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ABSTRACT

* Present Deep Learning system for solving scientific pattern
classification problems on two HPC architectures

* Use a hybrid strategy employing synchronous node-groups, while
using asynchronous communication across groups

e QObtain peak performance of 11.73-15.07 PFLOP/s by using 9600
Xeon-Phi nodes



Supervised Learning for HEP

e find rare signals of new particles
produced at accelerators such as the
Large Hadron Collider (LHC) at CERN

e Data from the surface of the
cylindrical detector can be
represented as a sparse 2D
image(228x228)

e Datasizeis 7.41B

* #images is 10M

https://www.wired.co.uk/article/large-hadron-collider-explained



Supervised Learning for HEP
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https://supercomputersfordl2017.github.io/Presentations/ThorstenLargeScaleDeeplearning.pdf
* |nput image is made of 3-channels

e Use a Convolutional Neural Net comprised of 5 convolution+pooling units and 1
fully-connected layer with rectified linear unit (ReLU) activation functions

e Parameters size is 2.3MiB



Semi-Supervised Learning for Climate

* Interested in the task of finding
extreme weather events ina 15 TB
climate data

* The field of climate science
typically relies on heuristics

* have a fully supervised
convolutional network for bounding
box regression and an
unsupervised convolutional auto-
encoder



Semi-Supervised Learning for Climate
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https://supercomputersfordl2017.github.io/Presentations/ThorstenLargeScaleDeeplLearning.pdf

e Input image is made of 16-channels
e Use 9xConvolutions and 5xDeconvolutions

e Parameter size is 302.1 MiB



Deep Learning on multiple nodes .\w /-m
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* Use data-parallel.

e SYNCHRONOUS

e use synchronization barriers and force

computational nodes to perform every update SYNCHRONOUS
step

* ASYNCHRONOUS
* Each node works on its own iteration (mini-
batch) and produces independent updates to
the model

e PS(parameter sever) applies the updates to the
model in the order they are received, and
sends back the updated model to the worker

ASYNCHRONOUS
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e SYNCHRONOUS

 The batch size is a limit on the number of
nodes in data-parallel synchronous

systems SYNCHRONOUS

e The duration of the iteration depends on
the slowest node

e ASYNCHRONOUS

* Not need to wait slowest node. So can
have many iteration and not limit batch size

e Use of out-of-date gradients

ASYNCHRONOUS



Multi-node scaling with hybrid approach
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Software and Hardware

e |ntel Distribution of Caffe

* Intel Machine Learning Scaling Library
(MLSL)

e Cori-KNL HPC system

e 90688 Intel® Xeon Phi™ 7250
processor nodes (Knight’s Landing) |

e 68 cores per node with support for
4 hardware threads each (272
threads total)

https://phys.org/news/2016-06-nersc-staff-users-readying-delivery.html

* The peak performance for single
precision can be computed as:
(9688 KNLs) x (68 Cores) x (1.4
GHz Clock Speed) x (64 FLOPs /
Cycle) = 59 PetaFLOP/s
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Single node performance

(a) HEP (b) Climate
* patch size of 8 images

* the overall flop rate of the HEP network stands at 1.90 TFLOP/
s, while that of the Climate network stands at 2.09 TFLOP/s
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Strong Scaling Results
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* batch size = 2048 per synchronous group
e (a) shows that the synchronous algorithm does not scale past 256 nodes

e (b) shows the synchronous algorithm scales only to a maximum of 320x at 512 nodes
and stops scaling beyond that point
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Weak Scaling Results
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(a) HEP

e batch size 8 per node

# nodes (66 cores/node)

(b) Climate

e climate network shows almost ideal scaling

* observe slightly better scaling for hybrid over synchronous configurations due to reduced
straggler effects.
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Training losses vs wall clock time for HEP
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e the best hybrid configuration achieves the target loss(0.05) in about 10
minutes, which is about 1.66X faster than the best sync run

* some of the jumps are observed in the loss curves of the 2-group
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Overall Performance

e HEP network
e obtained a peak throughput of 11.73 PFLOP/s
* 9594 compute nodes plus 6 parameter servers split into 9 groups
* each group using a minibatch of 8528
e corresponds to a speedup of 6173x over single node performance
* Climate network
* obtained a peak throughput of 15.07 PFLOP/s
e 9608 compute nodes plus 14 parameter servers split into 8 groups
* each group using a minibatch of 9608

e corresponds to a speedup of 7205X over single node performance
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