CosmoFlow: Using Deep Learning to Learn the Universe at Scale

Amrita Mathuriya*, Deborah Bard[†], Peter Mendygral[‡], Lawrence Meadows*, James Arnemann[§], Lei Shao[¶], Siyu He^{**††}, Tuomas Kärnä*, Diana Moise[‡], Simon J. Pennycook[¶], Kristyn Maschhoff[‡], Jason Sewall[¶], Nalini Kumar[¶], Shirley Ho^{**††}, Michael F. Ringenburg[‡], Prabhat[†] and Victor Lee[¶] *Intel OR, [†]LBNL, [‡]Cray, [§]U.C. Berkeley, [¶]Intel CA, [†]Carnegie Mellon University, **Flatiron Institute

presented by Mateusz Bysiek, School of Computing, Tokyo Institute of Technology in HPC2018 class, 20 December 2018

What is the nature of dark energy?

- Unknown force that drives accelerated expansion of the universe
- Impossible to measure directly only through effects on observable universe
 - Distribution of matter is an effect of interplay of gravity and dark energy

Why use deep learning for cosmology?

- Matter distribution is typically characterised using *few* selected features
- Deep learning networks could capture all features
- Simulation-generated matter distributions provide training data

Challenges for deep learning in science

- Scientific data often complex (3+ dimensions and many channels)
- Measured in tera- or petabytes
- Efficient processing at scale essential for relevance of deep learning in science

Modifications in CosmoFlow

- Adapt existing deep learning network to scalable architecture
- Extra convolution layer and average pooling layer (near input) to cope with input size increase

- State of the art work predicted 2 parameters at problem size 64³ – it did not scale
- Predict 3 cosmological parameters at problem size of 128³

The predicted cosmological parameters

- Ω_M Matter density parameter, i.e. proportion of matter in the universe
- σ₈ The present root-mean-square matter fluctuation averages, i.e. amplitude of mass fluctuations in the universe, over a sphere of radius 8h⁻¹ Mpc
- n_s scalar spectral index of the spatial curvature of a comoving slicing of spacetime, i.e. how density fluctuations vary with scale

Modifications in CosmoFlow, contd.

- Use batch size of 1 per MPI rank
- Adam Optimizer
- Polynomial learning rate decay schedule

Optimizations: node-level

- Change number of output channels to aid vectorization
- Arrays are blocked by channels in forward propagation
- 3 innermost loops are completely unrolled and vectorized with AVX512
- Similar strategy for backward propagation

Require: $SRC \in \mathbb{R}^{ICB \times ID \times IH \times IW \times 16}$ **Require:** $DST \in \mathbb{R}^{OCB \times OD \times OH \times OW \times 16}$ **Require:** $W \in \mathbb{R}^{OCB \times ICB \times KD \times KH \times KW \times 16 \times 16}$ 1: for $ocb = 1 \cdots OCB$ do // Output channel block 2: for $icb = 1 \cdots ICB$ do // Input channel block 3: for $od = 1 \cdots OD$ do // Output depth 4: for $oh = 1 \cdots OH$ do // Output height 5: for $owb = 1 \cdots OWB$ do // Output width block $d \leftarrow DST[ocb, od, oh, 28owb, 0]$ 6: for $kd = 1 \cdots KD$ do // Kernel depth 7: for $kh = 1 \cdots KH$ do 8: // Kernel height for $kw = 1 \cdots KW$ do // Kernel width 9: $s \leftarrow SRC[icb, od + kd, oh + kh, 28owb + kw, 0]$ 10: $w \leftarrow W[ocb, icb, kd, kh, kw, 0, 0]$ 11: for $ow = 1 \cdots 28$ do // Output width 12: for $oc = 1 \cdots 16$ do // Output channel 13: for $ic = 1 \cdots 16$ do // Input channel 14: $d[16ow + oc] \leftarrow w[16ic + oc]s[16ow + ic]$ 15:

Optimizations: scaling

- Burst buffer: CPE ML plugin
- Reduce straggler effect of Synchronous Stochastic Gradient Descent – hide timing imbalances with non-blocking MPI
- No central/unique master node
- batch size of 1 per MPI rank
 Remove batch-norm layers to aid scaling

Require: N = total number of epochs **Require:** n = total number of training samples **Require:** k = number of MPI ranks 1: for epoch = $1 \cdots N$ do 2: for step = $1 \cdots n/k$ do 3: $g_{step} \leftarrow \text{compute_gradients(local_batch_{step})}$

- 4: $G_{step} \leftarrow \text{mc.gradients}(g_{step})$
- 5: $loss_{step} \leftarrow apply_gradients(G_{step})$

Cori: Cray XC40 at NERSC

- 2004 nodes with Intel Xeon Phi E5-2698 v3
 9688 nodes with Intel Xeon Phi 7250
 - 68 cores, 16GB memory
 - 32/32KB instr./data L1 cache
 - 2D mesh network
- 96GB of DDR4-2400 DRAM per node
- 288 nodes of Cray DataWarp (i.e. burst buffer)
 - 2x 3.2TB SSD (~1.8PB total)
 - 1.7TB/sec
- Sonexion 2000 Lustre: 248 OSTs, 10168 disks, 30 PB

Piz Daint: Cray XC50 at CSCS

- 1431 nodes of 2x Intel Xeon E5-2695 v4
- 5320 nodes of Intel Xeon E5-2690
 + NVIDIA P100 PCIe GPU
- Sonexion 3000 Lustre: 40 OSTs, 6.2 PB

Single node performance results

- Data-parallel training is ideal due to volume of the data
- Times:

OpenMP spin time and overhead, non-convolutional compute time, 3D convolutions, CPE ML Plugin, other time, Linux kernel time, TensorFlow framework time

Scalability

- fully-synchronous training on 8192 nodes of Cori
- 77% parallel performance
- sustained 3.5Pflop/s (single precision)

Scalability, contd.

- Lustre-based approaches fail to scale beyond 512~1024 nodes
- Hard to scale beyond anyway without careful optimizer tuning
- IO variability
- CPE ML plugin is MPI-based, as opposed to default inefficient implementation in TensorFlow

Loss function

Physical results

