SUyyRkarbEa—Ta428

2012/1/16
SHEWH (11M37264 EIFERE)

wagr

i 3

Efficient Support for Matrix Computations on
Heterogeneous Multi-core and Multi-GPU
Architectures

=] [

Fengguang SongT, Stanimire Tomovt and Jack Dongarrat#

T University of Tennessee
¥Oak Ridge National Laboratory, University of Manchester

Abstract

Exploiting heterogeneous systems is a
challenging task

Designed a heterogeneous algorithm for linear
algebra on a Multi-core and Multi-GPU system

Developed a runtime system to support the
algorithm

Applied it to QR and Cholesky factorization
and achieved good scalability and load-
balancing

Background :LA for CPU and GPU

* Linear algebra (LAPACK and BLAS) on CPU/GPU :
— PLASMA [1] for multicore CPUs
— MAGMA [2] for a GPU

(Both are developed in University of Tennessee)

Background : Tile algorithms

* Tile algorithms

— Divides a matrix A (nxn) into a number of bxb
submatrices

A A Aq1n
Bl
\ An'b,l An’b,2 Anl;,nb)

— Great amount of parallelism

Background : Tile algorithms

* Ex. QR factorization
1. Compute a QR factorization of A, ,

2. Output of 1. is used to update A, ,, ... A, ., in
embarrassingly parallel way
(nb =n/b)
3. After updating all A;,~A, , start again
fromA,, ..

Algorithm : Challenges for
Heterogeneous systems

e Utilizing both of CPUs and GPUs is challenging:

1. GPUs have different memory spaces
2. Each GPU has to be controlled by a host thread
3. Processor heterogeneity

GPU

Device Memory

GPU

: ‘ PCI ‘ GPU
Multicore P M Deice Mo

Host System

ﬁ Host Memory L J PCI l \,_:ﬂf S(v;vPUh - GPU

Device Memory

Algorithm : Challenges for
Heterogeneous systems

e Utilizing both of CPUs and GPUs is challenging:

4. GPUs are optimized for throughput and expect
large data size, while CPUs are optimized for
latency

5. Performance gap between computation and
communication

Algorithm : New algorithm

* New algorithm:

“Heterogeneous rectangular tile algorithm”
— Based on tile algorithm

— With hybrid tile sizes

— Great emphasis on minimal communication

— 1-D block cyclic data distribution

— Auto-tuning to determine optimal tile size

Algorithm : Tiling

* Hybrid size rectangular tiles

Z z a . :Bxb
x x x |x[x] x x x x - N7 o L
X X ii iiii ailp aiz ... Als a1(5+1) a1(5+2) NN A1(25)
a1 az2 ... Azs | Qz(s41) G2(st2) - - A2028) | - Aij : B x (B — b(S — 1))

ap1 Ap2 . .. Aps ap(s+1) ap(s+2) e Ap(gs) Ce

HIHE
— At the top level, a matrix is divided into

rectangular tiles of size BxB

— Each tile is subdivided into a number of small
rectangular size of Bxb and a remaining tile.

—Assuming n=pB and B>)

Algorithm : Cholesky factorization

Algorithm 1 Rectangular Tile Cholesky Factorization

fort < 1 to p do
for d <~ 1 tos do

k< (t-1) *s + d /* the k-th tile column */

A+ (d-1) *Db /* local offset within a tile */

POTF2'(Ar[A,0], Lk [A,0]) &(b)

for j« k+ 1tot *s /* along the t-th tile row */ do

end for

for i+ t 4+ 1 to p /* along the k-th tile column */ do
TRSM(L¢x[A,0], Aik, Lik) <(d)

end for

/* trailing submatrix update */

fori<+ t+ 1topdo
for j< k +1toi*sdo

if (j’ = t) GSMM(L;k, Lx[A+(j-k)%s*b,0], Asj) e
else GSMM(Lik, Lj/k[(j—l)%s*b,()], Aw>
end for
end for
end for

end for

A,li,j] : A;'s submatrix that starts from its local x-th row and y-th column
to its original bottom right corner

Algorithm : Cholesky factorization

@ © " ()

Figure 4: The operations of heterogeneous rectan-
gular tile Cholesky factorization. (a) The symmetric
positive definite matrix A. (b) Compute POTF2’ to solve Li;.
(c) Apply L11 to update its right A12 by matrix multiplication.
(d) Compute TRSMs for all tiles below Lj1 to solve Laj and L3;.
(e) Apply GSMMs to update all tiles on the right of TRSMs. (f)
At the 2nd iteration, we repeat performing (b), (c), (d), (e) on
the trailing submatrix that starts from the 2nd tile column.

12

Algorithm :
Heterogeneous block cyclic distribution

* A matrixis divided px(s*p) tiles

* Distribute the columns to the host and P GPUs.
— P, :host, P_, :x-th GPUs
— 1-D heterogeneous cyclic distribution

- ((£—=1) mod P)+1 : j mods=0
10 . § mod s #0

1 2 P
cee [—l—]
12.512..5 12..5 h G1h G;h G3h G1h G,h Gy
]

(a) (b)

Algorithm : Communication cost

The number of words communicated by
at least one of the process:

p—1 2
Word = > (n—kB)Blog(P +1) ~ % log(P)
k=0

We can attain ScaLAPACK’s O(Z10g P) by using 2-D
Cyclic distribution algorithm, but 1-D is practically faster.

The number of messages communicated by
At least one of the process:

p—1
Message = Z(p k)slog(P + 1) ~ % log(P)
k=0
It is larger than ScaLAPACK’s O(P), but each message is smaller
And we can get higher degree of parallelism

Implementation

 The runtime system is based on the author’s
centrarized-version runtime system|3]

* 4 components:
— Master thread
— Task window

— Ready task queue
— Computational thread

Implementation :
Centralized—version runtime system

ZMaster thread

J

Task window: > > &> > > = > > > > >

A A A A R B L AR
Host .~ .~ GPU; | GPU . GPU™.
Read Ry : ' \ \ 2
tasks?, GG Ready _, _, Ready _, _, Ready |
: tasks: tasks: tasks:

I} ANA A A
mbox: I%] mbox: Iﬁv;l mbox: |:::: ;

corec GPU
thread thread

Implementation :
Centralized—version runtime system

ZMaster thread
Task window: —> > > > > > > > > > >
i | A_A RN " w
Host -
Ready &
>

17

Implementation :
Centralized—version runtime system

ZMaster thread

J

Task window: > > &> > > = > > > > >

A A A A R B L AR
Host .~ .~ GPU; | GPU . GPU™.
Read Ry : ' \ \ 2
tasks?, GG Ready _, _, Ready _, _, Ready |
: tasks: tasks: tasks:

I} ANA A A
mbox: I%] mbox: Iﬁv;l mbox: |:::: ;

corec GPU
thread thread

Implementation :
Centralized—version runtime system
* Each GPU belongs to 1 host thread and the

thread manages the GPU including all
communications (GPU-host, host-GPU).

 |f the host has n cores, (n-P) cores are used to
compute

Implementation :
Auto-tuning of tile size

* Two steps of auto-tuning
1. Determine B
2. Determine B, : to be cut off from the top level

BxB tiles
h G,;h G,h G;h G,h G,h G,
T B
‘. l‘
‘. -
‘.

- B

WM & & H -
‘. "
i N N OB N N B,

20

Implementation :
Auto-tuning of tile size

* To find best B:

— Search for minimal matrix size that provides the
maximum performance for the dominant GPU
kernel (i.e. GEMM for Cholesky and SSFRB for QR)

— Search range is 128 to 2048,
(ex. 980 for Fermi GPUs)

700 ————— T T T T

wwwwwwww

- 500
z, I |
00

Soni i

111111111111111111

Matrix Size Matrix Size

(a) Double precision (b) Single precision

Figure 3: Matrix multiplication with CUBLAS 3.2
on an Nvidia Fermi M2070 GPU. (a) The maximum

Implementation :
Auto-tuning of tile size

* To find best B, :

1. Estimate B,

B Perf.ore - #Cores
- Perf.pre - #Cores + Perfyp, - #GPUs

By, B
2. Search for an optimal B, " near B, :

 Run a script that execute QR and Cholesky
factorization with a random matrix of size N = ¢ - B- #GPU

* |t searches for a minimal differenct of CPU and GPU
computation time.

Performance Evaluation:
settings and upper bound

Table 1: Experiment Environment

Host Attached GPUs
Processor type Intel Xeon X5660 Nvidia Fermi M2070
Clock rate 2.8 GHz 1.15 GHz
Processors per node 2 3
Cores per processor 6 14 SMs
Memory 24 GB 6 GB per GPU

Theo. peak (double)
Theo. peak (single)
Max gemm (double)
Max gemm (single)
Max ssrfb (double)
Max ssrfb (single)
BLAS/LAPACK lib
Compilers

OS

System interface

11.2 Gflops/core
22.4 Gflops/core
10.7 Gflops/core
21.4 Gflops/core
10.0 Gflops/core
19.8 Gflops/cores
Intel MKL 10.3

Intel compilers 11.1

CentOS 5.5

515 Gflops/GPU
1.03 Tflops/GPU
302 Gflops/GPU
635 Gflops/GPU
223 Gflops/GPU
466 Gflops/GPU
CUBLAS 3.2, MAGMA
CUDA toolkit 3.2
Kernel module 260.19.14
PCle x 16 Gen?2

Performance Evaluation :
weak scaling

1000
theoritical peak per core iy
=>*&theoretical peak per GPU it
max GPU-kernel perf (UB) ——t
=0=our perf per core
?5100 “=our perf per GPU
o
o
(&)
g L
Q.
ke)
O
1
AT T 6% oY AT Y oY N AP o
& L P
> &

(a) Cholesky in double precision

9 cores and 3 GPUs : 742 Gflops (74% upper bound & 45% of the theoretical peak)

24

Performance Evaluation :
weak scaling

1000
theoritical peak per core e ——
=*=theoretical peak per GPU
max GPU-kernel perf (UB) . - =
=&=our perf per core —
E 100 =@=our perf per GPU
O
o
o
(&)
g 10 & Y
] v—w o - s s = - = s -
Q.
ke
O

2 © H © o o o o 0 o o
& @ @ @ @ @ @ @ @ Q\) QQ QQ
S S S S S S S SRS
W7 57 W 67 o7 AT Y oY N a7 o
& B P
& & ¢
o o o

(b) QR in double precision

9 cores and 3 GPUs : 79% upper bound

25

Performance Evaluation :
strong scaling

0.1

==N=23,040

P “@=N=17,280

N=11,520
=>=N= 5,760

1 core 2 cores 3cores 4

(a) Cholesky in double precision

26

Performance Evaluation :
strong scaling

10000

=o=N=23,040
«=N=17,280

N=11,520
=>=N= 5,760

1000
M

Seconds)

— 100

Time

10

1 core 2 cores 3cores 4 6 8 10 12

(b) QR in double precision

27

Performance evaluation:
Load balancing

MaxLoad (load : timel[s])
AvgLoad

* Imbalance ratio =

2.00
1.80
1.60

2 1.40

T 120

3

100 +

Cholesky
“QR

2080 +
Eo60 -
040 +
Wik = = W = = = B = W
oo L BN BN BN BN BN BN BN BN BN

Q(O‘L

° @ 8 P P N S
C IR IR SRR R AN

Matrix size

(a) 4Cores+1GPU (double)

e Most of the imbalance ratio is less than 5%
e Afewisupto 17% (because of too few toplevel tiles)

Performance evaluation:
Runtime System Efficiency

- Communicati
SYRK Communication __Idle poTRF GEQRT
7%\ 5% 1% 0% 3% 2%/ o

R

(a) Cholesky factorization (b) QR factorization

Figure 10: Execution time break down on a GPU for
double precision Cholesky and QR factorizations.

Cholesky : Kernels (94%), communication(5%), idle(1%)
QR: Kernels (95%), communication(3%), idle(2%)

29

Conclution

* Exploiting heterogeneous systems is challenging
because of processor heterogeneity, separated
memory space and communication.

* They presents a hybrid rectangular tile algorithm
for linear algebra and an efficient runtime system

to support it.

 They applies the system to QR and Cholesky
factorization and achieves high perforamce and
load balancing.

Future work

* The largest matrix size is constrained by the
memory capacity of each GPU (because static
cyclic distribution is used).

— Need to adopt a different algorithm (such as left-
looking algorithm)

* Applying the algorithm to heterogeneous
cluster systems by distribution the top level
tiles into nodes in a 2-D cyclic distribution.

Discussion

e Strong scaling with GPUs is not linear ?
— CPU core are used to control GPUs?
— Communication overhead ?

— Why up to 12 CPU cores are used in strong
scaling ?

 Comparison between dynamic scheduling?

References

[1] E. Agullo, J. Dongarra, B. Hadri, J. Kurzak,
J. Langou, J. Langou, H. Ltaief, P. Luszczek, and A. YarKhan. PLASMA Users’ Guide.

Technical report, ICL, UTK, 2010.

[2] S. Tomov, R. Nath, P. Du, and J. Dongarra. MAGMA Users’ Guide. Technical report,
ICL, UTK, 2010.

[3] F. Song, A. YarKhan, and J. Dongarra. Dynamic task scheduling for linear algebra
algorithms on distributed-memory multicore systems. In SC'09: Proceedings of the
Conference on High Performance Computing Networking, Storage and Analysis, pages
1-11, New York, NY, USA, 2009. ACM.

34

