
High Performance Computing 2015

Kento Teranishi

Tokyo Institute of Technology

Dept. of mathematical and computing sciences

Reviewed Paper

• Asynchronous parallel stochastic gradient
descent: a numeric core for scalable distributed
machine learning algorithms

[MLHPC '15 Proceedings of the Workshop on
Machine Learning in High-Performance Computing
Environments Article No. 1]

Janis Keuper and Franz-Josef Pfreundt Fraunhofer
ITWM Competence Center High Performance
Computing Kaiserslautern, Germany

Outline

1. Introduction

2. Gradient Descent Optimization

3. Asynchronous Communication

4. The ASGD Algolithm

5. Experiments

6. Conclusions

1.Introduction

• The enduring success of Big Data applications
is leading to a change in paradigm for machine
learning research objectives.

• This presentation propose a novel, lock-free
parallelization method for the computation of
SGD for large scale machine learning
algorithms on cluster environments.

2.Gradient Descent Optimization

• Algorithm for supervised learning
• dataset 𝑋 = 𝑥0, … , 𝑥𝑚
• semantic labels 𝑌 = 𝑦0, … , 𝑦
• model function 𝑤

• loss function 𝑥𝑗(𝑤) evaluate the quality of w
• step size ε

𝑤𝑡+1 = 𝑤𝑡 − 𝜀𝜕𝑤𝑥𝑗(𝑤𝑡)

Batch Optimization

• The numerically easiest way to solve most gradient
descent optimization problems

• A MapReduce parallelization for many BATCH
optimized machine learning algorithms introduced by
[5]

Stochastic Gradient Descent(SGD)

• Online learning

Parallel SGD

Mini-Batch SGD

3.Asynchronous Communication

 • Typical synchronous model (left)

• Single-sided asynchronous communication
model (right)

Overview of the asynchronous update
communication used in ASGD

• I：Threads finished the computation of its local
mini-batch update.

• II：Threads receives an update. When its local
mini-batch update.

• III：Potential data race

Global Address Space
Programming Interface (GASPI)

• GASPI uses one-sided RDMA driven
communication with remote completion to
provide a scalable, flexible and failure tolerant
parallelization framework.

• GASPI favors an asynchronous communication
model

4.The ASGD Algorithm

Parameters

• T defines the size of the data partition for
each threads.

• ε sets the gradient step size.

• b sets the size of the mini-batch aggregation.

• I gives the number of SGD iterations for each
thread.

Initialization

• The data is split into working packages of size
T and distributed to the worker threads.

• A control thread generates initial, problem
dependent values for 𝑤0 and communicates
𝑤0 to all workers.

Updating
(1 external buffer per thread)

• The local state 𝑤𝑡
𝑖 of thread 𝑖 at iteration 𝑡 is

updated by an externally modified step Δ𝑡 𝑤𝑡+1
𝑖

• 𝑤𝑡′
𝑗

 ：unknown iteration 𝑡′ at some random thread 𝑗

Updating
(N external buffers per thread)

Parzen-Window Optimization

• Parzen-window like function δ 𝑖, 𝑗 to avoid
“bad” update conditions.

(1 external buffer per thread)

(N external buffers per thread)

• δ 𝑖, 𝑗 reduce bad effect caused by data race

ASGD updating

I : Initial setting

II : Parzen-window masking of 𝑤𝑡
𝑗

III : Computing Δ𝑀 𝑤𝑡+1
𝑖

IV : Updating

Mini-Batch Extension

The final ASGD Update Algorithm

• mini-batch size b, number of iterations T,

learning rate ε, global result 𝑤𝐼
𝑙

Data races and sparsity

• Potential data races during the asynchronous
external update come in two forms:

– (First case) update state 𝑤𝑗 is completely
overwritten by a second state 𝑤ℎ

– (Second case) 𝑤𝑖 reads an update from 𝑤𝑗 while
this is overwritten by the update from 𝑤ℎ

data race effect

• (First case) a lost message might slow down
the convergence by a margin, but is
completely harmless otherwise.

• Related work showed that for sparse problems,
data race errors are negligible.

• The asynchronous communication model
causes further sparsity, and decreases the
probability of data races.

Communication load balancing

• Communication frequency
1

𝑏
 has a significant

impact on the convergence speed.

• The choice of an optimal b strongly depends
on the data and the computing environment.

• b needs to be determined experimentally.

5.Experiment

• K-Means Clustering

• Cluster Setup

• Data

• Evaluation

• Experimental Results

K-Means Clustering

• unsupervised learning algorithm which tries to
find the underlying cluster structure

• n-dimentional points 𝑋 = 𝑥𝑖 , 𝑖 = 1, … , 𝑚

• k clusters, 𝑤 = 𝑤𝑘 , 𝑘 = 1, … . , 𝑘

Cluster Setup

• Linux cluster with a BeeGF𝑆4 parallel file
system

• CPU : Intel Xeon E5-2670

• 16 CPUs per node

• 32 GB RAM and interconnected with FDR
Infiniband

• 64 nodes (1024 CPUs)

Data

• Synthetic Data Sets

– ground-truth

• Image Classification (real data)

– Bag of Features

Evaluation

• compare 3 algorithms

– SimuParallelSGD by SGD

– MapReduce baseline method by BATCH

– ASGD

• Iterlation 𝐼 : global sum over all samples

– 𝐼𝐵𝐴𝑇𝐶𝐻 ≔ 𝑇 ・ 𝑋

– 𝐼𝑆𝐺𝐷 ≔ 𝑇 ・ 𝐶𝑃𝑈𝑠

– 𝐼𝐴𝑆𝐺𝐷 ≔ 𝑇 ・ 𝑏 ・ 𝐶𝑃𝑈𝑠

Experimental Results

Results of a strong
scaling experiment
on the synthetic
dataset

k = 10, d = 10,

~1TB data samples

Strong scaling
of real data

𝐼 = 1010

 k =
 10 … 1000

Scaling the
number of
clusters k
on real data.

Convergence speed

Error rates and their variance of the
strong scaling experiment on synthetic
data

Communication cost of ASGD.

The cost of higher communication frequencies
1

𝑏

Asynchronous communication rates during
strong scaling experiment

Convergence speed of ASGD optimization
(synthetic dataset, k = 10, d = 10) with and
without asynchronous communication (silent)

Early convergence properties of ASGD without
communication (silent) compared to ASGD and
SGD

Conclusions

• The asynchronous communication scheme can
be applied successfully to SGD optimizations
of machine learning algorithms.

• ASGD provide superior scalability and
convergence compared to previous methods.

• Especially the early convergence property is
high practical value in large scale machine
learning.

