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ABSTRACT
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• Present Deep Learning system for solving scientific pattern 
classification problems on two HPC architectures


• supervised convolutional architectures for discriminating signals 
in high-energy physics data (HPE)


• semi-supervised architectures for localizing and classifying 
extreme weather in climate data


• Use a hybrid strategy employing synchronous node-groups, while 
using asynchronous communication across groups


• Obtain peak performance of 11.73-15.07 PFLOP/s by using 9600 
Xeon-Phi nodes



Supervised Learning for HEP
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• find rare signals of new particles 
produced at accelerators such as the 
Large Hadron Collider (LHC) at CERN


• Data from the surface of the 
cylindrical detector can be 
represented as a sparse 2D 
image(228×228)


• Data size is 7.4TB


• #images is 10M
https://www.wired.co.uk/article/large-hadron-collider-explained
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• Input image is made of 3-channels


• Use a Convolutional Neural Net comprised of 5 convolution+pooling units and 1 
fully-connected layer with rectified linear unit (ReLU) activation functions 


• Parameters size is 2.3MiB 

https://supercomputersfordl2017.github.io/Presentations/ThorstenLargeScaleDeepLearning.pdf



Semi-Supervised Learning for Climate
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• interested in the task of finding 
extreme weather events in a 15 TB 
climate data


• The field of climate science 
typically relies on heuristics 


• have a fully supervised 
convolutional network for bounding 
box regression and an 
unsupervised convolutional auto-
encoder
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Figure 9: Results fromplotting the network’smost con�dent
(>95%) box predictions on an image for integrated water va-
por (TMQ) from the test set for the climate problem. Black
bounding boxes show ground truth; Red boxes are predic-
tions by the network.

science community, we do not have a well-established benchmark
to compare our results to.

8 IMPLICATIONS
8.1 Deep Learning on HPC
To the best of our knowledge, ourwork is the �rst successful attempt
at scaling Deep Learning on large, many-core HPC systems. We
share a number of insights from this unique exercise.

First, at a scale of thousands of nodes, we found signi�cant
variability in runtimes across runs, which could be as high as 30%.
The probability of one of the thousands of nodes failing or degrading
during the run is non-zero. In this work, we report runs where we
did not encounter complete node failures.We note that even a single
node failure can cause complete failure of synchronous runs; hybrid
runs are much more resilient since only one of the compute groups
gets a�ected. However, even in hybrid runs, if model updates from
one of the compute groups lags signi�cantly behind others, it can
result in "jumps" in the overall loss and accuracy that we have
highlighted in Figure 8.

Second, current architectures and software stacks for deep learn-
ing are still not as mature as the traditional HPC application stack.
Speci�cally, performance on small batch sizes (essential for scale
out) has not been completely optimized in many frameworks. Fur-
ther, the state of the art in deep learning kernel implementations is
rapidly evolving with new algorithms like Winograd [43] and FFT
based algorithms. We did not experiment with such algorithms in

this work; studying the impact on per-node performance and scale
out behaviour of these algorithms is a direction for future research.

There has been a lot of discussion surrounding training with
quantized weights and activations [44, 45]. The statistical implica-
tions of low precision training are still being explored [46, 47], with
various forms of stochastic rounding being of critical importance in
convergence. While supercomputers with architectures supporting
low precision computations in hardware are not yet present, we
believe that such systems have the potential to further accelerate
training time for our applications.

8.2 Deep Learning for Science
We believe that science domains that can readily generate vast
amounts of representative training data (via simulators) stand to
bene�t immediately from progress in DL methods. In other scien-
ti�c domains, unsupervised, and semi-supervised learning are key
challenges for the future. In both cases, it is unreasonable to expect
scientists to be conversant in the art of hyper-parameter tuning.
Hybrid schemes, like the one presented in this paper, add an extra
parameter to be tuned, which stresses the need for principled mo-
mentum tuning approaches, an active area of research (eg.[25] and
recently [48]). With hyper-parameter tuning taken care of, higher-
level libraries such as Spearmint [49] can be used for automating
the search for network architectures.
We also note that more aggressive optimizations involving com-
puting in low-precision and communicating high-order bits of
weight updates are poorly understood with regards to their im-
plications for classi�cation and regression accuracy for scienti�c
datasets. A similar story holds with regards to deployment of DL
models. Unlike commercial applications where a sparse/compact
representation of the model needs to be deployed in-situ, scienti�c
applications will typically utilize DL models within the context of
the HPC/Datacenter environment. Nevertheless, the �eld of Deep
Learning is evolving rapidly, and we look forward to adopting
advances in the near future.

9 CONCLUSIONS
This paper has presented the �rst 15-PetaFLOP Deep Learning soft-
ware running on HPC platforms. We have utilized IntelCa�e to
obtain ⇠2 TF on single Xeon Phi nodes. We utilize a hybrid strategy
employing synchronous groups, and asynchronous communication
among them to scale the training of a single model to ⇠9600 Cori
Phase II nodes. We apply this framework to solve real-world super-
vised and semi-supervised patterns classi�cation problems in HEP
and Climate Science. Our work demonstrates that manycore HPC
platforms can be successfully used to accelerate Deep Learning,
opening the gateway for broader adoption by the domain science
community. Our results are not limited to the speci�c applications
mentioned in this paper, but they extend to other kinds of models
such as ResNets [50] and LSTM [51, 52], although the optimal con-
�guration between synchronous and asynchronous is expected to
be model dependent. This highlights the importance of a �exible,
hybrid architecture in achieving the best performance for a diverse
set of problems.
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• Input image is made of 16-channels


• Use 9xConvolutions and 5xDeconvolutions


• Parameter size is 302.1 MiB 

https://supercomputersfordl2017.github.io/Presentations/ThorstenLargeScaleDeepLearning.pdf
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• Use data-parallel.


• SYNCHRONOUS


• use synchronization barriers and force 
computational nodes to perform every update 
step


• ASYNCHRONOUS


• Each node works on its own iteration (mini-
batch) and produces independent updates to 
the model


• PS(parameter sever) applies the updates to the 
model in the order they are received, and 
sends back the updated model to the worker



Deep Learning on multiple nodes
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• SYNCHRONOUS


• The batch size is a limit on the number of 
nodes in data-parallel synchronous 
systems


• The duration of the iteration depends on 
the slowest node


• ASYNCHRONOUS


• Not need to wait slowest node. So can 
have many iteration and not limit batch size


• Use of out-of-date gradients



Multi-node scaling with hybrid approach
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• In this architecture, worker nodes coalesce into separate 
compute groups. Each compute group follows a 
synchro-nous architecture


• the number of compute groups (and their size) is a knob 
that controls the amount of asynchrony in the system


• assign a dedicated parameter server to each trainable 
layer of the network

SC17, November 12–17, 2017, Denver, CO, USA Thorsten Kurth et. al.

Hybrid architectures. The trade-o� between statistical e�ciency
vs. hardware e�ciency suggests a third kind of architecture: a hy-
brid system [25]. In this architecture, worker nodes coalesce into
separate compute groups. Each compute group follows a synchro-
nous architecture: the workers split a mini-batch among themselves
and produce a single update to the model. There is no synchroniza-
tion across compute groups. A parameter server (PS) holds the
model and each compute group communicates its updates to the PS
asynchronously. Given a cluster of �xed size, the number of com-
pute groups (and their size) is a knob that controls the amount of
asynchrony in the system. We can tune the amount of asynchrony
along with the other hyper-parameters to �nd the optimal con�gu-
ration. We use this hybrid architecture in our paper, as described
in Section 3.5.

3 INNOVATIONS
3.1 HEP architecture
We formulate the HEP problem as a binary image classi�cation
task. We use a Convolutional Neural Net comprised of 5 convo-
lution+pooling units with recti�ed linear unit (ReLU) activation
functions [33, 34]. The kernel sizes used in the convolutional lay-
ers are 3x3 pixels with strides 1x1 and 128 �lters per layer. In the
pooling layers we use 2x2 kernels with strides 2x2. We use max
pooling in the �rst four layers and use global average pooling in the
last convolutional layer. The output of the global pooling layer is
fed into a single fully connected layer which projects the resulting
128-dimensional vector into a two-dimensional vector on which
a softmax function is applied to determine the class probabilities
for signal and background. We use softmax with cross-entropy as
the loss function. We further employ the ADAM optimizer[35] as
the solver. ADAM requires less parameter tuning than Stochastic
Gradient Descent and suppresses high norm variability between
gradients of di�erent layers by adaptively adjusting the learning
rate.

3.2 Climate architecture
We formulate the climate problem as semi-supervised bounding
box regression adapted from [36], which is inspired by [37–39].
Essentially, we have a fully supervised convolutional network for
bounding box regression and an unsupervised convolutional au-
toencoder. These two networks share various layers, so the extra
unlabelled data input to the autoencoder can help improve the
bounding box regression task. We use a a series of strided convolu-
tions to learn coarse, downsampled features of the input climate
simulations. We call this series of convolutions the encoder of the
network. At every location in the features, we compute 4 scores
(con�dence, class, x and y position of bottom left corner of box,
and height and width of box) using a convolution layer for each
score. At inference time we keep only the boxes corresponding
to con�dences greater than 0.8. For the unsupervised part of our
architecture, we use the same encoder layers, but use the coarse
features as input to a series of deconvolutional layers, which we call
the decoder. The decoder attempts to reconstruct the input climate
image from the coarse features. The objective function attempts
to simultaneously minimize the con�dence of areas without a box,
maximize those with a box, maximize the the probability of the
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Figure 2: Hybrid architecture example.

correct class for areas with a box, minimize the scale and location
o�set of the predicted box to the real box and minimize the recon-
struction error of the autoencoder. As a solver, we use stochastic
gradient descent with momentum.

3.3 Single-node performance on manycore
architectures

In this work, we used the Intel distribution of Ca�e [40] to train our
models. This distribution links in the Intel MKL 2017 library [15]
with optimized deep learning primitives for Intel Xeon Phi. For our
semi-supervised climate network, we needed optimized implemen-
tations of deconvolution that were not available. We used the fact
that the convolutions in the backward pass can be used to compute
the deconvolutions of the forward pass and vice-versa in order to
develop optimized deconvolution implementations. These layers
perform very similarly to the corresponding convolution layers.

3.4 Multi-node scaling with synchronous
approach

We utilize the new Intel® Machine Learning Scalability Library
(MLSL) [41] for our multi-node implementation. This handles all
communication required to perform training in a synchronous set-
ting, and enables di�erent forms of parallelism - both data and
model parallelism - to be applied to di�erent layers of the net-
work without the user/developer worrying about communication
details. In this work, we deal with either fully convolutional net-
works or those with very small fully connected layers, so we only
use data parallelism which is well suited for such layers. MLSL
also introduces performance improvements over vanilla MPI im-
plementations using endpoints - proxy threads/processes which
drive communication on behalf of the MPI rank and enable better
utilization of network bandwidth. Results with this library have not
been reported at large scales of more than a few hundred nodes; in
this work we attempt to scale this out to thousands of nodes.

3.5 Multi-node scaling with hybrid approach
In Section 2.2.2 we outlined the limitations of fully synchronous
systems that motivate asynchronous architectures. Asynchronous
systems are not limited by the total batch size in the same way that
synchronous systems are. Furthermore, asynchrony provides an
added layer of resilience to node failures and the straggler e�ect.
In this section we describe the hybrid architecture we use in our
system and discuss some of its novel elements.

Deep Learning at 15PF SC17, November 12–17, 2017, Denver, CO, USA

Architecture Input Layer details Output Parameters size
Supervised HEP 224x224x3 5xconv-pool,1xfully-connected class probability 2.3MiB
Semi-supervised Climate 768x768x16 9xconv,5xDeconv coordinates, class, con�dence 302.1 MiB

Table 2: Speci�cation of DNN architectures used in this study.

Worker	node

Root	worker

Electrical	group

Parameter	server

Interconnect

Compute	group

Figure 3: Topological placement on Cori Phase II.

Our architecture is inspired by recently proposed hybrid ap-
proaches [25], depicted in Figure 2. Nodes are organized into com-
pute groups. Parallelization is synchronouswithin (using all-reduce),
but asynchronous across groups via a set of parameter servers. The
number and size of compute groups, is a knob which controls the
level of asynchrony, and allows us to tune asynchrony and mo-
mentum jointly, as per recent theoretical guidelines [31]. Figure 3
shows an ideal placement of nodes and compute groups on Cori.2
All-reduce operations are used to get the aggregate model update
from all workers in the group. Then a single node per group, called
the root node is responsible for communicating the update to the
parameter servers, receiving the new model, and broadcasting it
back to the group.

Extreme Scale. Our work is the �rst instance of a hybrid architec-
ture that scales to thousands of nodes. Previous implementations
were designed (and typically deployed) on dozens or hundreds of
commodity machines. For the present work, we deployed our im-
plementation on con�gurations of up to 9600 nodes on an HPC
system.

Use of MLSL library. MLSL does not natively support asynchro-
nous communication. Speci�cally, all nodes are assumed to commu-
nicate with each other and the default library did not allow us to
dedicate some subset of nodes for parameter servers. In this work,
we extended MLSL to enable our hybrid implementation. Speci�-
cally, we extended MLSL to facilitate node placement into disjoint
communication groups and dedicating nodes as parameter servers.
Our new MLSL primitives allow for e�cient overlaying of group
communication and endpoint communication with the parameter
server.

Dedicated parameter servers for each layer. The parameter server
needs to be able to handle the volume of network tra�c and com-
putation for the updates originating from multiple compute groups
2For simplicity PSs are shown in their own electrical group, however this is not
typically the case.

Layer	N	PS

Layer	N-1	PS

Layer	2	PS

Layer	1	PS

Group	1

Group	2

Group	G

Model	update

New	model

Figure 4: We assign a dedicated parameter server to each
trainable layer of the network. Each group exchanges data
with the PS for the corresponding layer. For clarity, we only
depict the communication patterns for Group 1.

and for very large models. To reduce the chances of PS saturation,
we dedicate a parameter server to each trainable layer in the net-
work (Figure 4). We can consider each compute group as a bigger,
more powerful node, that performs the usual forward and backward
pass operations on the layers of the network. The backward pass
generates a gradient (model update) for each layer of the network.
That update is communicated to its dedicated parameter server, the
update is performed and the model communicated back to the same
compute group.

4 CORI PHASE II
All experiments reported in this study are conducted on the Cori
Phase II system at NERSC. Cori is a Cray XC40 supercomputer com-
prised of 9,688 self-hosted Intel Xeon Phi™ 7250 (Knight’s Landing,
KNL) compute nodes. Each KNL processor includes 68 cores run-
ning at 1.4GHz and capable of hosting 4 HyperThreads for a total
of 272 threads per node.

The peak performance for single precision can be computed as:
(9688 KNLs) x (68 Cores) x (1.4 GHz Clock Speed) x (64 FLOPs /
Cycle) = 59 PetaFLOP/s. However, for sustained AVX work, the
clock-speed drops to 1.2 GHz, yielding a sustained peak perfor-
mance of: 50.6 PetaFLOP/s.
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nicate with each other and the default library did not allow us to
dedicate some subset of nodes for parameter servers. In this work,
we extended MLSL to enable our hybrid implementation. Speci�-
cally, we extended MLSL to facilitate node placement into disjoint
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Dedicated parameter servers for each layer. The parameter server
needs to be able to handle the volume of network tra�c and com-
putation for the updates originating from multiple compute groups
2For simplicity PSs are shown in their own electrical group, however this is not
typically the case.

Layer	N	PS

Layer	N-1	PS

Layer	2	PS

Layer	1	PS

Group	1

Group	2

Group	G

Model	update

New	model

Figure 4: We assign a dedicated parameter server to each
trainable layer of the network. Each group exchanges data
with the PS for the corresponding layer. For clarity, we only
depict the communication patterns for Group 1.

and for very large models. To reduce the chances of PS saturation,
we dedicate a parameter server to each trainable layer in the net-
work (Figure 4). We can consider each compute group as a bigger,
more powerful node, that performs the usual forward and backward
pass operations on the layers of the network. The backward pass
generates a gradient (model update) for each layer of the network.
That update is communicated to its dedicated parameter server, the
update is performed and the model communicated back to the same
compute group.

4 CORI PHASE II
All experiments reported in this study are conducted on the Cori
Phase II system at NERSC. Cori is a Cray XC40 supercomputer com-
prised of 9,688 self-hosted Intel Xeon Phi™ 7250 (Knight’s Landing,
KNL) compute nodes. Each KNL processor includes 68 cores run-
ning at 1.4GHz and capable of hosting 4 HyperThreads for a total
of 272 threads per node.

The peak performance for single precision can be computed as:
(9688 KNLs) x (68 Cores) x (1.4 GHz Clock Speed) x (64 FLOPs /
Cycle) = 59 PetaFLOP/s. However, for sustained AVX work, the
clock-speed drops to 1.2 GHz, yielding a sustained peak perfor-
mance of: 50.6 PetaFLOP/s.



Software and Hardware
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• Intel Distribution of Caffe


• Intel Machine Learning Scaling Library 
(MLSL)


• Cori-KNL HPC system


• 9688 Intel® Xeon Phi™ 7250 
processor nodes (Knight’s Landing)


• 68 cores per node with support for 
4 hardware threads each (272 
threads total)


• The peak performance for single 
precision can be computed as: 
(9688 KNLs) x (68 Cores) x (1.4 
GHz Clock Speed) x (64 FLOPs / 
Cycle) = 59 PetaFLOP/s

https://phys.org/news/2016-06-nersc-staff-users-readying-delivery.html
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•  batch size of 8 images


• the overall flop rate of the HEP network stands at 1.90 TFLOP/
s, while that of the Climate network stands at 2.09 TFLOP/s
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Figure 5: Single node runtime and �op rate of the top time consuming components, with batch size 8
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Figure 6: Strong scaling results for synchronous and hybrid approaches (batch size = 2048 per synchronous group).

takes about 12 ms to execute; at the end of which nodes need to
synchronize and reduce a small model of ⇠590 KB. Even a small
jitter in communication times can lead to signi�cant variability in
this scenario. Hybrid approaches, where we have two additional
communication steps (to and from the PS) are more a�ected by this
variability, leading to reduced scaling. Our climate model takes on
average over 300 ms per convolution layer, leading to less frequent
communication and impact from jitter - we observe slightly better
scaling for hybrid over synchronous con�gurations due to reduced
straggler e�ects.

6.2.3 Overall Performance. For the HEP network, we obtained
a peak throughput (as described in Section 5) of 11.73 PFLOP/s
for a con�guration of 9600 total nodes (9594 compute nodes plus
6 parameter servers) split into 9 groups, with each group using a
minibatch of 8528. This corresponds to a speedup of 6173x over
single node performance. The sustained throughput as measured

over a 100 iteration timespan is 11.41 PFLOP/s. This corresponds
to an average per-iteration runtime of about 106 ms for processing
a minibatch.

For the climate network, we obtained a peak throughput of
15.07 PFLOP/s for a con�guration of 9622 total nodes (9608 com-
pute nodes plus 14 parameter servers) split into 8 groups, with each
group using a minibatch of 9608. This corresponds to a speedup
of 7205X over single node performance. The sustained through-
put as measured over a 10 iteration span is about 13.27 PFLOP/s,
corresponding to a speedup of an average per-iteration runtime of
12.16 seconds. The sustained throughput computed includes the
overhead of storing a model snapshot to disk once in 10 iterations,
causing slowdowns.

6.2.4 Time to Train. Figure 8 reports the result of di�erent train-
ing runs on the HEP network using 1024 worker nodes. We �x the
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Strong Scaling Results
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• batch size = 2048 per synchronous group


• (a) shows that the synchronous algorithm does not scale past 256 nodes


• (b) shows the synchronous algorithm scales only to a maximum of 320x at 512 nodes 
and stops scaling beyond that point
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single node performance. The sustained throughput as measured

over a 100 iteration timespan is 11.41 PFLOP/s. This corresponds
to an average per-iteration runtime of about 106 ms for processing
a minibatch.

For the climate network, we obtained a peak throughput of
15.07 PFLOP/s for a con�guration of 9622 total nodes (9608 com-
pute nodes plus 14 parameter servers) split into 8 groups, with each
group using a minibatch of 9608. This corresponds to a speedup
of 7205X over single node performance. The sustained through-
put as measured over a 10 iteration span is about 13.27 PFLOP/s,
corresponding to a speedup of an average per-iteration runtime of
12.16 seconds. The sustained throughput computed includes the
overhead of storing a model snapshot to disk once in 10 iterations,
causing slowdowns.

6.2.4 Time to Train. Figure 8 reports the result of di�erent train-
ing runs on the HEP network using 1024 worker nodes. We �x the



Weak Scaling Results
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• batch size 8 per node


• climate network shows almost ideal scaling


• observe slightly better scaling for hybrid over synchronous configurations due to reduced 
straggler effects.
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Figure 7: Weak scaling results for synchronous and hybrid approaches (batch size = 8 per node).

Figure 8: Training losses vs wall clock time for HEP on 1K
nodes. Comparing synchronous con�guration to 2,4 and 8
groups.

total batch to 1024 and try a fully synchronous run, and three hy-
brid runs with 2, 4, 8 groups. We use the Adam update and tune
its learning rate in the following range: [1e � 4, 1e � 3]. For the
synchronous setting we �x its momentum to 0.9, but for hybrid
runs we tune the momentum on a discrete set of values (0.0, 0.4,
0.7) to account for the momentum contributed by asynchrony [31].
We report the measured training loss over wall-clock for the best
con�gurations. For the synchronous setting, we report (for the
same best hyper-parameter con�guration) the best and worst run
out of 3. We report wall-clock time speedups with respect to a loss
of 0.05 that beats the baseline for HEP (as de�ned in Section 1.1).
We establish that the best hybrid con�guration achieves the target
loss in about 10 minutes, which is about 1.66⇥ faster than the best
sync run. The worst sync run is many times slower. We attribute

this, as well as some of the jumps observed in the loss curves of the
2-group case to variability in individual node performance when
running on 1K nodes. Note that without additional hyperparameter
tuning, we achieve a speedup of 11x in time to convergence for
going from 64 to 1024 nodes, which is in line with expectations
from weak scaling (cf. Figure 7a).

7 SCIENCE RESULTS
7.1 HEP Science Result
For the HEP classi�cation problem, it is important to achieve a high
signal e�ciency at a very low acceptance of the much more preva-
lent background class. Our benchmark analysis, which is based on
selections on high-level physics-derived features, achieves a true-
positive rate of 42% at a false-positive rate of 0.02%. To evaluate
our results we compare the true-positive rate at this same very
low false-positive rate. For the hybrid con�guration described in
section 6.2.4, we achieve a rate of 72% which represents a 1.7x im-
provement over our benchmark. For the full-system runs reported
here, even with reduced runtime and without extensive tuning for
accuracy, the SGD solver outperforms our benchmark by 1.3X. The
capability to achieve high sensitivities to new-physics signals from
classi�cation on low-level detector quantities, without the need
to design, reconstruct, or tune, high-level features o�ers consider-
able potential for enabling new-physics discoveries in future HEP
analyses.

7.2 Climate Science Result
Figure 9 presents a sample image that illustrates the ability of our
semi-supervised architecture to produce bounding boxes and class
labels. In the �gure, the architecture does a good job of localizing
and identifying tropical cyclones. We are working on generating
additional metrics for assessing the accuracy of bounding boxes
for known classes (including extra-tropical cyclones and atmo-
spheric rivers). More importantly, we are evaluating the ability of
the architecture to discover novel weather patterns. Since this is
fundamentally new approach for pattern detection in the climate
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brid runs with 2, 4, 8 groups. We use the Adam update and tune
its learning rate in the following range: [1e � 4, 1e � 3]. For the
synchronous setting we �x its momentum to 0.9, but for hybrid
runs we tune the momentum on a discrete set of values (0.0, 0.4,
0.7) to account for the momentum contributed by asynchrony [31].
We report the measured training loss over wall-clock for the best
con�gurations. For the synchronous setting, we report (for the
same best hyper-parameter con�guration) the best and worst run
out of 3. We report wall-clock time speedups with respect to a loss
of 0.05 that beats the baseline for HEP (as de�ned in Section 1.1).
We establish that the best hybrid con�guration achieves the target
loss in about 10 minutes, which is about 1.66⇥ faster than the best
sync run. The worst sync run is many times slower. We attribute

this, as well as some of the jumps observed in the loss curves of the
2-group case to variability in individual node performance when
running on 1K nodes. Note that without additional hyperparameter
tuning, we achieve a speedup of 11x in time to convergence for
going from 64 to 1024 nodes, which is in line with expectations
from weak scaling (cf. Figure 7a).

7 SCIENCE RESULTS
7.1 HEP Science Result
For the HEP classi�cation problem, it is important to achieve a high
signal e�ciency at a very low acceptance of the much more preva-
lent background class. Our benchmark analysis, which is based on
selections on high-level physics-derived features, achieves a true-
positive rate of 42% at a false-positive rate of 0.02%. To evaluate
our results we compare the true-positive rate at this same very
low false-positive rate. For the hybrid con�guration described in
section 6.2.4, we achieve a rate of 72% which represents a 1.7x im-
provement over our benchmark. For the full-system runs reported
here, even with reduced runtime and without extensive tuning for
accuracy, the SGD solver outperforms our benchmark by 1.3X. The
capability to achieve high sensitivities to new-physics signals from
classi�cation on low-level detector quantities, without the need
to design, reconstruct, or tune, high-level features o�ers consider-
able potential for enabling new-physics discoveries in future HEP
analyses.

7.2 Climate Science Result
Figure 9 presents a sample image that illustrates the ability of our
semi-supervised architecture to produce bounding boxes and class
labels. In the �gure, the architecture does a good job of localizing
and identifying tropical cyclones. We are working on generating
additional metrics for assessing the accuracy of bounding boxes
for known classes (including extra-tropical cyclones and atmo-
spheric rivers). More importantly, we are evaluating the ability of
the architecture to discover novel weather patterns. Since this is
fundamentally new approach for pattern detection in the climate



Training losses vs wall clock time for HEP
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• the best hybrid configuration achieves the target loss(0.05) in about 10 
minutes, which is about 1.66X faster than the best sync run


• some of the jumps are observed in the loss curves of the 2-group
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total batch to 1024 and try a fully synchronous run, and three hy-
brid runs with 2, 4, 8 groups. We use the Adam update and tune
its learning rate in the following range: [1e � 4, 1e � 3]. For the
synchronous setting we �x its momentum to 0.9, but for hybrid
runs we tune the momentum on a discrete set of values (0.0, 0.4,
0.7) to account for the momentum contributed by asynchrony [31].
We report the measured training loss over wall-clock for the best
con�gurations. For the synchronous setting, we report (for the
same best hyper-parameter con�guration) the best and worst run
out of 3. We report wall-clock time speedups with respect to a loss
of 0.05 that beats the baseline for HEP (as de�ned in Section 1.1).
We establish that the best hybrid con�guration achieves the target
loss in about 10 minutes, which is about 1.66⇥ faster than the best
sync run. The worst sync run is many times slower. We attribute

this, as well as some of the jumps observed in the loss curves of the
2-group case to variability in individual node performance when
running on 1K nodes. Note that without additional hyperparameter
tuning, we achieve a speedup of 11x in time to convergence for
going from 64 to 1024 nodes, which is in line with expectations
from weak scaling (cf. Figure 7a).

7 SCIENCE RESULTS
7.1 HEP Science Result
For the HEP classi�cation problem, it is important to achieve a high
signal e�ciency at a very low acceptance of the much more preva-
lent background class. Our benchmark analysis, which is based on
selections on high-level physics-derived features, achieves a true-
positive rate of 42% at a false-positive rate of 0.02%. To evaluate
our results we compare the true-positive rate at this same very
low false-positive rate. For the hybrid con�guration described in
section 6.2.4, we achieve a rate of 72% which represents a 1.7x im-
provement over our benchmark. For the full-system runs reported
here, even with reduced runtime and without extensive tuning for
accuracy, the SGD solver outperforms our benchmark by 1.3X. The
capability to achieve high sensitivities to new-physics signals from
classi�cation on low-level detector quantities, without the need
to design, reconstruct, or tune, high-level features o�ers consider-
able potential for enabling new-physics discoveries in future HEP
analyses.

7.2 Climate Science Result
Figure 9 presents a sample image that illustrates the ability of our
semi-supervised architecture to produce bounding boxes and class
labels. In the �gure, the architecture does a good job of localizing
and identifying tropical cyclones. We are working on generating
additional metrics for assessing the accuracy of bounding boxes
for known classes (including extra-tropical cyclones and atmo-
spheric rivers). More importantly, we are evaluating the ability of
the architecture to discover novel weather patterns. Since this is
fundamentally new approach for pattern detection in the climate



Overall Performance

!15

• HEP network


• obtained a peak throughput of 11.73 PFLOP/s


• 9594 compute nodes plus 6 parameter servers split into 9 groups


• each group using a minibatch of 8528


• corresponds to a speedup of 6173x over single node performance


• Climate network


• obtained a peak throughput of 15.07 PFLOP/s


• 9608 compute nodes plus 14 parameter servers split into 8 groups


• each group using a minibatch of 9608


• corresponds to a speedup of 7205X over single node performance


