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Abstract 

 
The grid deals with large scale and ever-expanding 

environment which contains million of users and 
resources. For this reason, resource selection has been 
a challenging task especially in meeting user’s demand 
for a quality of service (QoS). A quality of service is 
the ability to serve a job by providing quality and 
reliable resource in fulfilling the user’s need. Quality 
and reliable resource selections naturally yield 
excellent and quality results. The background of the 
users and where the resource belongs to are important 
in determining the quality of a resource. This paper 
concerns with efficient and quality-based resource 
discovery using Condor ClassAd and PageRank 
technique in order to achieve a quality resource 
matching. The paper discusses how quality of users 
and resources are determined and considered in the 
discovery process prior to allocating jobs to resources. 
 
1. Introduction 
 
Grid technology provides facility which enable sharing 
of a large scale, distributed and heterogeneous 
computing resources [1]. Hence, an efficient resource 
discovery mechanism is necessary to meet user’s 
demand on quality of service (QoS).  

Most grid resource discovery or schedulers [6, 12, 
13] focus on selecting and allocating jobs to suitable 
resources by mapping the requirements and constraints 
between users and resources. None considers the 
background and quality of the users and resources 
involved. Users may end up with low quality or 
inconsistent resources leading to disappointing results. 
They may play tricks by requesting more resources 
than required. This can lead to unfair competition in 
getting resources among users.       

This paper emphasizes on improving the current 
resource discovery technique in grid scheduler by 
taking into account the quality and reliability of both, 
users and resources. We begin our discussion by 

positioning our work in relation to existing work 
(section 2) and followed by a discussion on how 
quality and reliable users and resources are identified 
(section 3). We then proceed with detail discussion on 
how to incorporate PageRank. Section 4 summarizes 
and suggests the future direction of the work. 
 
2. Related Work 
 
2.1 The World Wide Web vs. Grid 
 
Resource in the World Wide Web (WWW) are the web 
pages which comprises of text- and hypertext-based 
entities that are independent and uncontrolled [3]. In 
grid environment, resources are represented as 
different form of entities such as computing power, 
databases, files, applications software and storage. We 
focus on compute resource which is used to perform 
and execute any submitted jobs. In order to enable 
resource sharing in grid, authentication is needed and 
only authorized user is allowed to participate. This is 
why the grid is referred to as a well-controlled 
environment.  

Google search engine is one of the most popular 
WWW search engine which sorts and returns the 
search results based on quality and reliable web pages. 
The search engine employs an interesting technique 
called PageRank [2, 3, 4] to rank the large number of 
web pages based on importance. This is done by 
utilizing the link structure of the web page [2, 3, 4]. 
Google’s PageRank is a numeric value that represents 
the importance of a page on the web. A page has a high 
rank if the sum of its backlinks is high. We believe the 
PageRank idea can be applied in grid by treating the 
resource usage as the link structure to identify the 
quality and reliability of the resource. 

Google search engine uses meta-search as a 
matching technique where user put their keywords in 
the search box to find specific information [12]. User’s 
keywords are then sent to the search engine’s index 
server to extract relevant information based on user’s 



query. In grid environment, there are various matching 
techniques which are used in the grid scheduler for the 
purpose of discovering resource [6, 12, 13]. Condor 
ClassAd is one of the matching technique currently 
implemented in Condor scheduler. It is a semi-
structured data model or language that can be used to 
specify the characteristics, constraint and preference of 
principles [6, 8]. In other words, ClassAd is a 
symmetric attribute-based matching technique. Figure 
1 shows the example of ClassAds of requestor and 
provider. In Condor, a matchmaker is used to discover 
compatible ClassAd between principals (providers and 
requestors). Unfortunately, ClassAd only evaluates the 
physical characteristics/specifications of the machine 
and job, but ignores the quality of the principals.   
 
Request ClassAd: 
[ Type = “Job”; Owner = “User1”; 
  Constraint = other.Type == “Machine”  
  && Arch == “INTEL” && OpSys == “SOLARIS251”  
  && Disk >= 10000; Rank = other.Memory;]  
 
Resource ClassAd: 
[ Type = “Machine”; Name = “m1”; Disk = 30000; 
  OpSys = “SOLARIS251”; ResearchGrp = “user1”,    
  “user2”; 
  Constraint = member(other.Owner,  
  ResearchGrp)  
  && DayTime > 18*60*60;  
  Rank = member(other.Owner, ResearchGrp)] 
 
Fig.1. Two examples of Condor ClassAds. For each resource-request 

pair, constraint clauses are checked for compatibility against the 
other’s properties. Rank is used to select among multiple matches. 

 
3.0 Our Approach 
 
Our Quality-based Grid Resource Discovery (Q-GreD) 
aims at providing a grid resource discovery which 
takes into account the quality and reliability of both 
users and resources. We propose a resource discovery 
technique which is based on Condor ClassAd but 
incorporate the idea of PageRank (which we refer to as 
ResourceRank) in determining the quality and 
reliability of the grid resources.  

In PageRank, if a page links to another page this 
means that it is casting a vote as an indication that the 
other page is good. If many pages link to a page then 
that page has more votes and its worth should be 
higher [2]. Similar idea can be applied to grid where 
submission of jobs to resources indicates that the 
resource is good. Resource can obtain higher 
ResourceRank score, if many users from different 
organizations submit jobs to that resource or there exist 
users with high ResourceRank using the resource. In 
general, this is true for stable and reliable resources 
which are consistent in providing QoS. Furthermore, 
these resources tend to have many users and more jobs. 
Different from PageRank approach where ‘importance’ 

is tied to each individual web page [3], the 
ResourceRank is computed by adding up 
ResourceRank score of each resource provided by the 
organization. 

 
RR(A) = (1-d) + d (RR(Ti)/C(Ti) + RR(Tn)/C(Tn)) 

 
Where 
RR(A)  - ResourceRank of resource A, 
RR(Ti)  - ResourceRank of resource Ti which   
         uses the resource A, 
N(Ti)  – the number of times user in  
         organization Ti submits job to  
         current resource in an organization 
d   - damping factor which usually set to  
         0.85 
   

Fig.2. Resource Rank Algorithm (adapted from [2]) 
 

Figure 2 shows the algorithm used to calculate the 
rank score. ResouceRank is actuallty a backlink 
calculation [2, 4] where in order to obtain the score of 
a resource, we need to get the ResourceRank score of 
users that currently vote or use that resource. Since 
users’ votes can influence the ResourceRank score, 
there is a possibility of an organization plays a trick by 
asking the same user to keep submitting jobs into their 
resources. In order to prevent this problem, we modify 
the PageRank algorithm by including a new variable 
N(Ti). If the same user submits jobs into a resource, the 
user’s ResourceRank score will be divided by the 
number of times that user submits jobs to that 
particular resource. Figure 3 illustrates how 
ResourceRank is calculated.      

 

 
Key: U=user and R=Resource 

 
RR(A)  = 0.15(base) + 0.1275(C) = 0.2775 
RR(B)  = 0.15(base) + 0.1275/2(A) = 0.2135 
RR(C) = 0.15(base) + 0.1275(A) + 0.1275(B)  
        + 0.1275(D) = 0.5325 
RR(D)  = 0.15(base) + 0.1275(A) = 0.2775 

 
Fig.3. Example calculation of ResourceRank score 

 
Assuming that there are four virtual organizations; 

A, B, C and D with one user and one resource each. 
Two arrows from organization A to B implies user 
from organization A has submitted two jobs to 



resource in organization B while an arrow from 
organization D to C implies user from organization D 
has submitted a job to resource in organization C. 
ResourceRank score of organization A is obtained by 
calculating the backlink of other user’s ResourceRank; 
in this case is the user in the organization C who 
submits jobs to resource in the organization A. The 
base value is the initial value of each resource where 
there is no incoming vote or outgoing vote. User’s 
ranking value depends on the ResourceRank of the 
organization. Organization C provides the most quality 
and reliable resources since there are many users’ votes 
for resources in organization C. The final calculation 
indicates that the higher the ResourceRank score, the 
quality and the more reliable the resources provided by 
the organization.  

 
3.2 Matching Technique in Q-GReD 
   

ClassAd relies on the following expression to 
perform matching and find similarity between 
requestor and provider. 
 

1. Constraint = attribute type which    
                 principal would like to be  
                 matched  
 
Where, 
Similarity (a, b) = {True if a=b else false} 

 
Constraint is used by the matchmaker to validate 
every attribute value whether there are any 
similarities between provider and requester. It will 
return 1, if attribute values on the provider are 
similar and return 0 if not. 

 
2. Rank = preferences 
 

Requestor and provider are considered as matched 
when both are evaluated to TRUE. Rank is used 
when Condor finds more than one principal’s 
ClassAd which met the constraints. In other 
words, rank denoted the goodness of the 
candidate.  

 
We incorporates ResourceRank into the rank 

equation in Condor ClassAd. Hence, ResourceRank 
becomes a new constraint that must be considered 
when matchmaking is performed. The matchmaking 
are carried out according to the following steps: 
 

1. The discovery and matchmaking is strictly 
based on ResourceRank value on each 
principal. 

2. Requestor with high ResourceRank has a high 

possibility to claim and to be placed into 
quality and reliable resource.  

3. For the case of requestor, if ResourceRank = 
N then the claim will only allowed to provider 
with ResourceRank = N and below. 

4. For the case of provider, the claim is valid and 
accepted to any requestors which have the 
same ResourceRank value or above. 

 
Requestor interacts with Q-GReD by placing their 

requirements or specifications on targeted resources as 
constraints. Figure 4 represents the modified ClassAds 
with ResourceRank for each requestor in organization 
A and B and also provider’s ClassAd in organization C 
and D. 
  
Request ClassAd: 
[ Type = “Job”; Owner = “UserA”;  
ResourceRank = “10”; Organization = “A”; 
Constraint = other.Type == “Machine”  
&& Arch == “INTEL” && OpSys == “SOLARIS251”  
&& Disk >= 10000; Rank = other.Memory + 
other.ResourceRank;]  
 
Request ClassAd: 
[ Type = “Job”; Owner = “UserB”;  
ResourceRank = “4”; Organization = “B”; 
Constraint = other.Type == “Machine”  
&& Arch == “INTEL” && OpSys == “SOLARIS251”  
&& Disk >= 10000; Rank = other.Memory + 
other.ResourceRank;]  
 
Resource ClassAd: 
[ Type = “Machine”; Name = “m1”; Disk = 30000; 
OpSys = “SOLARIS251”; ResourceRank = “6”; 
Organization = “C”; 
Constraint = other.Owner, 
&& DayTime > 18*60*60;  
Rank = other.ResourceRank] 
 
Resource ClassAd: 
[ Type = “Machine”; Name = “m2”; Disk = 30000; 
OpSys = “SOLARIS251”; ResourceRank = “3”; 
Organization = “D”; 
Constraint = other.Owner, 
&& DayTime > 18*60*60;  
Rank = other.ResourceRank] 

  
Fig.4. Requestor’s Requirements 

 
In Q-GReD, user in organization A is only allowed 

to request resource from organization C and D. The 
reason being the ResourceRank of user A is  = 10 
which is over than ResourceRank for the organization 
C and D. The idea is to utilize the resource where 
quality resource is only for quality job. User B which 
has lower ResourceRank than user A is only allowed to 
request resource from organization D. Our approach is 
better than static approach implemented by Condor 
where a fair allocation can be ensured among the 
competing users. In Condor, after the matchmaker 



finds the compatible ClassAds, the system proceeds 
with claiming process which is based on the priority 
factor (set by provider) [7, 8, 10]. We found that the 
priority factor is not a good metric of the fairshare 
since the distribution of the priority is depend on the 
resource provider. In our work, ResourceRank replaces 
the priority factor and plays an important role in 
distributing the priority. 
 

4.0 Conclusion and Future Work 
 
In this paper, we have presented Q-GReD, a quality-
based resource discovery technique in grid 
environment. The main goal of the Q-GReD is to 
provide a better resource discovery in a challenging 
large-scale grid environment. Q-GReD concerns with 
selecting quality and reliable resources for job 
allocation. Future work includes implementing the Q-
GReD  technique and studying other potential 
matchmaking algorithms.  
 
5.0 Reference 
 
[1] Foster, I. and Kesselman, C. Globus: The Grid: Blueprint for a 

Future Computing Infrastructure. Morgan Kaufmann, 1999. 
[2] Chris Ridings and Mike Shishigin, PageRank Uncovered, 

2002. 
[3]  Sergey Brin and Lawrence Page, “The Anatomy of a Large-

Scale Hypertextual Web Search Engine”. In Proceedings of the 
7th World Wide Web Conference, Brisbane, Australia, 1998. 
http://www-db.stanford.edu/~backrub/google.html 

[4] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry 
Winograd. “The pagerank citation algorithm: bringing order to 
the web”. In Proceedings of the seventh conference on World 
Wide Web, Brisbane, Australia, April 1998. 

[5] Douglas Thain, Todd Tannenbaum, and Miron Livny, Condor 
and the Grid, in Fran Berman, Anthony J.G. Hey, Geoffrey 
Fox, editors, Grid Computing: Making the Global 
Infrastructure a Reality, John Wiley, 2003. ISBN: 0-470-
85319-0 

[6] Todd Tannenbaum, Derek Wright, Karen Miller, and Miron 
Livny. Condor - A Distributed Job Scheduler, in Thomas 
Sterling, editor, Beowulf Cluster Computing with Linux, The 
MIT Press, 2002. ISBN: 0-262-69274-0 

[7] Nicholas Coleman, Rajesh Raman, Miron Livny and Marvin 
Solomon, Distributed Policy Management and Comprehension 
with Classified Advertisements, University of Wisconsin-
Madison Computer Sciences Technical Report #1481, April 
2003. 

[8] Rajesh Raman, Miron Livny, and Marvin Solomon, 
“Matchmaking: Distributed Resource Management for High 
Throughput Computing”. In Proceedings of the Seventh IEEE 
International Symposium on High Performance Distributed 
Computing, July 28-31, 1998, Chicago, IL. 

[9] Alain Roy and Miron Livny, “Condor and Preemptive Resume 
Scheduling”, Published in Grid Resource Management: State 
of the Art and Future Trends, Fall 2003, pages 135-144, Fall 
2003, Edited by Jarek Nabrzyski, Jennifer M. Schopf and Jan 
Weglarz, published by Kluwer Academic Publishers. 

[10] Rajesh Raman. Matchmaking Frameworks for Distributed 
Resource Management. PhD thesis, University of Wisconsin, 
October 2000. 

[11] Ding Choon Hoong and Rajkumar Buyya. Guided Google: A 
Meta Search Engine and its Implementation using the Google 
Distributed Web Services. Technical Report, GRIDS-TR-2003-
1, Grid Computing and Distributed Systems (GRIDS) 
Laboratory, The University of Melbourne, Australia, January 
2003. 

[12] R. Buyya, D. Abramson, and J. Giddy, “Nimrod/G: An 
Architecture for a Resource Management and Scheduling 
System in a Global Computational Grid”, 4th Intl. Conf. on 
High Performance Computing in Asia-Pacific Region (HPC 
Asia 2000), China. 

[13] Portable Batch System Administrator Guide. Release: 
OpenPBS 2.3, Printed: August, 2000. 

 
 

 


