
CosmoFlow: Using 
Deep Learning to Learn 
the Universe at Scale

Amrita Mathuriya∗, Deborah Bard†, Peter Mendygral‡, Lawrence Meadows∗, James Arnemann§, Lei Shao¶, Siyu He∗∗†|, 
Tuomas Kärnä∗, Diana Moise‡, Simon J. Pennycook¶, Kristyn Maschhoff‡, Jason Sewall¶, Nalini Kumar¶, Shirley Ho∗∗†|, 

Michael F. Ringenburg‡, Prabhat† and Victor Lee¶

∗Intel OR, †LBNL, ‡Cray, §U.C. Berkeley, ¶Intel CA, |Carnegie Mellon University, ∗∗Flatiron Institute

presented by Mateusz Bysiek, School of Computing, Tokyo Institute of Technology
in HPC2018 class, 20 December 2018



What is the nature of dark energy?

■ Unknown force that drives 
accelerated expansion of the 
universe

■ Impossible to measure directly –
only through effects on observable 
universe

– Distribution of matter is an 
effect of interplay of gravity 
and dark energy

2



Why use deep learning for cosmology?

■ Matter distribution is typically 
characterised using few selected 
features

■ Deep learning networks could 
capture all features

■ Simulation-generated matter 
distributions provide training data

3



Challenges for deep learning in science

■ Scientific data often complex (3+ 
dimensions and many channels)

■ Measured in tera- or petabytes

■ Efficient processing at scale 
essential for relevance of deep 
learning in science

4



Modifications in CosmoFlow

■ Adapt existing deep learning 
network to scalable architecture

■ Extra convolution layer and average 
pooling layer (near input) to cope 
with input size increase

5

■ State of the art work predicted 2 
parameters at problem size 643 –it 
did not scale

■ Predict 3 cosmological parameters 
at problem size of 1283



The predicted cosmological parameters

■ ΩM – Matter density parameter, i.e. proportion of matter in the universe

■ σ8 – The present root-mean-square matter fluctuation averages, i.e. amplitude of 
mass fluctuations in the universe, over a sphere of radius 8h-1 Mpc

■ ns – scalar spectral index of the spatial curvature of a comoving slicing of space-
time, i.e. how density fluctuations vary with scale

6



Modifications in CosmoFlow, contd.

■ Use batch size of 1 per MPI rank

■ Adam Optimizer

■ Polynomial learning rate decay 
schedule

7



Optimizations: node-level

■ Change number of output channels 
to aid vectorization

■ Arrays are blocked by channels in 
forward propagation

■ 3 innermost loops are completely 
unrolled and vectorized with 
AVX512

■ Similar strategy for backward 
propagation

8



Optimizations: scaling

■ Burst buffer: CPE ML plugin

■ Reduce straggler effect of 
Synchronous Stochastic Gradient 
Descent – hide timing imbalances 
with non-blocking MPI

■ No central/unique master node

■ batch size of 1 per MPI rank 
Remove batch-norm layers to aid 
scaling

9



Cori: Cray XC40 at NERSC

■ 2004 nodes with Intel Xeon Phi E5-2698 v3
9688 nodes with Intel Xeon Phi 7250

– 68 cores, 16GB memory

– 32/32KB instr./data L1 cache
– 2D mesh network

■ 96GB of DDR4-2400 DRAM per node

■ 288 nodes of Cray DataWarp (i.e. burst buffer)
– 2x 3.2TB SSD (~1.8PB total)

– 1.7TB/sec

■ Sonexion 2000 Lustre: 248 OSTs, 10168 disks, 30 
PB

10



Piz Daint: Cray XC50 at CSCS

■ 1431 nodes of 2x Intel Xeon E5-
2695 v4

■ 5320 nodes of Intel Xeon E5-2690 
+ NVIDIA P100 PCIe GPU

■ Sonexion 3000 Lustre: 40 OSTs, 6.2 
PB

11



Single node performance results

■ Data-parallel training is ideal due to 
volume of the data

■ Times:
OpenMP spin time and overhead,
non-convolutional compute time,
3D convolutions,
CPE ML Plugin,
other time,
Linux kernel time,
TensorFlow framework time

12



Scalability

■ fully-synchronous training
on 8192 nodes of Cori

■ 77% parallel performance

■ sustained 3.5Pflop/s
(single precision)

13



Scalability, contd.

14

■ Lustre-based approaches fail to 
scale beyond 512~1024 nodes

■ Hard to scale beyond anyway 
without careful optimizer tuning

■ IO variability

■ CPE ML plugin is MPI-based, as 
opposed to default inefficient 
implementation in TensorFlow



Loss function

15



Physical results

16


