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How to take a hyperspectral image

Reference 1

Reference 2
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AVIRIS

Reference 3
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A kind of hyperspectral image sensor

Reference 1
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Hyperspectral image

Reference 1
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Hyperspectral image
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composition of an 

AVIRIS WTC scene

Vegetation Smoke Fire Reference 4
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Mixture problem
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Hyperspectral unmixing is needed for accurate analysis 10



Mixture model

Reference 4
Linear mixture model Non-linear mixture model
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Linear mixture model
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Full hyperspectral unmixing chain

Reference 4

Estimate the 
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Estimation of the number of endmembers

▪ Virtual dimensionality algorithm

1. Calculate the covariance matrix.

𝐊𝑳×𝑳 =
1

𝑁
𝐘 −  𝐘 𝑇(𝐘 −  𝐘)

2. Calculate the correlation matrix.
𝐑𝑳×𝑳 = 𝐊𝑳×𝑳 + 𝐘𝐘𝑇

3. Calculate covariance eigenvalues {  𝜆1 ≥  𝜆2 ≥ ⋯ ≥  𝜆𝐿}
and correlation eigenvalues {𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝐿}. 

4. If  𝜆𝑙 − 𝜆𝑙 > 0 for 𝑙 = 1,2, … , 𝐿 then 𝑝 += 1
▪ 𝑝 is the number of endmembers.

▪ Neyman-Pearson test is used for estimation of the 
number of endmembers.
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Basic idea of Virtual Dimensionality

▪ Assuming the hyperspectral signatures are unknown 
nonrandom and deterministic signal sources.

▪ Assuming noise is white with zero mean.

▪ Auto-covariance

▪ KXX 𝜏 = E 𝑋 𝑡 − 𝜇 𝑋 𝑡 + 𝜏 − 𝜇
= E 𝑋 𝑡 ⋅ 𝑋 𝑡 + 𝜏 − 𝜇2 = RXX 𝜏 − 𝜇2

▪ If KXX 𝜏 = RXX 𝜏 , 𝜇2 = 0. This means that there is only noise.
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Convex cones of hyperspectral image

▪ Reflectance (and radiance) is 
strictly non-negative.

▪ Reflectance (or radiance) spectrum 
vectors lie inside a convex region 
[Ref 6].

▪ Vertices of the convex can be used 
as endmember spectra [ref 6]. 
▪ If the mixture model is the linear mixture 
model.

Reflectance convex cone
Reference 5
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Endmember extraction

▪ Orthogonal Subspace Projection

▪The objective of this algorithm is to find vertex of the 
convex cone. (Ref 7)

A vector

Hyperspectral 

image pixel

Hyperspectral 

image pixel vector

1. Project all 

pixel vectors 

onto a vector
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Endmember extraction

▪ Orthogonal Subspace Projection

▪The objective of this algorithm is to find vertex of the 
convex cone. (Ref 7)

A vector

Hyperspectral 

image pixel

Hyperspectral 

image pixel vector

2. Find the max 

projection and it 

is a vertex.

A vertex and this vector is 

the endmember 𝐞𝟏
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Endmember extraction

Orthogonal 

vectors

Hyperspectral 

image pixel

Hyperspectral 

image pixel vector

3. Create a vector 

orthogonal to the first 

vector and repeat the 

same steps.

A vertex and this vector is 

the endmember 𝐞𝟏

A vertex and this vector is 

the endmember 𝐞𝟐

▪ Orthogonal Subspace Projection

▪The objective of this algorithm is to find vertex of the 
convex cone. (Ref 7)
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Unconstrained least squares algorithm 
for abundance estimation

▪ Endmembers 𝐌 = 𝐞𝒊 𝑖=1
𝑝

.

▪ Abundance fractions 𝛼 = [𝛼1, 𝛼2, … 𝛼𝑝].

▪ 𝛼 can be estimated by the following expression in least 
squares sense.

𝛼 = 𝐌𝑇𝐌 −1𝐌𝑇𝐲
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Review the VD algorithm

▪ Virtual dimensionality algorithm

1. Calculate the covariance matrix.

𝐊𝑳×𝑳 =
1

𝑁
𝐘 −  𝐘 𝑇(𝐘 −  𝐘)

2. Calculate the correlation matrix.
𝐑𝑳×𝑳 = 𝐊𝑳×𝑳 + 𝐘𝐘𝑇

3. Calculate covariance eigenvalues {  𝜆1 ≥  𝜆2 ≥ ⋯ ≥  𝜆𝐿}
and correlation eigenvalues {𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝐿}. 

4. If  𝜆𝑙 − 𝜆𝑙 > 0 for 𝑙 = 1,2, … , 𝐿 then 𝑝 += 1
▪ 𝑝 is the number of endmembers.

▪ Neyman-Pearson test is used for estimation of the 
number of endmembers.
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GPU implementation of VD

1. Load the full hyperspectral image 𝐘 to the main 
memory of the GPU.

Reference 4

Reference 1
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GPU implementation of VD

1. Calculate  𝐘 using L blocks.

▪L is the number of bands.

MP 1 MP LMP 2

Band 1
Band 2

Band L

 𝐘
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GPU implementation of VD

2. Calculate the covariance matrix.
𝐊𝑳×𝑳 =

1

𝑁
𝐘 −  𝐘 𝑇(𝐘 −  𝐘)

▪cublassSgemm function (a cuBLAS library function) is 
used for the parallel matrix multiplication above. 

3. Calculate the autocorrelation matrix.
𝐑𝑳×𝑳 = 𝐊𝑳×𝑳 + 𝐘𝐘𝑇

▪ Calculate 𝐿 × 𝐿 components using 𝐿 × 𝐿 threads as follows:
𝐑𝑖𝑗 = 𝐊𝑖𝑗 +  𝐘𝑖

 𝐘𝑗

4. Calculate autocorrelation and covariance 
eigenvalues using host CPU.
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GPU implementation of VD

5. If  𝜆𝑙 − 𝜆𝑙 > 0 for 𝑙 = 1,2, … , 𝐿 then 𝑝 += 1
▪ 𝑝 is the number of endmembers.

▪ Neyman-Pearson test is used for estimation of the 
number of endmembers.

▪ This step processed in host CPU.
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GPU implementation of OSP

▪ Orthogonal Subspace Projection with Gram-Schmidt 
orthogonalization (OSP-GS)

▪By using Gram-Schmidt orthogonalization, OSP can be 
parallelized.
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GPU implementation of OSP

1. Store the pixel vector by columns in GPU global 
memory.

▪ 𝑦𝑖: 𝑖 is the band number.

▪ Color: a pixel vector.

▪ N is the number of pixels.

𝑦1 𝑦1 𝑦1 𝑦1

𝑦2 𝑦2 𝑦2 𝑦2

𝑦𝐿 𝑦𝐿 𝑦𝐿 𝑦𝐿

Thread 1 2 3 N

Data alignment 

for coalesced 

memory access
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GPU implementation of OSP

2. Calculate the brightest pixel 𝐞1 in 𝐘.

▪ Calculate the dot product between each pixel and its 
transposed version in parallel.

▪ A pixel vector which has the maximum projection value 

will be the 𝐞1.
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GPU implementation of OSP

3. Calculate the vectors orthogonal to the 𝐞1 by using 
Gram-Schmidt orthogonalization.

▪ Note: 𝐞𝑖 vectors in the eq.(2) of today’s paper is not an 
endmember.

▪ The number of orthogonal vectors is 𝑝.

▪ 𝑝 is the number of endmembers calculated in VD steps.

▪ This step is processed in the host CPU.

𝐞1

𝐞1
𝐞2

𝐞𝑝
GS 

orthogonalization

MP 1

MP 𝑝

Store the 𝐞𝑖 into 

the 𝑖-th MP’s shared

memory.

Shared 

memory
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GPU implementation of OSP

4. Project all pixel vectors onto the orthogonal vectors.

▪ The orthogonal vector is stored in the shared memory for 
fast access.

5. Find the vector which has the maximum projection value.

6. Store the vector found in the previous step in the shared 
memory. This vector is an endmember vector 𝐞𝑖.

7. Pass the endmember vector to the endmember matrix 𝐌. 

Those steps below are processed using 𝑝 blocks.
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GPU implementation of UCLS

1. Calculate 𝐌𝑇𝐌 in the GPU.

2. Calculate (𝐌𝑇𝐌)−𝟏 in the host CPU.

3. Multiply the inverse by 𝐌 in the GPU.

4. Multiply the result by each pixel 𝐲.
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Multicore implementation of the unmixing 
chain

1. Matrix multiplication

▪ OpenMP+BLAS

▪ Divide the matrix into some OpenMP threads.

▪ In each thread, invoke dgemm function.

▪ dgemm is a BLAS function. This function is optimized for 
matrix multiplication.

2. Use parallel for directive.
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Hyperspectral image data

Reference 4

614x512 pixels and 224 bands

Size: 140MB
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Hyperspectral image data

Reference 4
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Hyperspectral image data

Reference 4 39



Hyperspectral image data

Reference 4 40



GPU and multicore CPU specs

1. GPU1

▪ NVidia Tesla C1060, 240 cores, 1.296GHz, 4GB total dedicated 
memory, 800MHz memory, 102GB/s

2. GPU2

▪ NVidia GeForce GTX 580, 512 cores, 1.544GHz, 1,536MB total 
dedicated memory, 2,004MHz memory, 192.4GB/s

3. MC1

▪ Intel i7 920, 2.67GHz, 4 cores, 6GB DDR3 RAM, host of GPU1 
and GPU2

4. MC2

▪ Intel Xeon, 2.53GHz, 12 cores, 24GB DDR3 RAM
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Processing times and speedups

This cuprite scene was took in 1.985 sec.

Processing time must be less than 1.985 sec for real time processing.

Not real 

time

Not real 

time
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Processing times and speedups

This WTC scene was took in 5.096 sec.

Processing time must be less than 5.096 sec for real time processing.

Not real 

time

Not real 

time
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Conclusion

1. Hyperspectral imaging can benefit from GPU and 
multicore processors.

2. GPUs and multicore processors are still rarely exploited 
in real missions due to power consumption and radiation 
tolerance issue.
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