^i) - w_{t'}^j\|^2 < \|w_t^i - w_{t'}^j\|^2 \\ 0 & \text{otherwise} \end{cases}$$

• Parzen-window like function $\delta(i, j)$ to avoid "bad" update conditions.

$$\overline{\Delta_t(w_{t+1}^i)} = \left[w_t^i - \frac{1}{2}\left(w_t^i + w_{t'}^j\right)\right]\delta(i,j) + \Delta_t(w_{t+1}^i)$$
(1 external buffer per thread)

$$\overline{\Delta_t(w_{t+1}^i)} = \frac{w_t^i - 1/\left(\sum_{n=1}^N \left(\delta(i,n)\right) + 1\right)}{\cdot \left(\sum_{n=1}^N \left(\delta(i,n)w_{t'}^n\right) + w_t^i\right)} + \Delta_t(w_{t+1}^i)$$

(N external buffers per thread)

• $\delta(i, j)$ reduce bad effect caused by data race

ASGD updating

- I : Initial setting
- II : Parzen-window masking of w_t^J
- III : Computing $\Delta_M(w_{t+1}^i)$
- IV : Updating $w_{t+1}^i \leftarrow w_t^i \epsilon \overline{\Delta_M(w_{t+1}^i)}$

Mini-Batch Extension

 $\overline{\boldsymbol{\Delta}_{M}(w_{t+1}^{i})} = \left[w_{t}^{i} - \frac{1}{2}\left(w_{t}^{i} + w_{t}^{j}\right)\right]\delta(i, j) + \boldsymbol{\Delta}_{M}(w_{t+1}^{i})$

The final ASGD Update Algorithm

Algorithm 5 ASGD $(X = \{x_0, \ldots, x_m\}, T, \epsilon, w_0, b)$ **Require:** $\epsilon > 0, n > 1$ 1: define $H = \lfloor \frac{m}{n} \rfloor$ 2: randomly **partition** X, giving H samples to each node 3: for all $i \in \{1, \ldots, n\}$ parallel do randomly **shuffle** samples on node i4: init $w_0^i = 0$ 5: 6: for all $t = 0 \dots T$ do 7: **draw** mini-batch $M \leftarrow b$ samples from X update $w_{t+1}^i \leftarrow w_t^i - \epsilon \Delta_M(w_{t+1}^i)$ 8: send w_{t+1}^i to random node $\neq i$ 9: 10: return w_I^1

• mini-batch size b, number of iterations T, learning rate ε , global result w_I^l

Data races and sparsity

- Potential data races during the asynchronous external update come in two forms:
 - (First case) update state w^j is completely overwritten by a second state w^h
 - (Second case) w^i reads an update from w^j while this is overwritten by the update from w^h

data race effect

- (First case) a lost message might slow down the convergence by a margin, but is completely harmless otherwise.
- Related work showed that for sparse problems, data race errors are negligible.
- The asynchronous communication model causes further sparsity, and decreases the probability of data races.

Communication load balancing

- Communication frequency $\frac{1}{b}$ has a significant impact on the convergence speed.
- The choice of an optimal b strongly depends on the data and the computing environment.
- b needs to be determined experimentally.

5.Experiment

- K-Means Clustering
- Cluster Setup
- Data
- Evaluation
- Experimental Results

K-Means Clustering

- unsupervised learning algorithm which tries to find the underlying cluster structure
- n-dimentional points $X = \{x_i\}, i = 1, ..., m$
- k clusters, $w = \{w_k\}, k = 1, ..., k$

Cluster Setup

- Linux cluster with a BeeGFS⁴ parallel file system
- CPU : Intel Xeon E5-2670
- 16 CPUs per node
- 32 GB RAM and interconnected with FDR Infiniband
- 64 nodes (1024 CPUs)

Data

- Synthetic Data Sets
 - ground-truth
- Image Classification (real data)
 - Bag of Features

Evaluation

- compare 3 algorithms
 - SimuParallelSGD by SGD
 - MapReduce baseline method by BATCH

– ASGD

• Iterlation *I* : global sum over all samples

$$-I_{BATCH} \coloneqq T \cdot |X|$$

$$-I_{SGD} \coloneqq T \bullet |CPUS|$$

$$-I_{ASGD} \coloneqq T \cdot b \cdot |CPUS|$$

Experimental Results

Results of a strong scaling experiment on the synthetic dataset

~1TB data samples

Strong scaling of real data

 $I = 10^{10}$ k = 10 ... 1000

Convergence speed

Error rates and their variance of the strong scaling experiment on synthetic data

Communication cost of ASGD. The cost of higher communication frequencies $\frac{1}{b}$

Asynchronous communication rates during strong scaling experiment

Convergence speed of ASGD optimization (synthetic dataset, k = 10, d = 10) with and without asynchronous communication (silent)

Early convergence properties of ASGD without communication (silent) compared to ASGD and SGD

Conclusions

- The asynchronous communication scheme can be applied successfully to SGD optimizations of machine learning algorithms.
- ASGD provide superior scalability and convergence compared to previous methods.
- Especially the early convergence property is high practical value in large scale machine learning.