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How to take a hyperspectral image
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AVIRIS
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A kind of hyperspectral image sensor
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Hyperspectral image
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20~30m

Mixture problem

20~30m / Low spatial resolution

Several kind of

endmembers in a pixel

[Endmember]
Buildings
Vegetation
Water
Fire
etc.

Hyperspectral unmixing is needed for accurate analysis
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Mixture model

i ) . ) Reference 4
Linear mixture model Non-linear mixture model
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Linear mixture model

Abundance of i-th
endmember

Noise vector
L dimensions

Number of endmembers \
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Endmember signature vector
L dimensions

Pixel vector

L dimensions

Image ()

Note: L is the number of spectral bands.
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Full hyperspectral unmixing chain
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Estimation of the number of endmembers

= Virtual dimensionality algorithm

1. Calculate the covariance matrix.
Kix, =y (Y =V)(Y - V)
2. Calculate the correlation matrix.
Rixt = Kpxp +YY'
3. Calculate covariance eigenvalues {1, > 1, > - > 1,}

and correlation eigenvalues {1, = 4, = --- > 1; }.

4. IfA;—A; >0forl=1,2,..,Lthenp +=1
p is the number of endmembers.

= Neyman-Pearson test is used for estimation of the
number of endmembers.
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Basic idea of Virtual Dimensionality

= Assuming the hyperspectral signatures are unknown
nonrandom and deterministic signal sources.

= Assuming noise iIs white with zero mean.

= Auto-covariance

“Kxx (1) = E[(X(0) =) (X (¢t +7) — )]
= E[X(t) - X(t + 1)] — u® = Rgx(7) — p?

*If Kyx(7) = Rgx(7), u? = 0. This means that there is only noise.
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Convex cones of hyperspectral image

- Reflectance (and radiance) is
strictly non-negative.

Reflectance

[
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- Reflectance (or radiance) spectrum
vectors lie inside a convex region
[Ref 6].

=
.

Channel 150 (A=1780nm)

=
b

=

= Vertices of the convex can be used
Channel 50 (-827am) as endmember spectra [ref 6].

Reflectance convex cone = If the mixture model is the linear mixture
Reference 5 model
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Endmember extraction

= Orthogonal Subspace Projection

= The objective of this algorithm is to find vertex of the

convex cone. (Ref 7)

1. Project all
pixel vectors
onto a vector

A vector

Hyperspectral
image pixel

Hyperspectral
image pixel vector
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Endmember extraction

= Orthogonal Subspace Projection

= The objective of this algorithm is to find vertex of the
convex cone. (Ref 7)

2. Find the max % A vertex and this vector is
projection and it the endmember e4
IS a vertex.
Hyperspectral
image pixel

A vector

Hyperspectral
image pixel vector
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Endmember extraction

= Orthogonal Subspace Projection

= The objective of this algorithm is to find vertex of the
convex cone. (Ref 7)

/

orthogonal to the first
vector and repeat the

.

) A vertex and this vector is
3. Create a vector the endmember e,

same steps. Hyperspectral
/ image pixel
A vertex and this vector is
/ the endmember e,
Orthogonal
vectors Hyperspectral

image pixel vector
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Unconstrained least squares algorithm
for abundance estimation

- Endmembers M = {e;}"_,.
= Abundance fractions a = [a,, ay, ... a,].

= @ can be estimated by the following expression in least

squares sense.
a=(M"M)"MTy
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Review the VD algorithm

= Virtual dimensionality algorithm

1. Calculate the covariance matrix.
Kix, =y (Y =V)(Y - V)
2. Calculate the correlation matrix.
Rixt = Kpxp +YY'
3. Calculate covariance eigenvalues {1; > 1, > ---

and correlation eigenvalues {1, = 4, = --- > 1; }.

4. IfA;—A; >0forl=1,2,..,Lthenp +=1
p is the number of endmembers.

= Neyman-Pearson test is used for estimation of the
number of endmembers.

24



GPU implementation of VD

1. Load the full hyperspectral image Y to the main
memory of the GPU.

AVIRIS Image Cube - Global Memory
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GPU implementation of VD

1. Calculate Y using L blocks.
L is the number of bands.
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GPU implementation of VD

2. Calculate1 the covariance matrix.
Kixe =3 (Y =D~ V)
» cublassSgemm function (a cuBLAS library function) is
used for the parallel matrix multiplication above.

3. Calculate the autocorrelation matrix.
Rpxt = Kpx + YY'
= Calculate L x L components using L X L threads as follows:
Rij — Kl] + YlY]

4. Calculate autocorrelation and covariance
eigenvalues using host CPU.
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GPU implementation of VD

5. fA4;,—A;>0forl=1,2,..,Lthenp +=1
= pis the number of endmembers.

Neyman-Pearson test is used for estimation of the
number of endmembers.

This step processed in host CPU.
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GPU implementation of OSP

= Orthogonal Subspace Projection with Gram-Schmidt
orthogonalization (OSP-GS)

* By using Gram-Schmidt orthogonalization, OSP can be
parallelized.
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GPU implementation of OSP

1. Store the pixel vector by columns in GPU global

memory.

= y;:i1s the band number.
= Color: a pixel vector.
= N s the number of pixels.

Thread
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GPU implementation of OSP

2. Calculate the brightest pixel e; in'Y.

= Calculate the dot product between each pixel and its
transposed version in parallel.

= A pixel vector which has the maximum projection value
will be the e;.
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GPU implementation of OSP

3. Calculate the vectors orthogonal to the e, by using
Gram-Schmidt orthogonalization.

= Note: e; vectors in the eq.(2) of today’s paper is not an
endmember.

= The number of orthogonal vectors is p.
= pis the number of endmembers calculated in VD steps.

= This step is processed in the host CPU.
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GPU implementation of OSP

Those steps below are processed using p blocks.

4. Project all pixel vectors onto the orthogonal vectors.

= The orthogonal vector is stored in the shared memory for
fast access.

5. Find the vector which has the maximum projection value.

6. Store the vector found in the previous step in the shared
memory. This vector is an endmember vector e;.

7. Pass the endmember vector to the endmember matrix M.
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GPU implementation of UCLS

e A

Calculate M'M in the GPU.
Calculate (M"M)~1 in the host CPU.
Multiply the inverse by M in the GPU.
Multiply the result by each pixel y.
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Multicore implementation of the unmixing
chain

1. Matrix multiplication
= OpenMP+BLAS
= Divide the matrix into some OpenMP threads.
= In each thread, invoke dgemm function.

= dgemm is a BLAS function. This function is optimized for
matrix multiplication.

2. Use parallel for directive.
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Hyperspectral image data

TABLE II
SPECTRAL ANGLE VALUES (M DEGREES) BETWEEN THE TARGET POcEL:
ExXTRACTED BY OSP-GS ALGORITEM AND THE Evowr GROUWD TARGETS IV
THE AVIRIS WorLD Trape CENTER. SCENE

000 | 2716 (.04 15.62 MEIT | 3487 | 2710 | M6

Fig. 6. False color composition of an AVIRIS hyperspectral image collected
by NASAs Jet Propulsion Laboratory over lower Manhattan on Sept. 16, 2001
(left). Location of thermal hot spots in the fires observed in World Trade Center
area, available onlie: http://pubs.usgs.gov/of2001/0fr-01-0429hotspot key.
tgif gif (nght).

Reference 4

614x512 pixels and 224 bands
Size: 140MB
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Hyperspectral image data

(a) (b) (c)

Fig 9. Abundance maps extracted from the WTC scene for different targets: (a) Vegetation. (b) Smoke. (c) Fire. (d) Per-pixel RMSE obtained in the reconstruction
process of the AVIRIS WTC scene using p = 31 endmembers (the overall RMSE in this case was 0.0216).

Reference 4




Hyperspectral image data
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Fig. 7. (a) False color composition of the AVIRIS hyperspectral over the Cuprite mining district in Nevada and (b) U.S. Geological Survey mineral spectral
signatures used for validation purposes.

TABLEI
SPECTRAL ANGLE VALUES (M DEGREES) BETWEEN THE TARGET PIMELS
EXTRACTED BY THE O5P-GS ALGORITHM AND THE EEFERENCE USGS
MDIMERAL SIEIATURES FOR. THE AVIFIS CUPRITE SCEME

Alunite | Boddingtonite | Caleite | Kaolinite | Muscovite | Average

548" 4.08" 587" 11.147 5 68" 645"

Reference 4
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Hyperspectral image data

(d) (e) ()

Fig. 8. Abundance maps extracted from the Cuprite scene for different minerals: (a) Alumite. (b) Budinggtonite. (c) Calcite. (d) Kaolinite. (e) Muscovite. (f)
Per-pixel RMSE obtained in the reconstruction process of the AVIRIS Cuprite scene using p = 19 endmembers (the overall RMSE 1n this case was 0.0361).

Reference 4



GPU and multicore CPU specs

1. GPU1

NVidia Tesla C1060, 240 cores, 1.296GHz, 4GB total dedicated
memory, 800MHz memory, 102GB/s

2. GPU2

NVidia GeForce GTX 580, 512 cores, 1.544GHz, 1,536MB total
dedicated memory, 2,004MHz memory, 192.4GB/s

3. MC1
= Intel 17 920, 2.67GHz, 4 cores, 6GB DDR3 RAM, host of GPU1
and GPU?2
4. MC2

Intel Xeon, 2.53GHz, 12 cores, 24GB DDR3 RAM
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Processing times and speedups

TABLE IV
ProCESsDIG TIVES (IM SECONDS) AND SPEEDUPS ACHIEVED FOR THE PARALLEL UGG CHAD I¥ Twio DIFFERENT PLaTFoRMS: MULTI-CoRE AavD GPU,
TE:2TED WITH THE AVIEIS CUPRITE SCENME

Inifialization | VD | OSP-GS | UCLS | Writing of final results | Total
Serial time 0.121 5541 | 1331 1,051 0.009 8.053
Parallel time GPU1 0.269 0246 | 0049 | D.067 0.009
Paralle] time GPL2 0.281 0241 | 0024 | D034 0.011 Not real
Parallel time MCI 0.126 0924 | 0516 | 0277 0.010 time
Parallel time MC2 0,098 1066 | 1055 | 0197 0,053
Speedup (GPUI) - 248 | 2726 | 1574 - 12.58
Speedup (GPU2) - 2300 | ss28 | 3062 : 1364
Speedup (MC1) - 6.00 2,58 3.79 - 135
Speedup (MC2) - 520 .26 3.35 - 326
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Processing times and speedups

TABLE WV

PrOCESSDNG TDJMES (N SECONDS) AND SPEEDUPS ACHIEVED FOR THE PARALLEL UnvDanG CHADY 1M Two DIFFERENT PLATFORMS: MULTI-CORE AND
GPU, TEsTED WiITH THE AVIEIS WTC ScENME

Not real
time

Initialization VD O5P-G5 | UCLS | Writing of final results
Senal time 0,364 20.149 0979 10314 0.036
Parallel time GPUI 0.522 0711 0.202 0,280 0.039
Paralle]l time GPLI2 (535 1,499 0109 0133 0.037
Parallel time MC1 (370 3238 3549 2759 0.037
Paralle]l time MC2 (281 3782 4612 1620 0205
Speedup (GPLIT) - 2834 49.28 3679 -
Speedup (GPLZ) - 40.37 91.49 7766 -
Speadup (MCI) - 618 281 iT4 -
Speedup (MC2) - 533 216 .37 -
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Conclusion

1. Hyperspectral imaging can benefit from GPU and
multicore processors.

2. GPUs and multicore processors are still rarely exploited
In real missions due to power consumption and radiation

tolerance issue.
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