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1.Introduction 

• The enduring success of Big Data applications 
is leading to a change in paradigm for machine 
learning research objectives. 

• This presentation propose a novel, lock-free 
parallelization method for the computation of 
SGD for large scale machine learning 
algorithms on cluster environments. 



2.Gradient Descent Optimization 

• Algorithm for supervised learning 
• dataset 𝑋 = 𝑥0, … , 𝑥𝑚   
• semantic labels 𝑌 = 𝑦0, … , 𝑦  
• model function 𝑤 

• loss function 𝑥𝑗(𝑤)  evaluate the quality of w 
• step size ε 
 

𝑤𝑡+1 = 𝑤𝑡 − 𝜀𝜕𝑤𝑥𝑗(𝑤𝑡) 



Batch Optimization 

• The numerically easiest way to solve most gradient 
descent optimization problems 

• A MapReduce parallelization for many BATCH 
optimized machine learning algorithms introduced by 
[5] 
 



Stochastic Gradient Descent(SGD) 

• Online learning 

 



Parallel SGD 



Mini-Batch SGD 



3.Asynchronous Communication 

 • Typical synchronous model (left) 

• Single-sided asynchronous communication 
model (right) 



Overview of the asynchronous update 
communication used in ASGD 

• I：Threads finished the computation of its local 
mini-batch update. 

• II：Threads receives an update. When its local 
mini-batch update. 

• III：Potential data race 

 

 



Global Address Space  
Programming Interface (GASPI) 

• GASPI uses one-sided RDMA driven 
communication with remote completion to 
provide a scalable, flexible and failure tolerant 
parallelization framework. 

• GASPI favors an asynchronous communication 
model 



4.The ASGD Algorithm 



Parameters 

• T defines the size of the data partition for 
each threads. 

• ε sets the gradient step size. 

• b sets the size of the mini-batch aggregation. 

• I gives the number of SGD iterations for each 
thread. 



Initialization 

• The data is split into working packages of size 
T and distributed to the worker threads. 

• A control thread generates initial, problem 
dependent values for 𝑤0 and communicates 
𝑤0 to all workers. 



Updating 
(1 external buffer per thread) 

• The local state 𝑤𝑡
𝑖 of thread 𝑖 at iteration 𝑡 is 

updated by an externally modified step    Δ𝑡 𝑤𝑡+1
𝑖  

• 𝑤𝑡′
𝑗

 ：unknown iteration 𝑡′ at some random thread 𝑗 



Updating 
(N external buffers per thread) 



Parzen-Window Optimization 

• Parzen-window like function δ 𝑖, 𝑗  to avoid 
“bad” update conditions. 

(1 external buffer per thread) 



(N external buffers per thread) 

• δ 𝑖, 𝑗  reduce bad effect caused by data race 



ASGD updating 

I : Initial setting 

II : Parzen-window masking of 𝑤𝑡
𝑗
 

III : Computing Δ𝑀 𝑤𝑡+1
𝑖  

IV : Updating   

 

 



Mini-Batch Extension 



The final ASGD Update Algorithm 

• mini-batch size b, number of iterations T, 

learning rate ε, global result 𝑤𝐼
𝑙 



Data races and sparsity 

• Potential data races during the asynchronous 
external update come in two forms: 

– (First case) update state 𝑤𝑗  is completely 
overwritten by a second state 𝑤ℎ 

– (Second case) 𝑤𝑖 reads an update from 𝑤𝑗  while 
this is overwritten by the update from 𝑤ℎ  



data race effect 

• (First case) a lost message might slow down 
the convergence by a margin, but is 
completely harmless otherwise. 

• Related work showed that for sparse problems, 
data race errors are negligible. 

• The asynchronous communication model 
causes further sparsity, and decreases the 
probability of data races. 



Communication load balancing 

• Communication frequency 
1

𝑏
 has a significant 

impact on the convergence speed. 

• The choice of an optimal b strongly depends 
on the data and the computing environment. 

• b needs to be determined experimentally. 

 



5.Experiment 

• K-Means Clustering 

• Cluster Setup 

• Data 

• Evaluation 

• Experimental Results 



K-Means Clustering 

• unsupervised learning algorithm which tries to 
find the underlying cluster structure 

• n-dimentional points  𝑋 = 𝑥𝑖 , 𝑖 = 1, … , 𝑚 

• k clusters,  𝑤 = 𝑤𝑘 , 𝑘 = 1, … . , 𝑘 

 



Cluster Setup 

• Linux cluster with a BeeGF𝑆4 parallel file 
system 

• CPU : Intel Xeon E5-2670 

• 16 CPUs per node 

• 32 GB RAM and interconnected with FDR 
Infiniband 

• 64 nodes (1024 CPUs) 



Data 

• Synthetic Data Sets 

– ground-truth 

• Image Classification  (real data) 

– Bag of Features 



Evaluation 

• compare 3 algorithms 

– SimuParallelSGD by SGD 

– MapReduce baseline method by BATCH 

– ASGD 

• Iterlation 𝐼 : global sum over all samples 

– 𝐼𝐵𝐴𝑇𝐶𝐻 ≔ 𝑇 ・ 𝑋  

– 𝐼𝑆𝐺𝐷 ≔ 𝑇 ・ 𝐶𝑃𝑈𝑠  

– 𝐼𝐴𝑆𝐺𝐷 ≔ 𝑇 ・ 𝑏 ・ 𝐶𝑃𝑈𝑠  

 



Experimental Results 



Results of a strong 
scaling experiment 
on the synthetic 
dataset  

 

k = 10, d = 10,  

~1TB data samples  



Strong scaling 
of real data 

 
𝐼 = 1010  

    k =
       10 … 1000 

 

 



Scaling the 
number of 
clusters k 
on real data. 

 

 



Convergence speed  

 

 



Error rates and their variance of the 
strong scaling experiment on synthetic 
data 

 

 



Communication cost of ASGD.  

The cost of higher communication frequencies  
1

𝑏
 

 
 



Asynchronous communication rates during 
strong scaling experiment 

 

 



Convergence speed of ASGD optimization 
(synthetic dataset, k = 10, d = 10) with and 
without asynchronous communication (silent) 

 

 



Early convergence properties of ASGD without 
communication (silent) compared to ASGD and 
SGD 

 

 



Conclusions 

• The asynchronous communication scheme can 
be applied successfully to SGD optimizations 
of machine learning algorithms.  

• ASGD provide superior scalability and 
convergence compared to previous methods. 

• Especially the early convergence property is 
high practical value in large scale machine 
learning. 


