
J Grid Computing (2006) 4: 323–341
DOI 10.1007/s10723-006-9035-7

Kosha: A Peer-to-Peer Enhancement for the Network
File System∗

Ali R. Butt · Troy A. Johnson · Yili Zheng · Y. Charlie Hu

Received: 1 September 2005 / Accepted: 24 February 2006 / Published online: 1 June 2006
© Springer Science+Business Media B.V. 2006

Abstract The storage needs of modern scientific
applications are growing exponentially, and de-
signing economical storage solutions for such ap-
plications – especially in Grid environments – is
an important research topic. This work presents
Kosha, a system that aims to harvest redundant
storage space on cluster nodes and user desktops
to provide a reliable, shared file system that acts
as a large distributed storage. Kosha utilizes peer-
to-peer (p2p) mechanisms to enhance the widely-
used Network File System (NFS). P2P storage
systems provide location transparency, mobility
transparency, load balancing, and file replication
– features that are not available in NFS. On the
other hand, NFS provides hierarchical file orga-
nization, directory listings, and file permissions,
which are missing from p2p storage systems. By
blending the strengths of NFS and p2p storage
systems, Kosha provides a low overhead storage
solution. Our experiments show that compared to
unmodified NFS, Kosha introduces a 3.3% fixed

∗This work was supported in part by an NSF
CAREER award (ACI-0238379).
Troy A. Johnson was supported by a U.S. Department
of Education GAANN doctoral fellowship.

A. R. Butt · T. A. Johnson · Y. Zheng · Y. C. Hu (B)
School of Electrical and Computer Engineering,
Purdue University,
West Lafayette, IN, USA
e-mail: ychu@purdue.edu

overhead and 4.5% additional overhead as nodes
are increased from two to sixteen. For larger num-
ber of nodes, the additional overhead increases
slowly. Kosha achieves load balancing in distrib-
uted directories, and guarantees 99.99% or better
file availability.

Key words distributed storage · fault tolerance ·

load balancing · location transparency · mobility
transparency · NFS · peer-to-peer

1. Introduction

The computational Grid [17], popularized by sys-
tems such as Globus [16] and Condor [21], pro-
vides ways for applications to be spread across
multiple administrative domains, with the goal
of catering to the exponentially growing compu-
tational and storage needs of modern scientific
applications. Typically these systems employ off-
the-shelf equipment to provide an economically
viable solution. In this context, peer-to-peer(p2p)
approaches [6] have also been used to enable
dynamic computational resource sharing. Building
on similar principles, we propose an economical
and fault resilient storage solution for the ever
increasing storage demands of applications.

The design of our storage solution is aimed at
providing storage for individual Grid sites consist-
ing of multiple nodes, e.g., clusters connected to

324 J Grid Computing (2006) 4: 323–341

the Grid. The solution provides an economical and
fault-tolerant alternative to the dedicated storage
within a single administrative domain. It is not
intended to run across domains over the wide-area
network. For supporting data movement across
such domains, standard Grid data movement pro-
tocols can be used. The proposed distributed stor-
age solution can be used in the following scenarios:

– To store applications and data for Grid sites
that want to utilize computation resources
within the same administrative domain, e.g.,
Condor job submission nodes;

– To store application generated output data
for nodes that execute the applications, e.g.,
Condor job execution nodes; and

– To store generic user data, e.g., user home
directories, for nodes within an administrative
domain.

The targeted academic and corporate Grid sites
typically utilize off-the-shelf equipment, e.g., desk-
top machines and rack-mount cluster nodes, pri-
marily for fulfilling computing needs of users, and
use centralized servers such as the Network File
System (NFS) [7, 29], to cater to the storage needs.
However, typical modern compute nodes have a
large amount of free disk space, which is wasted
in these setups. Hence, our first design goal is to
utilize the cheap storage that is available in such
environments to create a distributed file system.

Because the distributed file system stores files
on the disks of peer nodes which may fail over
time and may have different disk capacity, our
second design goal is to provide features of location
transparency, mobility transparency, load balanc-
ing, and high availability through file replication
and transparent fault handling.

The targeted environments also have extensive
NFS cross-mounting facilities established to pro-
vide users access to storage beyond their local
disks. Therefore, it is not practical to replace NFS.
(For similar reasons, switching to AFS [19] or xFS
[3] may not be possible.) As the widespread use
of NFS is indispensable, our third design goal is
to retain the widely used NFS semantics, so that
users and applications can access the distributed file
system without any changes.

In this paper, we propose Kosha, a distributed
file system that employs peer-to-peer (p2p) tech-

nology and the disk space available on partici-
pating nodes to enhance NFS. Kosha provides a
single file system image identical to NFS, requires
only minimal configuration, and does not entail
changes to the underlying operating system. The
result is a simple yet effective system, which is
readily deployable, does not burden the user with
the need to learn a new interface, and supports
unmodified applications.

Kosha organizes the participating nodes into a
structured p2p overlay, and uses NFS facilities to
make the files available across peers. It ensures
that the location of the files remains transparent
to the user. Unique to the design of Kosha is that
instead of distributing individual files over the dis-
tributed storage provided by the nodes in the p2p
overlay, it distributes at the level of directories,
i.e., files in the same directory are by default stored
in the same node as that directory. Furthermore,
Kosha controls the granularity of directory dis-
tribution via a parameter that controls the depth
beyond which subdirectories are not distributed,
i.e., they are stored on the same node as their
parent directory. As we will show, distribution
at the directory level allows Kosha to impose
less overhead on NFS operations, while achieving
load balancing comparable to distribution at the
file level.

Kosha and standard NFS can safely co-exist on
a node and their operations do not interfere with
each other. It is up to the node owner to decide
the portion of a node’s storage space that is used
for Kosha and standard NFS. In order for users to
reap the benefits of Kosha, they should explicitly
store their files under the Kosha mount points.
This process can be simplified if the system admin-
istrators move all the users’ files to Kosha mount
points and set their home directories to those on
Kosha. In this way, users can transparently benefit
from Kosha features.

The main contributions of this work are as
follows:

1. The aggregation of unused disk space on many
computers into a single, shared file system with
standard NFS semantics;

2. Load balancing via an efficient scheme of dis-
tributing directories instead of files;

J Grid Computing (2006) 4: 323–341 325

3. High availability through replication and
transparent fault handling; and

4. A detailed evaluation of the approach, includ-
ing its performance compared to unmodified
NFS, and its ability to provide load balancing
and fault tolerance.

The rest of the paper is organized as follows.
Section 2 presents the enabling technologies for
Kosha. Section 3 presents the main idea of file dis-
tribution across multiple nodes in Kosha. Section 4
presents the design of Kosha and how it handles
various NFS operation. Section 5 describes our
prototype implementation. Section 6 presents a
detailed evaluation of Kosha. Section 7 discusses
the related work. Finally, Section 8 gives conclud-
ing remarks.

2. Enabling Technologies

Two aspects, advancement in hardware technol-
ogy and p2p routing algorithms, serve as enabling
technologies for our proposed approach. In the
following sections we discuss these aspects in
more detail.

2.1. Large Unused Local Disk Space on Desktops

Most desktop computers in today’s academic or
corporate environments are purchased mainly for
processing power. Nevertheless, standard pack-
ages, which are rampant in such environments,
usually ship with large capacity disk drives [12, 14].
In order to support our conjecture that a large
amount of disk space is wasted in the focused
environments, we performed a survey of over 500
instructional machines at Purdue University. The
survey showed that more than 80% of machines
have 1.5 GHz Intel Pentium 4 or better processors,
and the total available disk space ranged from
8 GB (for older systems) to 60 GB (for the latest
systems). A little over 84% of the machines have a
local disk of 40 GB; however, the local disk utiliza-
tion is only up to 4 GB for holding the operating
system and temporary user files. For the systems
that have at least 40 GB disk space, at least 90% of
the local disk space on each machine is unused. As
disks become cheaper and larger in capacity, this

wastage is bound to worsen. On the other hand,
the three NFS servers used by these machines
have about 75% space being used. The servers
have to impose strict quotas in order to avoid
being full. Such central servers require regular
addition of new disk space to accommodate new
users and the ever growing storage needs of many
users, an obviously expensive and cumbersome
procedure.

Simply running NFS servers on every machine
that has unused local disk space and letting users
share the space is far from practical. The main-
tenance of a huge number of servers can be
inhibiting, and human interaction and configura-
tion errors may poorly affect the performance.
Furthermore, if all nodes are NFS servers, users
must remember on which machines their files are
stored – a difficult and cumbersome task if many
machines are used for storage. Symbolic links can
help the user to locate their files quickly, but stale
links can make the situation even more confusing.
Another issue is that NFS does not provide redun-
dancy, so if machines fail or are taken offline for
maintenance, the information stored on them be-
comes inaccessible. The failure often causes other
machines (repeatedly trying to access the failed
machines) to respond slowly to requests they re-
ceive – an effect which spreads rapidly to degrade
the performance of the entire system. The users
may retrieve files from a daily or weekly backup
storage, but in a large organization it may not
be economically feasible to backup the data from
the local disks of all machines. These observations
stress the opportunity of, and the need for, a utility
layer above NFS to manage locally available disk
space as an economical way of fulfilling the ever
growing storage demands of users.

2.2. Structured P2P Overlay Networks

Structured p2p overlay networks such as CAN
[24], Chord [32], Pastry [26], and Tapestry [34]
effectively implement scalable and fault toler-
ant distributed hash tables (DHTs), where each
node in the network has a unique node identifier
(nodeId) and each data item stored in the network
has a unique key. The nodeIds and keys live in
the same name space, and each key is mapped
to a unique node in the network. Thus DHTs

326 J Grid Computing (2006) 4: 323–341

allow data to be inserted without knowing where
it will be stored and requests for data to be routed
without requiring any knowledge of where the
corresponding data items are stored.

The key aspects of these structured p2p over-
lays are self-organization, decentralization, redun-
dancy, and routing efficiency. Self-organization
promises to eliminate much of the cost, difficulty,
and time required to deploy, configure and main-
tain large-scale distributed systems. The process of
securely integrating a node into an existing system,
maintaining its integrity invariants as nodes fail
and recover, and scaling the number of nodes over
many orders of magnitude is fully automated. The
heavy reliance on randomization (from hashing)
in the nodeId and key generation provides good
load balancing, diversity, redundancy and robust-
ness without requiring any global coordination or
centralized components, which could compromise
scalability. In an overlay with N nodes, messages
can be routed with O(logN) overlay hops and each
node maintains only O(logN) neighbors.

The functionalities provided by DHTs allow
for transparent distribution of files on multiple
servers. In the next section, we discuss how this
facility is used in the Kosha design. While any of
the structured DHTs can be used to implement
file distribution in Kosha, we use Pastry for this
paper. In the following, we briefly explain the
DHT mapping in Pastry.

Pastry. Pastry [8, 26] is a scalable, fault resilient
and self-organizing p2p substrate. Each Pastry
node has a unique, uniform, randomly assigned
nodeId in a circular 128-bit identifier space. Given
a message and an associated 128-bit key, Pastry
reliably routes the message to the live node whose
nodeId is numerically closest to the key.

In Pastry, each node maintains a routing table
that consists of rows of other nodes’ nodeId s
which share increasingly longer prefixes with the
current node’s nodeId. In addition, each node
maintains a leaf set, which consists of l nodes with
nodeIds that are numerically closest to the present
node’s nodeId, with l/2 larger and l/2 smaller
nodeIds than the current node’s nodeId. The leaf
set ensures reliable message delivery and is used to
store replicas of application objects. Pastry routing
is prefix-based. At each routing step, a node seeks

to forward the message to a node whose nodeId
shares with the key a prefix that is at least one digit
longer than the current node’s shared prefix. The
leaf set helps to determine the numerically closest
node once the message has reached the vicinity of
that node. A more detailed description of Pastry
can be found in [8, 26].

3. Distribution of a File System Across Nodes

Kosha distributes data to various nodes that par-
ticipate in storage-space sharing by joining the
Pastry overlay. The virtual mount point /kosha
serves as an access point to the distributed file sys-
tem provided by Kosha. On each node, the direc-
tory /kosha_store serves as the storage for Kosha.
From a user’s perspective, the /kosha/$USER di-
rectory actually corresponds to the union of the
/kosha_store/$USER directories on all nodes, as
shown in Figure 1. For Kosha $USER is the same
as in NFS, i.e., the user’s home directory and is
typically the same as the login of the user.

3.1. Directory Distribution Across Multiple
Nodes

To achieve load balancing, Kosha employs hash-
ing provided by Pastry and distributes directories
created under /kosha to multiple nodes. It is as-
sumed that all the files in a directory reside on the
same node, i.e., the node to which the directory
name is mapped, except for subdirectories, which
reside on the nodes selected via mapping of the
subdirectory names. This design helps to reduce

Node 1

/tmp

/home

/

/kosha_store

/kosha

(union)

Node 2

/

/tmp

/home

/kosha_store

Figure 1 Virtual directory hierarchy: /kosha is the virtual
directory and is the union of /kosha_store on all the nodes.

J Grid Computing (2006) 4: 323–341 327

gamma
alpha

theta

(0xABCD32...76)

beta

(0xABCD12...89)

/

. . .usr var kosha

theta

gamma
beta

alpha
(beta)

(SHA–1)
Function

Hash

Figure 2 Example of file distribution to multiple nodes.
The virtual mount point is /kosha. The directory name is
first hashed using a general hashing function such as SHA-1
to generate a unique key, which is then routed using Pastry

to a node whose nodeId is numerically closest to the key.
The selected Pastry node will provide the physical storage
for the directory. The actual file operations, however, are
performed via the NFS protocol (not shown).

costs of hashing and subsequent lookups for the
actual storage nodes, while maintaining a good
load balance.

For example, to locate a node for a file
/dir1/file1, Kosha performs the following mapping:

/kosha/dir1/ f ile1
=⇒ DHT(hash(dir1)) : /kosha_store/dir1/ f ile1

The following steps are done for this purpose. A
128-bit unique key is created via a SHA-1 [1] hash
of the directory name. Next, this key is used to
lookup a node according to the DHT implemen-
tation of the p2p substrate. For example, in the
case of Pastry [26], the selected node is the one
whose identifier is numerically closest to the key
value. The event of key collisions due to two or
more subdirectories sharing the same name only
implies that the colliding directories will be stored
on the same node, and does not pose a problem in
distinguishing them, as their paths are unique.

Figure 2 shows an example distribution of di-
rectories to various nodes. When a directory is
distributed to a node other than the one that stores
its parent directory, a soft link to the distributed
subdirectory is placed in the parent directory to
serve as a place holder for properly listing contents
of the parent directory.

3.2. Controlling the Granularity of Distribution

Kosha maintains a system-wide parameter, the
distribution level, which dictates how many levels

of subdirectories will be distributed to multiple
nodes. For instance, distribution level 1 implies
that hashing is performed for only direct subdirec-
tories (first level subdirectories) of the virtual file
system mount point (/kosha) to distribute them to
multiple nodes. As a result, all lower level sub-
directories are stored on the same node as the
node on which their parent directory is stored.
For example, with distribution level 1, the direc-
tories /kosha/dir1 and /kosha/dir2 may be stored
on different nodes as determined by the p2p sub-
strate, but the directories /kosha/dir1/dirX and
/kosha/dir1/dirY are both stored on the same node
as the one which stores /kosha/dir1. Similarly,
distribution level 2 implies that another level of
subdirectories will also be distributed to mul-
tiple nodes. In this case, /kosha/dir1/dirX and
/kosha/dir1/dirY may be stored on different nodes
than the one that stores /kosha/dir1. Hence, dis-
tribution level controls the granularity of distribu-
tion and load balancing.

3.3. Optimization

The heterogeneity in the storage space con-
tributed by nodes and variations in directory size
implies that a node selected for storing a directory
may not have enough local disk space to hold the
directory and all of the files (used here generally to
mean subdirectories as well) stored under it. How-
ever, it is also not possible to decide the size of a
directory a priori, i.e., without knowing the size of

328 J Grid Computing (2006) 4: 323–341

alpha

sdir2

fileY
 sdirM

/kosha_store

alpha

sdir2

 sdirM

fileM
fileN

file1
file2
sdir1
sdir2

alpha

beta

sdir1

fileB

alpha

sdir1

fileX

kosha

betaalpha

sdir2
sdir1

file1
file2 fileA

sdir1
fileX

sdirMfileY

fileM fileN

fileB
/kosha_store

/kosha_store

/kosha_store

/kosha/alpha/sdir2/sdirM#

/kosha_store

beta

fileA
sdir1

B

E

D

C

A

Figure 3 Example of subdirectory distribution to multiple
nodes. The files in the same directory are stored on the
same node as the parent directory. However, the subdi-
rectories are distributed to remote nodes. The distribution
level is set to 2, and A has limited capacity which causes

/alpha/sdir2/sdirM to be redirected to B. The example con-
tents of the special link are shown in the rectangle. Node
B is chosen for storing the redirected subdirectory because
DHT(hash(sdirM#)) = B.

the files that will be created in it. To address this,
Kosha employs redirection for all newly created
files when the local disk space has exceeded a pre-
specified utilization level. When this happens, the
file is redirected and stored on a different node.
Redirection is done by concatenating a random
salt to the file name, and rehashing the new name
to find a suitable node. The redirection due to
storage capacity is an iterative operation rather
than recursive, i.e., the redirection process repeats
till a node with enough disk space is found, or a
pre-specified number of retries is exhausted. This
approach is derived from a similar approach in
PAST [27].

When a file is redirected, a special soft link to
the redirected file is created in the parent direc-
tory. The special soft link serves to connect the
redirected file to its actual location in the parent
directory. The name of the link is the same as the
name of the redirected file; this helps Kosha list
the directory contents of the parent directory. The

target of the link is the file name concatenated
with the salt value. When Kosha comes across a
special link, it follows the special link and accesses
the redirected file. This provides users with trans-
parency to redirection. Figure 3 shows an example
of file distribution with this optimization.

4. Kosha Design

In Kosha, nodes contributing disk space join a
p2p overlay network, and are identified by unique
nodeIds assigned to them via the Pastry interface
[26]. The nodes are assumed to run NFS servers, so
that their contributed disk space can be accessed
via NFS. It is assumed that only the system ad-
ministrator has full access to these nodes, and the
users cannot modify the system arbitrarily.

Various file operations performed on /kosha are
handled as follows. First, Kosha determines the
node on which a file is stored by performing the

J Grid Computing (2006) 4: 323–341 329

mapping described in Section 3.1, and following
any redirection as necessary. Second, the NFS Re-
mote Procedure Call (RPC) for performing the file
operation is modified to occur on /kosha_store on
the selected node, instead of /kosha on the client
node. Kosha does this by forwarding the modified
RPC to the selected node. Third, the receiving
node performs the operation and returns the re-
sults to Kosha, which then records the information
needed for future accesses. Finally, Kosha returns
control to the client. Hence, the client remains
unaware of the underlying RPC forwarding, and
the whole operation is transparent, except for a
delay caused by the lookup for the appropriate
storage node.

4.1. NFS Operations Support

In the following, we describe the semantics sup-
ported by Kosha, followed by a discussion of how
Kosha handles various NFS operations.

4.1.1. Semantics in Absence of Failures

The semantics of Kosha are the same as NFS
in the absence of failures. All accesses to a file
are guaranteed (by the DHT-based storage node
location) to be sent to the same storage node, and
therefore, every user sees the same instance of a
file. In case of failures, Kosha differs from NFS in
that it continues to provide access to files, whereas
NFS does not. See Section 4.3 for more on the
failure semantics of Kosha. The behavior of Kosha
in the presence of client caching also remains the
same as that of NFS.

4.1.2. Virtual File Handles

NFS uses file handles to access files. These handles
are opaque, i.e., they only have meaning to the
NFS server, implying that the clients can be given
any identifier for a file as long as it corresponds
uniquely to a file handle in the server. The opacity
provides Kosha with a way to decouple actual file
handles from identifiers handed to the clients. We
refer to these identifiers as virtual file handles,
as they serve to access files in the /kosha virtual
file system. Kosha maintains a table of mappings
from virtual file handles to real file handles, which

allows it to provide location transparency. As ex-
plained below, Kosha also stores the full file path
for each entry in the table. The extra level of
indirection enabled by the use of virtual handles
allows Kosha to transparently substitute handles
for file replicas in the event of node failures.

4.1.3. Locating Files

In NFS, a lookup RPC is used to obtain a file
handle for a file. The RPC contains the handle for
the parent directory, and the name of the file for
which the lookup is desired. Note that in NFSv3,
the RPC does not contain the full path to the file.
Once a handle is available, other NFS operations
can be performed on the file or directory by pre-
senting the handle. Looking up the full path by an
NFS client requires a sequence of lookup RPCs,
unless the handles for the ancestor directories
have already been cached.

To perform a lookup RPC from the local NFS
client, Kosha first looks up the full path to the
parent directory in the virtual handle table, which
is already known because of previous lookup calls,
and appends the name of the file to the parent
directory’s full path. Kosha then examines the full
path to the file and uses the distribution level to
determine what directory name should be used for
node lookup. Performing this lookup gives Kosha
the remote node R on which the file is stored.

Next, Kosha looks up the entire path on R, as
if it is an NFS client of R. Finally, when the call
returns with a handle, a virtual handle (as de-
scribed in Section 4.1.2) is created, and the virtual
handle is given to the client.

All subsequent RPCs that supply the virtual
handle are mapped to the real handle to per-
form the NFS operation. For instance, RPCs such
as read, write, getattr, and setattr provide
the virtual handle, which is mapped by Kosha to
the actual handle, and the operations can then
be completed.

4.1.4. File Creation and Renaming

To create files or directories, the first step is to
locate the node on which the newly created files
should be stored. To create a file, Kosha lo-
cates the node R to which the parent directory

330 J Grid Computing (2006) 4: 323–341

is mapped and the handle to the parent directory
on the node as in Section 4.1.3, and then sends a
message with the client provided RPC parameters
to R. R uses this information to create the file,
which becomes the primary replica of the file, and
returns the file handle of the created file to Kosha.
Kosha stores the returned handle in the virtual
handle table, and returns the corresponding vir-
tual handle to the client, completing the RPC.

The creation of a subdirectory that is below
the distribution level is similar to the file creation
process described above. If the subdirectory is
within the distribution level and thus needs to be
distributed, the remote node R is first located by
hashing the directory name using the DHT. One
or more RPCs are then sent to R to create the new
subdirectory as well as all the missing ancestor
directories in the hierarchy on R.

A rename operation on a file does not imply
migration to a different node as all files in a sub-
directory reside on the same node. Therefore, if
the file is not redirected, rename is performed
as in the standard NFS. If the file is redi-
rected, a special link is present, e.g., in Figure 3,
A:/kosha_store/alpha/sdir2/sdirM (assume it is a
file) points to the file on B. In this case, the
rename is achieved by renaming the link and
the actual file, e.g., /kosha_store/alpha/sdir2/sdirM
to /kosha_store/alpha/sdir2/sdirM_NewName on
both A and B. The target of the link needs not be
changed, because DHT(hash(sdir M#)) = B re-
mains true. This prevents unnecessary moving of
files on each rename call, and yields an efficient
solution. The same process is used for renaming
subdirectories that are not distributed.

Renaming of distributed subdirectories is com-
plex, and in essence is equivalent to a copy to
a new location followed by a delete of the old
location. The process involves traversal of all sub-
directory levels on all replicas and is expensive.

4.1.5. Removing Files

An NFS client uses remove or rmdir RPCs to
delete files or directories, respectively. To delete
a file, the first step is to determine the remote
node on which the file is stored by looking up the
virtual handle mapping. Next, Kosha forwards the
RPC to the remote node, where it is processed and

the file is removed. Once again, as in the previous
Kosha operations, the reply values are returned to
Kosha and finally to the client.

The directories that are not distributed are
deleted in a similar manner. To delete a distrib-
uted subdirectory, Kosha first deletes the subdi-
rectory from the node on which it is stored. It then
examines the empty directory structure created to
support the distributed subdirectory for possible
use by other subdirectories with some common
path prefix. Any portion of the empty hierarchy
that is not shared with other subdirectories is
then removed. Finally, the soft link to the deleted
subdirectory in the parent directory is deleted
to ensure proper listing of parent directory con-
tents. This action completes the directory deletion
process.

4.1.6. Security

Security in Kosha is identical to NFS since files in
Kosha maintain their permissions. Also, in most
of the targeted academic or cooperate networks,
the users either are not given administrative access
to their machines, or NFS servers are not run
on such machines. Therefore, it is safe to assume
that the files stored on distributed nodes are at
least as secure as on a central NFS server. For
added security, however, Kosha can be extended
to support a majority consensus system based on
Byzantine agreements [10], as utilized in [28]. The
performance of the system may be sacrificed, if
the need for supporting mutually untrusted nodes
arises. The p2p substrate can support tighter se-
curity extensions [9]; however, in our implementa-
tion we did not incorporate such approaches.

4.2. Managing Replicas

Kosha maintains K replicas of a file on the neigh-
boring K nodes in the node identifier space. The
random assignment of node identifiers ensures
that the replicas are dispersed fairly and can pro-
vide good fault tolerance. Neighbors in the node
identifier space have no relationship in terms of
physical proximity.

For each file, there is a node that is located
using the techniques of Section 3; we refer to this
node as the primary replica. All accesses to the

J Grid Computing (2006) 4: 323–341 331

file are sent to the primary replica. The primary
replica is responsible for maintaining K replicas
of the file on K neighboring nodes in its leaf set.
The replicas are inaccessible to the local users, as
they may accidentally or maliciously modify the
replica. The directory hierarchy structure (con-
taining the file) is replicated along with the file on
the replica nodes. In addition, special links in the
same directory, i.e., those pointing to distributed
subdirectories, are replicated as well.

The primary replica is also responsible for
removing files from all replicas when they are
deleted. When the primary replica receives an
RPC for deleting a file, it removes the file locally
and also forwards the RPC to all the replicas,
hence removing all instances of the file. If a replica
node fails before performing the delete operation,
it does not create any inconsistency as explained
in the node failure discussion below.

It should be noted that with the present design
the primary replica is in charge of all file opera-
tions unless it fails and a new primary replica is
selected. Since there are K replicas of the files
available, there is potential for performance im-
provement by leveraging these replicas. We cur-
rently are exploring optimization techniques that
allow at least read operations to be served from
any one of the K replicas.

The fault tolerance and replica management
may be affected by high degree of node discon-
nections and joins to the p2p overlay. Since the
participating nodes in our targeted environment
are desktop machines or cluster nodes running
a flavor of UNIX, we also expect that they will
behave in a stable manner in the p2p overlay with
mean time to failure in the order of days. That is,
the expected number of disconnections or failures
will be low for each participating node. Hence,
the replica management is not expected to be-
come overwhelming and restrict the applicability
of Kosha.

4.3. Node Addition and Failure

The p2p component of the system handles nodes
joining or leaving (including failure) the system
at will, and informs Kosha on a node N when
nodes in N’s leaf set are affected. Kosha then dy-
namically adjusts the file distribution to maintain

proper locations of the primary replica and the K
additional replicas.

4.3.1. Primary Replica

Pastry evenly divides the key space between ad-
jacent nodes in the circular identifier space, with
the node with nodeId numerically closest to the
file key responsible for the file. In case of node ad-
dition, action is required only at the two nodes that
become immediate neighbors of the new node.
If N is one of these neighbors, the key space
distribution changes for it, implying that some of
the files, for which N is the primary node, now
belong to its new neighbor and should be moved.
Kosha examines the files stored on N and the N’s
leaf set to determine which files need to be moved.
If a move is required, the files are copied to the
new node, and their copy on N becomes one of the
replicas. The migration of files ensures that a new
node always has the files for which it is the primary
node.

4.3.2. Additional Replicas

In case a replica node fails, or a new node is added,
Pastry detects the change and informs the local
Kosha of the event via a callback function. In
response to this, the local Kosha creates a copy of
its contents for which it is the primary replica, and
sends the copy to the newly added node, which
now serves as one of the K replicas.

Note that since a node can be revived with a
different identifier which places it in a different
location in the p2p node identifier space, all Kosha
data on a revived node is purged. Purging ensures
that nodes do not end up accumulating replicas
from their previous locations in the p2p identifier
space as they fail and recover.

4.4. Transparent Fault Handling

Our implementation of Kosha assumes all failures
to be crash failures, and transparently handles the
failure of a primary replica node as follows. The
client has a virtual handle to the file, which Kosha
transparently can change to index the handle of
a file replica when the primary replica node fails.
The following sequence of events occur in case

332 J Grid Computing (2006) 4: 323–341

of such failure. When any client accesses a file
whose primary replica has failed, Kosha detects an
RPC error and removes the mapping for the vir-
tual handle. It then proceeds as though a lookup
RPC was made and locates the handle for another
replica of the file. The p2p-based replication of
Section 4.2 guarantees that the lookup automat-
ically will be sent to a node that already stores
a valid replica. An error occurs when no valid
replica for the file can be found. By effective repli-
cation Kosha provides very high availability, and
due to the highly randomized physical location of
the neighbors in the node identifier space, there is
a high probability of finding a replica even under
a large number of node failures.

Another interesting scenario may occur when
the primary replica fails while performing content
migration (due to either a node join or failure) to
a newly inducted replica node. With the design
described so far, the new replica may not have
the correct contents. To overcome this problem,
when a primary replica performs migration it also
creates a file named MIGRATION_NOT_COMPLETE
on the node to which content is being mi-
grated, and removes it after the migration com-
pletes. In the case of failure of the primary
replica before migration is completed, the file
MIGRATION_NOT_COMPLETE serves as a flag to in-
dicate problems with content migration. The new
primary replica checks for the existence of this file
on all the K replicas, and perform the content mi-
gration as before to make all the replicas current.
In this way, fault tolerance is achieved even for
this scenario.

Finally, storing a mapping from virtual handles
to real handles means Kosha is not stateless. But
this mapping is only provided as a service to the
kernel, and due to our crash failure assumption,
if Kosha fails, the entire machine including the
kernel must have failed. Therefore, virtual handles
need not be persistent.

4.5. Load Redistribution

The DHT-approach adopted in Kosha provides
good average load-balance, but it is possible
to have extreme scenarios, where some nodes
operate near capacity while the available space on
neighboring nodes is minimally used. To address

the node overload problem, the redirection of
Section 3.3 can be used to redirect files to a differ-
ent node. However, at high system utilization, the
number of redirections can become large and re-
sults in system performance degradation. To avoid
this problem, we utilize a proactive approach to
load balancing based on periodic redistribution of
files to neighboring nodes.

Once a node is loaded beyond a pre-specified
fraction of total available space on it, it attempts
to shift some of its stored files to its neighbors
as follows. The node communicates with its left
and right neighbors in the identifier space, and if
a neighbor has available capacity, files are pro-
actively redirected to that neighbor, freeing up
space on the node. In the presence of K-replicas
of a file, the load redistribution is done with (K +

1)th neighbor to ensure that the file as well as its
replica is moved to other nodes.

It is possible that multiple nodes decide to
redirect files to a particular node and cause it to
become overloaded. To avoid such an occurrence,
each over-loaded node randomly determines a
waiting period before attempting to redistribute
its files. Moreover, nodes only allow one remote
node at a time to transfer files to them. This en-
sures that redistribution will not cause a normally
loaded node to become overloaded.

4.6. Quota Management

In the distributed file system we have described
so far, users are at liberty to utilize all of avail-
able space without limit. This is not desired as
users can maliciously or accidentally consume all
the available space and affect other users. To
address this problem, we now describe a quota
management system that Kosha uses to limit the
disk space usage of individual users.In contrast
to the local disk quota management approach of
standard UNIX that enforces hard limits by mon-
itoring each disk I/O of a user, we adopt a scheme
that enforces soft limits but avoids the overhead of
monitoring distributed I/Os of Kosha. At the heart
of our scheme is a daemon that runs periodically
(e.g. every 30 min) and determines the amount of
disk space consumed by a user. The quota daemon
runs on all participating Kosha nodes. On each

J Grid Computing (2006) 4: 323–341 333

node this daemon determines the disk usage of
the user directories that have their root directory
/kosha/$USER stored on the node. To perform
this enumeration the daemon can utilize a simple
command such as du to determine the disk us-
age of /kosha/$USER and all of its subdirectories.
Note that Kosha provides automatic handling of
the enumeration of distributed subdirectories, as
it redirects I/O requests on such directories to the
proper remote nodes.

Once the daemon determines the disk usage
of a user, it stores this information in a special
file /kosha/$USER/MYQUOTA. The file also con-
tains the disk usage limit for the user. Kosha re-
tains ownership of this file and only allows the user
read access to it. The advantage of using a file to
store this information is two-fold: It eliminates the
need for a centralized database for maintaining
quota information; and the file is automatically
stored and located using already available Kosha
mechanisms.

The enforcement of the quota limits is done
as follows. Every time a user opens a file for
writing, Kosha first consults the /kosha /$USER/
MYQUOTA file to determine whether the disk
quota has been exceeded, and if so, refuses any
modifications to existing files or creation of new
files till the user removes enough files to bring the
usage below the quota limit.

In order to change the disk quotas, Kosha
administrator can walk the user home directo-
ries and update the /kosha/$USER/MYQUOTA
file. Hence, Kosha employs a periodically run-
ning daemon to enforce disk quotas. Although
the limits are soft – users can continue to exceed
their allotted quotas between daemon runs – the
scheme provides an effective mechanism to limit
unbounded disk space usage.

5. Software Architecture

Each node participating in storage sharing runs an
instance of the Kosha software. A local disk par-
tition is created and used for space contribution.
The size of the partition provides control over the
amount of disk space contributed to Kosha.

The Kosha loopback daemon koshad is imple-
mented as two tightly coupled components: An
NFS loopback server [22] and one of the p2p
routing substrates, Pastry, as shown in Figure 4.

Koshad on each machine is assigned to the same
virtual mount point, /kosha. Afterwards, when-
ever an application performs a file I/O on any path
beginning with /kosha (step 1 in Figure 4), the NFS
portion of the OS kernel will make a remote pro-
cedure call (RPC) to the loopback server koshad
(step 2).

Figure 4 Kosha
architecture: 1 application
makes an I/O system call,
2 kernel makes an RPC
call, 3a local port request
to peer substrate or b
handle substituted and
RPC forwarded, 4a
overlay locates node
storing file or b file I/O
occurs, 5a local port reply
from peer substrate or b
I/O result returned, 6
RPC returns with virtual
handle or result, 7 system
call returns control to
application.

nfsd nfsdnfsd

R
em

ot
e

OS NFS Client

user
Application/ p2p Node

file descriptor <–>virtual handle

/kosha loopback
server

real path & handle
virtual handle <–>

1

3a

4a

5a

6

7

4b

Network
p2p

K
er

ne
l–

sp
ac

e
U

se
r–

sp
ac

e

nfsd

5b

handler

p2p comm.
module

file redirection
manager

replication
manager

sub directory
distribution

manager

loopback server

NFS protocol

3b

2

334 J Grid Computing (2006) 4: 323–341

5.1. Prototype Implementation

The implementation of Kosha is divided into two
parts. One part is dedicated to managing p2p com-
munication between nodes and utilizes the Pastry
API. The only publicly available version of this
API is FreePastry [15] and is written in Java.
Therefore, for our experiments we implemented
a simplified version of the Pasty API using 800+

lines of C++ code.
The second and larger part called koshad han-

dles accesses to the file system and manages NFS
RPCs. It is implemented as an NFS loopback
server built on top of the SFS toolkit [22] with
4, 000+ lines of C++ code.

In order to start the system, the p2p part is
started first, followed by the execution of koshad.
Once started, koshad establishes communication
with the local p2p component using sockets. The
messaging between the nodes occurs at two lev-
els. The node lookup and other p2p messages
are relayed using the p2p substrate. Once a node
is chosen for a specific operation, koshad uses
direct NFS RPCs to communicate with remote
NFS servers.

6. Evaluation

In this section, we present experimental results
obtained from our prototype implementation of
Kosha.

6.1. Performance

To determine the performance of the proposed
scheme, we measured Kosha execution times for
a modified1 Andrew benchmark (MAB) [28] and
compared it to NFS Version 3. These experiments
were performed on a 16-node configuration made
up of two sets of machines. The first set contains
4 nodes, each with a 2.0 GHz Intel P4 processor,
512 MB RAM, 40 GB 7, 200 RPM Barracuda
Seagate hard disk, and running FreeBSD 4.6. The
second set contains 12 nodes, each with a 3.0 GHz

1 The benchmark was modified to run on FreeBSD with a
larger workload.

Intel Xeon processor, 2 GB RAM, 146 GB 10K
RPM U320 SCSI hard disk, and running FreeBSD
4.9. All nodes are connected via a 100 MB/s Ether-
net switch. The slower nodes are used only if more
than 12 nodes are employed in an experiment. The
MAB workload is 51 MB in size, with a maximum
subdirectory level of 4.

6.1.1. Scalability

Table 1 shows the first set of measurements com-
paring the performance of Kosha, varying the
number of nodes, relative to that of NFS. In this
case, the distribution level was fixed at 1, i.e., only
the first level directories under /kosha were dis-
tributed to multiple nodes. The level was chosen
to remove the effect of subdirectory distribution,
and thus isolate the performance overhead due
to p2p lookups. The replication factor was also
fixed at 1 for similar reasons. Moreover, each
node contributed 35 GB of disk space, enough to
accommodate all the files to be stored on it, hence
eliminating the effect of file redirection. For each
overlay size, 10 runs of the benchmark were made,
and the average execution time for each phase
was recorded. For Kosha, we measured the perfor-
mance as we successively increased the number of
nodes from 1 to 16. The NFS configuration consists
of two nodes with one running as a client, and the
other running as a server.

The first observation that can be made from
the table is that Kosha in a single node setup
performs slightly better than NFS for all phases
of the benchmark except compile, and about 1%
better overall. This is because in this configuration
all transactions are local to the node and any
overhead due to data transfer over the network
is avoided. However, the compile phase is com-
pute intensive, and running everything (Kosha +
compilation) on the same node manifests as an
overhead of 4.7% for this phase.

As the number of nodes is increased, the effect
of locally stored files is diminished and an over-
head is observed. The total overhead introduced
by Kosha as number of nodes is increased to 16,
as compared to the performance of NFS, is under
6%. Adding more nodes into the system does not
affect the overall performance drastically (only
4.5% additional total overhead introduced when

J Grid Computing (2006) 4: 323–341 335

Table 1 Performance of a modified Andrew benchmark on Kosha with increasing number of nodes.

Benchmark NFS
exec. time

Kosha

1 Node 2 Node 4 Nodes 8 Nodes 16 Nodes

exec. time
(overhead)

exec. time
(overhead)

exec. time
(overhead)

exec. time
(overhead)

exec. time
(overhead)

mkdir 2.242 2.241 2.243 2.259 2.261 2.304
(1.000) (1.000) (1.008) (1.008) (1.028)

copy 17.503 16.496 17.401 17.601 17.791 18.207
(0.942) (0.994) (1.006) (1.016) (1.040)

stat 1.531 1.513 1.533 1.534 1.537 1.595
(0.988) (1.001) (1.002) (1.004) (1.042)

grep 3.709 3.235 4.026 4.030 4.092 4.181
(0.872) (1.085) (1.087) (1.103) (1.127)

compile 21.897 22.933 23.231 23.560 23.860 24.254
(1.047) (1.061) (1.076) (1.090) (1.108)

Total 46.882 46.418 48.434 48.984 49.541 50.541
(0.990) (1.033) (1.045) (1.057) (1.078)

The table shows average execution times for each phase and the respective overhead of Kosha compared to NFS. The
distribution level for Kosha was fixed at 1 for these measurements. All times are in seconds.

the number of nodes increased from 2 to 16), this
is because the DHT lookup is always one hop in
the small p2p overlay.

6.1.2. Discussion

The average overhead D introduced by the design
of Kosha can be categorized as:

D = I + (H ∗ hc) ∗
(N − 1)

N

where N is the number of nodes in the network, I
is a constant overhead introduced by the interpo-
sition code for redirecting NFS calls to different
nodes, H is the number of hops a message has
to travel to the destination node, and hc is the
average latency of each hop. H is a function of
N and equals log2b(N) where 2b is the base of a
digit in Pastry nodeId with a typical value of 16 or
32. The factor (N−1)

N (referred to as the overhead
factor for this discussion) accounts for the percent-
age of total files stored on remote nodes compared
to those stored on the local node. For small N, a
higher percentage of files are stored locally and
file operations to them are not affected by the
network latency. When N is increased initially, the
main overhead introduced is from the increase in
the number of files served from remote nodes,

which becomes constant as N becomes large. For
example, when N is increased from 1 to 8, the
percentage of remotely stored files increases from
0% to 87.5%, whereas for 16 nodes 93.75% files
are stored remotely, an additional increase of only
6.25%. For a typical network of 10,000 nodes, the
maximum value of H is 4, hc is under 1ms (this is
typical within an organization), and the overhead
factor ≈ 1. Hence, the overhead D is not expected
to exceed 4ms plus a constant factor. This shows
that Kosha is highly scalable; additional nodes can
be introduced into the system with little increase
in the overhead.

6.1.3. Subdirectory Distribution

To measure the effect of subdirectory distribution
on the overall performance, we varied the distrib-
ution level between 1 to 4, while fixing the number
of nodes in Kosha to be 8. Once again, 10 runs of
the MAB were made, and the average execution
times were recorded.

Table 2 shows that the overhead in distribution
levels 2, 3, and 4 relative to distribution level 1 are
4.8%, 6.3%, and 6.8%, respectively. This implies
that having a large distribution level is not inhibit-
ing. Also observe that the cost on mkdir and copy

336 J Grid Computing (2006) 4: 323–341

Table 2 Performance of a
modified Andrew
benchmark on Kosha as
the distribution level is
increased. For these
measurements, the
number of nodes was
fixed at 8. All times are in
seconds.

Benchmark Dist-level 1 Dist-level 2 Dist-level 3 Dist-level 4

exec. time exec. time exec. time exec. time
(overhead) (overhead) (overhead)

mkdir 2.261 2.483 2.623 2.692
(1.098) (1.160) (1.191)

copy 17.791 19.231 19.286 19.301
(1.081) (1.084) (1.085)

stat 1.537 1.752 1.786 1.801
(1.140) (1.162) (1.172)

grep 4.092 4.297 4.331 4.352
(1.050) (1.058) (1.064)

compile 23.860 24.147 24.623 24.770
(1.012) (1.032) (1.038)

Total 49.541 51.910 52.649 52.916
(1.048) (1.063) (1.068)

is significantly more than on compile and grep.
The reason for this is that when the directories
are created in the mkdir and copy phases, Kosha
has to perform two hashes to locate the node on
which the subdirectory will be stored, and to locate
the parent directory where the special link will be
created. Then the empty hierarchy as well as the
special link have to be created, adding to the over-
all cost. On the other hand, during the compile
phase for instance, only one hash of the directory
name results in the location of the physical node
storing the file.

6.2. File Replication Overhead

In this section we evaluate the overhead of cre-
ating a replica in the system. For this purpose we
used a five node setup with each node contributing
35 GB disk space, and chose to maintain three
replicas of each stored file. To create a realistic file
system, we collected a trace from the central NFS
server of our department, and created similar files
and directories under Kosha. The trace contained
221K files of 130 users, for a total of 17.9 GB of
data. Once we allowed the system to be stable, we
failed one node and determined the time it took
for the system to create a new replica to compen-
sate for the failed node. This represents the worst
case scenario, as all files stored on the node would
need to be copied. We repeated the experiment
5 times and determined that it takes on average

36.634 min to copy about an average of 12.2 GB
of data. Hence, the cost of creating a replica is
under an hour which shows that if the mean time
to failure of a node is in the order of days (a
reasonable assumption for the targeted system),
the overhead introduced by the creation of new
replicas is small. This reconfirms our notion that
Kosha provides a practical approach that yields an
economical fault tolerant distributed file system.

6.3. Load Distribution

The load distribution facilities of Kosha are eval-
uated in this section. For the purpose of these
evaluations, we simulated a Kosha cluster of 16
nodes and fixed the number of replicas to 3.
The simulation was driven by a file system trace
with the same properties as the file system of
Section 6.2.

The first set of experiments measured the ef-
fect of subdirectory distribution on the load bal-
ancing characteristics of the system. Each node
contributed 10 GB of disk space to avoid file
redirection. The distribution level was varied from
1 to 10, and for each level, we collected the distri-
bution information from all nodes, and measured
the number of files and their collective sizes on
the individual nodes. The simulation was repeated
50 times varying the nodeId assignments in the
Pastry network, and the results were averaged. We
also calculated these quantities for a hypothetical

J Grid Computing (2006) 4: 323–341 337

scheme which distributed individual files among
different nodes. This finest grained distribution
gives the upper bound on the best load balancing
(for the trace used) that can be achieved using
DHTs.

Figure 5 shows the result of the load balancing
experiments. The dotted horizontal lines show the
mean and the standard deviation of the distri-
bution of the number and the collective size of
files on the different nodes when each individual
file was hashed and distributed. The results show
that as the distribution level is increased, the load
balancing in terms of the number of files converges
toward the upper bound. The file size distribution
improves with distribution level, but the improve-
ment is not uniform because of the variance in
the size of the directories being distributed. Using
directory distribution with distribution level 4 or
greater provides comparable load balancing to
that of individually hashing all files.

The next set of experiments measured the effect
of file redirection on the overall disk utilization.
The simulation for this was done for a cluster
of 16 nodes, 8 of which contributed 3 GB each,
four nodes contributed 4 GB each, and four nodes
contributed 5 GB each of disk space. These num-
bers were chosen to study the system under high
utilization. The distribution level was fixed at 4,
and the number of the replicas was fixed at 3. The

file system trace from our department was once
again used to drive the simulation, and the num-
ber of insertion failures was recorded as the files
were added. The simulation was repeated with
redirection attempts varying from 1 to 15. Each
simulation was run 50 times varying the nodeId
assignment in the Pastry network, and the results
were averaged. In [27], the cumulative failure ratio
is defined as the ratio of all failed insertions over
all insertions that have occurred up to the point
when the given storage utilization was reached.
We use the same definition. Figure 6 shows the
cumulative failure ratio versus the percentage uti-
lization. It shows that with 4 redirection attempts
and distribution level 4, the failure ratio remains
near 0 for utilization as high as 60%, and it does
exceed 12% when the utilization approaches 100%.
Note that while increasing the number of redirec-
tion attempts results in a higher utilization of the
total disk space, each redirection attempt requires
hashing of the file name which can hinder the file
operation performance.

6.4. Fault Tolerance

The experiments in this section measured the
availability of Kosha under failures. We used an
availability trace of 51, 663 machines in a large
corporation over a consecutive 35-day (840-hour)

Figure 5 The mean and
standard deviation of the
percentage of the number
of files and their sizes per
node across 16 nodes as
the distribution level is
increased. The dotted
horizontal lines show the
mean and the standard
deviation when each
individual file was
distributed to a different
node, i.e., with the finest
grained distribution.

3%

4%

5%

6%

7%

8%

9%

1 2 3 4 5 6 7 8 9 10

m
ea

n
pe

rc
en

ta
ge

 s
iz

e
of

 fi
le

s
on

 e
ac

h
no

de

distribution level

Size of files

3%

4%

5%

6%

7%

8%

9%

1 2 3 4 5 6 7 8 9 10m
ea

n
pe

rc
en

ta
ge

 n
um

be
r

of
 fi

le
s

on
 e

ac
h

no
de

distribution level

Number of files

338 J Grid Computing (2006) 4: 323–341

Figure 6 The cumulative
failure ratio versus
utilization, as the number
of redirection attempts
is increased. The
distribution level
is fixed at 4.

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100

cu
m

ul
at

iv
e

fa
ilu

re
 r

at
io

Percentage utilization

no redir
redir 1
redir 2
redir 4
redir 8

redir 15

period [4]. The trace contains the status of ma-
chines (up or failed) recorded hourly. We simu-
lated Kosha for the cluster of 51, 663 machines.
We distributed the files obtained from the file
system trace from Purdue University’s servers as
described earlier, and then used the availability
data to introduce failures and node joins. For this
experiment, we assume that the time to create a
new replica of a node is 30 min. For each hour, we
determined the total number of files that remain
available. The distribution level was fixed at 3, and
the experiments were repeated with the number
of replicas varying from 0 to 4. For each case,
100 runs were made with various nodeIds for the
nodes in the Pastry network, and the results were
averaged.

Figure 7 shows the percentage of total files
available over the 840 h period. The lower spike in
the graph for Kosha-0, i.e., with no replicas, shows
that the system performance is affected when a
large number of failures occur. However, even
maintaining a single replica (Kosha-1) increases
the availability significantly, even for the case of a
large number of simultaneous failures at hour 615.
For the case of Kosha-3, the average availability is
99.991%, signifying that Kosha can guarantee near
100% availability with only three replicas. The rea-
son for this is that Kosha continuously maintains
the K replicas it was configured for (Section 4.2);

node failures are tolerated as new replicas are
created when old ones become unavailable.

7. Related Work

The main driving force behind widespread use of
p2p techniques has been large-scale data sharing
facilities such as Gnutella [18], Freenet [11], and
Kazaa [30]. The basic data sharing is extended
by providing strong persistence and reliability in
p2p distributed storage projects, such as Pond [25]
which is a prototype of Oceanstore [20], CFS [13],
and PAST [27]. Kosha uses a similar p2p substrate
but also provides a virtualized NFS interface that
creates a file system abstraction to the distributed
storage.

Scalable distributed [19] or serverless [3, 33] file
systems provide some p2p aspects, but may not
be practical to switch to in an established envi-
ronment because of their fundamentally different
designs and requirements.

There are several wide-area file system projects
such as Ivy [23], Farsite [2], and Pangaea [28],
which also provide reliability. In contrast to these
file systems, Kosha does not focus on wide-area
scalability. Instead, it focuses on extending the
capabilities of a local-area NFS.

J Grid Computing (2006) 4: 323–341 339

Figure 7 Percentage
of total files that are
available over a period
of 840 h. The distribution
level was fixed at 3 for
these results. The largest
number of failures
(4, 890) occurred at hour
615, where over 12% files
became unavailable for
Kosha-0 compared to
only 0.16% for Kosha-3.

95

96

97

98

99

100

0 100 200 300 400 500 600 700 800P
er

ce
nt

ag
e

of
 fi

le
s

av
ai

la
bl

e

Number of hours

Kosha 1

95

96

97

98

99

100

0 100 200 300 400 500 600 700 800P
er

ce
nt

ag
e

of
 fi

le
s

av
ai

la
bl

e

Number of hours

Kosha 3

88

90

92

94

96

98

100

0 100 200 300 400 500 600 700 800

P
er

ce
nt

ag
e

of
 fi

le
s

av
ai

la
bl

e

Number of hours

Kosha 0

Kosha is more likely to see actual use since
wide-area file storage raises more issues of trust
and consistency, despite the numerous approaches
that have been developed to address these prob-
lems, such as encryption [11], agreement protocols
[5, 10], and logs [23]. Kosha avoids most of these
problems since it is only concerned with maintain-
ing accurate replicas, while supporting standard
NFS consistency semantics.

Finally, NFSv4 [31] also provides features of file
system replication and migration. However, the

replication is static. In NFSv4, a client first queries
the main server which can provide it with a list
of locations from where to obtain the files. The
client then directs its queries to that location. In
Kosha, this location is transparent and multiple
queries are not required. Moreover, the goal of
NFSv4 is to provide load balancing and fault toler-
ance, where as Kosha has an additional objective
of utilizing unused disk space on cluster nodes
and desktops. In the long run, Kosha can benefit
from the file migration and replication facilities

340 J Grid Computing (2006) 4: 323–341

provided by NFSv4 which can lead to a simplified
design and a more efficient system.

8. Conclusion

We have presented Kosha, a p2p enhancement for
the widely used NFS. By blending the strengths of
NFS with those of p2p overlays, Kosha aggregates
unused disk space on many computers within an
organization into a single, shared file system, while
maintaining normal NFS semantics. In addition,
Kosha provides location transparency, mobility
transparency, load balancing, and high availabil-
ity through replication and transparent fault han-
dling. Kosha effectively implements a ‘Condor’
[21] for unused disk storage.

We have built our Kosha prototype on top of
the SFS toolkit [22], using the Pastry p2p over-
lay for node location in distributing directories.
Performance measurements in a LAN show that
Kosha over 16 nodes incurs a total overhead
of 7.8%. Simulations using a large file system
trace shows that Kosha’s directory distribution
techniques achieves a balanced load distribu-
tion similar to that of distributing individual files.
Simulations using a machine availability trace
collected in a large business organization show
that Kosha guarantees near 100% availability du-
ring node failures by maintaining three replicas
of each stored file. Since Kosha exports the NFS
interface and consistency semantics, it is more
likely to see actual use than techniques that
provide fundamentally different interfaces.

References

1. F. 180-1. Secure Hash Standard. Technical Report Pub-
lication 180-1, Federal Information Processing Stan-
dard (FIPS), NIST, US Department of Commerce,
Washington District of Columbia, April (1995)

2. Adya, A., Bolosky, W.J., Castro, M., Cermak, G.,
Chaiken, R., Douceur, J.R., Howell, J., Lorch, J.R.,
Theimer, M., Wattenhofer, R.P.: FARSITE: Feder-
ated, Available, and Reliable Storage for an In-
completely Trusted Environment. In: Proc. OSDI,
December (2002)

3. Anderson, T.E., Dahlin, M.D., Neefe, J.M., Patterson,
D.A., Roselli, D.S., Wang, R.Y.: Serverless network file
systems. ACM Trans. Comput. Syst. 14(1), (1996)

4. Bolosky, W.J., Douceur, J.R., Ely, D., Theimer, M.:
Feasibility of a serverless distributed system deployed
on an existing set of desktop pcs. In: Proc. SIGMET-
RICS, June (2000)

5. Brodsky, D., Pomkoski, J., Feely, M., Hutchinson,
N., Brodsky, A.: Using versioning to simplify the im-
plementation of a highly-available file system. Tech-
nical Report TR-2001-07, The University of British
Columbia, Canada, (2001)

6. Butt, A.R., Zhang, R., Hu, Y.C.: A self-organizing flock
of Condors. In: Proc. ACM/IEEE SC2003: Interna-
tional Conference for High Performance Computing
and Communications, Phoenix, AZ, November (2003)

7. Callaghan, B.: NFS Illustrated. Addison Wesley Long-
man, Inc., (2000)

8. Castro, M., Druschel, P., Hu, Y.C., Rowstron, A.:
Exploiting network proximity in peer-to-peer overlay
networks. Technical Report MSR-TR-2002-82, Rice
Univeristy, (2002)

9. Castro, M., Ganesh, A., Rowstron, A., Wallach. D.S.:
Security for structured peer-to-peer overlay networks.
In: Proc. OSDI, December (2002)

10. Castro, M., Liskov, B.: Practical Byzantine fault toler-
ance. In: Proc. OSDI, February (1999)

11. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.:
Freenet: A Distributed Anonymous Information Stor-
age and Retrieval System. 〈http://freenetproject.org/
freenet.pdf〉 (1999)

12. Compaq. Compaq Product Information. 〈http://www.
compaq.com/〉 (2004)

13. Dabek, F., Kaashoek, M.F., Karger, D., Morris, R.,
Stoica, I.: Wide-area cooperative storage with CFS. In:
Proc. SOSP, October (2001)

14. Dell Computer Corporation. Dell – Client & Enter-
prise Solutions, Software, Peripherals, Services. 〈http:
//www.dell.com/〉 (2004)

15. Druschel et al. Freepastry. 〈http://freepastry.rice.edu/〉
(2004)

16. Foster, I., Kesselman, C. Globus: A metacomputing
infrastructure toolkit. Int. J. Supercomput. Appl. High
Performance Comput. 11(2), 115–128, Summer (1997)

17. Foster, I., Kesselman, C. (eds.). The GRID: Blueprint
for a New Computing Infrastructure. Morgan Kauf-
mann, (1999)

18. Frankel, J., Pepper, T.: The Gnutella protocol specifi-
cation v0.4. 〈http://cs.ecs.baylor.edu/d~onahoo/classes/
4321/GNUTellaProtocolV0.4Rev1.2.pdf〉 (2003)

19. Howard, J.H., Kazar, M.L., Menees, S.G., Nichols,
D.A., Satyanarayanan, M., Sidebotham, R.N., West,
M.J.: Scale and performance in a distributed file system.
ACM Trans. Comput. Syst. 6(1), 51–81 (1988)

20. Kubiatowicz, J. et al.: Oceanstore: An architecture
for global-scale persistent store. In: Proc. ASPLOS,
November (2000)

21. Litzkow, M.J.M.J., Livny, M., Mutka. M.W.: Condor –
A hunter of idle workstations. In: Proc. ICDCS, June
(1988)

http://freenetproject.org/freenet.pdf
http://freenetproject.org/freenet.pdf
http://freenetproject.org/freenet.pdf
http://www.compaq.com/
http://www.compaq.com/
http://www.compaq.com/
http://www.dell.com/
http://www.dell.com/
http://www.dell.com/
http://freepastry.rice.edu/
http://cs.ecs.baylor.edu/d~onahoo/classes/4321/GNUTellaProtocolV0.4Rev1.2.pdf
http://cs.ecs.baylor.edu/d~onahoo/classes/4321/GNUTellaProtocolV0.4Rev1.2.pdf
http://cs.ecs.baylor.edu/d~onahoo/classes/4321/GNUTellaProtocolV0.4Rev1.2.pdf

J Grid Computing (2006) 4: 323–341 341

22. Mazieres, D.: A toolkit for user-level file systems. In:
Proc. USENIX Technical Conference, June (2001)

23. Muthitacharoen, A., Morris, R., Gil, T.M., Chen, B.:
Ivy: A read/write peer-to-peer file system. In: Proc.
OSDI, December (2002)

24. Ratnasamy, S., Francis, P., Handley, M., Karp, R.,
Schenker, S.: A Scalable Content-Addressable Net-
work. In: Proc. SIGCOMM, August (2001)

25. Rhea, S., Eaton, P., Geels, D., Weatherspoon, H.,
Zhao, B., Kubiatowicz, J.: Pond: The oceanstore pro-
totype. In: Proc. USENIX FAST, December (2003)

26. Rowstron, A., Druschel, P.: Pastry: Scalable, distrib-
uted object location and routing for large-scale peer-
to-peer systems. In: Proc. IFIP/ACM Middleware,
November (2001)

27. Rowstron, A., Druschel, P.: Storage management and
caching in PAST, a large-scale, persistent peer-to-peer
storage utility. In: Proc. SOSP, October (2001)

28. Saito, Y., Karamanolis, C., Karlsson, M., Mahalingam,
M.: Taming aggressive replication in the Pangaea wide-
area file system. In: Proc. OSDI, December (2002)

29. Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D.,
Lyon, B.: Design and implementation of the Sun net-
work file system. In: Proc. Summer USENIX, June
(1985)

30. Sharman Networks. Kazaa Media Desktop. 〈http://
www.kazaa.com/index.htm〉 (2004)

31. Shepler, S., Callaghan, B., Robinson, D., Thurlow, R.,
Beame, C., Eisler, M., Noveck, D.: RFC3530: Network
File System (NFS) Version 4 Protocol. 〈http://www.ietf.
org/rfc/rfc3530.txt〉 (2004)

32. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F.,
Balakrishnan, H.: Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications. In: Proc.
SIGCOMM, August (2001)

33. Thekkath, C.A., Mann, T., Lee. E.K.: Frangipani:
A scalable distributed file system. In: Proc. SOSP,
October (1997)

34. Zhao, B.Y., Kubiatowicz, J.D., Joseph, A.D.: Tapestry:
An Infrastructure for Fault-Resilient Wide-area
Location and Routing. Technical Report UCB//CSD-
01-1141, U. C. Berkeley, April (2001)

http://www.kazaa.com/index.htm
http://www.kazaa.com/index.htm
http://www.kazaa.com/index.htm
http://www.ietf.org/rfc/rfc3530.txt
http://www.ietf.org/rfc/rfc3530.txt
http://www.ietf.org/rfc/rfc3530.txt

	Kosha: A Peer-to-Peer Enhancement for the Network File System
	Abstract
	Introduction
	Enabling Technologies
	Large Unused Local Disk Space on Desktops
	Structured P2P Overlay Networks

	Distribution of a File System Across Nodes
	Directory Distribution Across Multiple Nodes
	Controlling the Granularity of Distribution
	Optimization

	Kosha Design
	NFS Operations Support
	Semantics in Absence of Failures
	Virtual File Handles
	Locating Files
	File Creation and Renaming
	Removing Files
	Security

	Managing Replicas
	Node Addition and Failure
	Primary Replica
	Additional Replicas

	Transparent Fault Handling
	Load Redistribution
	Quota Management

	Software Architecture
	Prototype Implementation

	Evaluation
	Performance
	Scalability
	Discussion
	Subdirectory Distribution

	File Replication Overhead
	Load Distribution
	Fault Tolerance

	Related Work
	Conclusion
	References

