
Efficient Parallel Graph Exploration on Multi-Core
CPU and GPU

Sungpack Hong, Tayo Oguntebi, and Kunle Olukotun
Pervasive Parallelism Laboratory, Stanford University

{hongsup, tayo, kunle}@stanford.edu

Abstract—Graphs are a fundamental data representation that
have been used extensively in various domains. In graph-based
applications, a systematic exploration of the graph such as a
breadth-first search (BFS) often serves as a key component in
the processing of their massive data sets. In this paper, we present
a new method for implementing the parallel BFS algorithm
on multi-core CPUs which exploits a fundamental property
of randomly shaped real-world graph instances. By utilizing
memory bandwidth more efficiently, our method shows improved
performance over the current state-of-the-art implementation
and increases its advantage as the size of the graph increases.
We then propose a hybrid method which, for each level of the
BFS algorithm, dynamically chooses the best implementation
from: a sequential execution, two different methods of multi-
core execution, and a GPU execution. Such a hybrid approach
provides the best performance for each graph size while avoiding
poor worst-case performance on high-diameter graphs. Finally,
we study the effects of the underlying architecture on BFS
performance by comparing multiple CPU and GPU systems; a
high-end GPU system performed as well as a quad-socket high-
end CPU system.

I. INTRODUCTION

The first decade of the new millennium has ended, pro-

ducing many new interesting prospects in the computing

landscape. Most prominently, multi-core CPUs have become

commonplace, as they are widely used not only for high

performance computations but also in ubiquitous consumer

electronics such as hand-held devices. The idea of using the

graphics processor for general purpose computation has also

become popular, since this approach has yielded tremendous

performance when applied to suitable problems [1]. Such

proliferation of parallelism (multiple threads on a CPU or

GPU) and heterogeneity (simultaneous use of a CPU and

GPU) has succeeded in greatly improving the performance

of many traditional computation-intensive workloads, provided

that their parallel or heterogeneous implementations are well

understood.

There still remain, however, problems that demand fast

computation but for whom efficient parallel or heterogeneous

implementations have yet to be identified. Graph exploration

is one important example of such problems. Graphs are a fun-

damental data representation widely used in numerous fields

such as intelligence analysis [2], robotics [3], social network

analysis [4], and computational biology [5]. These applications

have traditionally required long periods of processing time

due to their massive data-set sizes. Parallelism has usually

failed to alleviate matters, because parallel speedup of these

applications is severely limited by the random nature of their

memory access patterns, a fundamental property of graph

processing algorithms [6].

Breadth-first search (BFS) is a fundamental graph algorithm

that systematically explores the nodes in the graph. BFS is

typically considered one of the most important graph algo-

rithms, because it serves as a building block for many other

algorithms including betweenness centrality calculation [4],

connected component identification [7], community structure

detection [8], and max-flow computation [9]. Benchmark

suites targeting graph applications perennially include BFS as

a primary element [10], [11].

Due to such importance, significant research has been

conducted to efficiently implement a parallel BFS for a wide

array of computing systems [12]–[19]. Two recent results par-

ticularly draw our attention. One is Agarwal et al’s work [18]

which presented a state-of-the-art BFS implementation for

multi-core systems. Their implementation utilized sophisti-

cated data structures to reduce cache coherence traffic between

CPU sockets. When executed on a high-end multi-core sys-

tem, their implementation outperformed previous proposals,

even those including other architectures such as Cell [14],

clusters [12], and shared memory supercomputers [13], [16].

The other proposal is a BFS implementation for GPUs

by Hong et al [19], reported around the same time as the

Agarwal et al paper. Hong et al solved the workload imbalance

issue when processing irregularly shaped graphs, which had

a devastating effect on previous GPU implementations. They

demonstrated good performance improvement compared to

multi-core CPU implementations. However, their comparison

included neither Agarwal’s work nor more recent architectures

such as the Nehalem CPU family [20] or Fermi GPU [21].

In this study, we build upon ideas from both previous

works and incorporate them into a universal solution that

utilizes both the CPU and GPU on a heterogeneous system.

Specifically, we first propose a new BFS implementation for

multi-core CPUs which performs better than state-of-the-art

implementations [18] for large graph instances, while being

simpler to implement (Section III-A). Second, we propose

a hybrid method that, for each BFS iteration, dynamically

selects the best execution method among sequential, parallel or

GPU implementations. This approach benefits both large and

small graphs and also prevents poor worst case performance

(Section III-B). Finally, using the best implementations for

both systems, we measure BFS performance on multi-core

2011 International Conference on Parallel Architectures and Compilation Techniques

1089-795X/11 $26.00 © 2011 IEEE

DOI 10.1109/PACT.2011.14

78

2011 International Conference on Parallel Architectures and Compilation Techniques

1089-795X/11 $26.00 © 2011 IEEE

DOI 10.1109/PACT.2011.14

78

CPU systems and GPU systems and study their architectural

effects.

The specific contributions of this paper are:

• We present a BFS implementation method for multi-core

CPUs which performs better than the current state-of-the-

art implementation for large graph instances. The perfor-

mance gap widens as the graph size grows. Additionally,

our method is much simpler to apply.

• We present a hybrid method which dynamically chooses

the best execution method for each BFS-level iteration

from among: sequential execution, multi-core CPU ex-

ecutions, and GPU execution. We show that such a

hybrid method is essential to prevent poor worst case

performance.

• We provide a fair comparison of BFS performance on

multi-core CPU and GPU, which reveals that single-

socket high-end GPU performance can be matched by

a quad-socket high-end multi-core CPU.

The remainder of this paper is organized as follows. In

Section II, we observe the nature of the parallel BFS algorithm

when applied to real-world graph instances. Based on these

observations, we propose the new implementation methods

that we outline in Section III. Section IV details the methodol-

ogy for our experiments of which the results can be found in

Section V. We also review the previous BFS implementations

in Section VI, before concluding in Section VII.

II. NATURE OF PARALLEL BFS ALGORITHM ON

IRREGULAR GRAPHS

Breadth-first search (BFS) is a fundamental graph search

algorithm that systematically traverses the connected nodes of

a graph starting from a given root node. The algorithm ensures

that all nodes are visited in the order of hop distance from the

root– a node with smaller hop distance is always visited before

one with larger hop distance.

An important kernel, many applications use BFS as their

basic building block; such applications insert extra computa-

tion during each BFS iteration [2]–[4], [8] and/or post-process

the result [4], [7], [9]. Although the term search misleadingly

implies that the algorithm should terminate once a designated

node has been reached, many of these applications simply

traverse all the connected nodes in BFS order. Also, in order

to accommodate such a wide range of applications, many BFS

implementations simply store the BFS level (i.e. hop distance

from the root) of each node as their final output [12], [15],

[19].

Two different strategies have been proposed for parallel (and

distributed) execution of BFS. The first method, known as the

fixed-point algorithm, continuously update the BFS level of

every node, based on BFS levels of all neighboring nodes

until no more updates are made. This method is preferred in

distributed environments since it can naturally be implemented

as message passing between neighboring nodes [12]. On

the other hand, this method potentially wastes computation,

since it processes the same edge multiple times whenever a

corresponding node is updated. For this reason, the fixed-point

Algorithm 1 Level Synchronous Parallel BFS

1: procedure BFS(r:Node)
2: V = C = ∅; N = {r} � Visited, Current, and Next set
3: r.lev = level = 0
4: repeat
5: C = N
6: for Node c ∈ C do � in parallel
7: for Node n ∈ Nbr(c) do � in parallel
8: if n /∈ V then
9: N = N ∪ {n}; V = V ∪ {n}

10: n.lev = level + 1
11: level++
12: until N = ∅

Level Num. Nodes Fraction (%)+

0 1 3.1∗10−6

1 4 1.3∗10−5

2 749 2.0∗10−3

3 109,239 0.34
4 7,103,690 22.20
5 9,088,766 28.40
6 130,298 0.41

7 172 5.3∗10−4

total visited nodes 16,432,919 51.35
total visited edges 255,962,977 99.99
(+) Fraction of the total number of nodes (edges) in the graph

TABLE I
NUMBER OF NODES IN EACH BFS LEVEL: A RESULT FROM TYPICAL

EXECUTION IN AN RMAT GRAPH

algorithm is less favored in shared-memory environments than

a second strategy: the level synchronous BFS algorithm.

The level synchronous BFS algorithm is described in Algo-

rithm 1. The algorithm manages three sets of nodes: the visited

set V , current-level set C and next-level set N . Iteratively, the

algorithm visits all the nodes in the current level (C) in parallel

and collects the next-level set N (line 6 – 11). At the beginning

of the next level iteration, C is populated with the values

from N , and N is cleared for the new iteration. The iteration

continues until there is no node in the next level. (line 12).

In short, this method visits all the nodes in each BFS level

in parallel, with the parallel executions being synchronized at

the end of each level iteration.

This strategy bears its own shortcomings: (1) Synchroniza-

tion overhead needs to be paid at every BFS level, and (2)

the amount of available parallelism is limited by the number

of nodes in a given BFS level. Nevertheless, the strategy

works quite well in practice for real-world graph instances

that are irregularly shaped by nature. This is because it has

been observed that the diameters of real-world graphs are

small even for large graph instances, i.e. the small world

phenomenon [22]. Consequently, the overhead of level-wise

synchronization is tolerable since the number of synchroniza-

tion events– the diameter of the graph– is small.

Similarly, because of the small world phenomenon the

number of nodes in each BFS level cannot help but grow very

rapidly. As an illustration, Table I shows the number of nodes

in each BFS level, obtained from a typical BFS execution on a

synthetic graph with 32 million nodes and 256 million edges

7979

generated by RMAT model [23]. (See Section IV for more

discussion about our graph generation models.) From the table,

one can observe that the maximum BFS level is small (7) for

such a large graph and that most of the nodes belong to only

two levels (levels 4 and 5). Therefore the total execution time

is bounded by the traversal of these levels, but the degree of

parallelism (i.e. number of nodes) is large in these levels.

Despite these nice properties, it has been shown that the

performance of level synchronous BFS is greatly affected by

details of the specific implementation as well as the conformity

to the targeted machine architecture [12], [13], [16], [18],

[19]. In fact, we noticed that many previous implementations

do not fully utilize the properties of the BFS algorithm on

real-world graphs which we have discussed in this section,

e.g. exponential growth of nodes in each level. In the next

section, we propose a new implementation method for the

level synchronous parallel BFS algorithm which considers

such algorithmic properties as well as the underlying machine

architecture.

III. IMPLEMENTATION METHODS OF PARALLEL BFS

A. A New Method for Multi-Core CPU

In implementing the level synchronous parallel BFS al-

gorithm, there exists a rather direct implementation based

on Algorithm 1 which uses lock-protected shared queues to

implement the current-level set (C) and next-level set (N).

Unfortunately such a naive implementation would surely suffer

from significant locking overhead.

Recently, Agarwal et al [18] presented a state-of-the-art BFS

implementation for multi-core CPUs in which they applied the

following series of optimization techniques:

1) Use of a bitmap to compactly represent the visited set

2) Application of the ’test and test-and-set’ operation when

atomically updating the bitmap

3) Use of local next-level queues; process node insertions

into the global queue in batch.

4) Maintaining per-socket next-level queues which are care-

fully implemented with ticket-locks and a fast-forwarding

algorithm.

Among these optimizations, the first three are relatively

easy to apply. Fig 1 shows the pseudo-code of such an

implementation. In the code, Bitmap V (line 3) encodes the set

of visited nodes. Since this set is the most frequently accessed

data in the algorithm, using a bitmap data structure minimizes

its size, allowing the cache to hold the largest possible portion

of the set. Parallel access overhead to the Bitmap is minimized

by using intrinsic atomic operations (e.g. __fetch_and_or) as

well as the test and test-and-set method (line 11 - 12). The

next-level nodes are first stored in the per-thread local queue

(LQ) until they are bulk inserted into the global queue (line 16,

20). These bulk insertion can also be efficiently implemented

using a single atomic operation by first increasing the queue

index (__fetch_and_add) then performing a normal memory

copy to the previous index. This is possible because the queue

is only pushed but never popped by any thread in this stage.

We refer to the method in Fig 1 as the Queue-based method
in the rest of this paper.

Argarwal et al’s final optimization was to use a delicate

queue implementation that minimized unnecessary coherence

traffic as much as possible during queue operations. Even

though this optimization provided some impressive perfor-

mance benefit, we observe that the importance of reducing

coherence misses is greatly diminished when the size of the

input data set becomes very large and the performance is

primarily governed by capacity misses.

We therefore take a different approach, focusing on effi-

cient use of memory bandwidth. Our approach is inspired

by previous BFS implementations for GPUs [15], [19] in

which use of shared queues is intentionally avoided due to

architectural traits of the GPU. Instead of a shared queue, the

GPU implementations manage a single O(N) array that tells

if a node belongs to the current-level set, next-level set, or

the visited set. The array is repeatedly accessed at each level

iteration, exploiting the vast memory bandwidth of the GPU.

Fundamentally, our approach merges and builds upon the

key ideas from the previous approaches for CPU [18] and

GPU [19]. The pseudo-code for our new method is presented

in Fig 2. As in the Queue-based method, we keep the visited

set as a bitmap (line 27) and access it through the same atomic

updates (line 38, 39). In contrast to the Queue-based method,

the next-level set and the current-level set are implemented

together as a single O(N) array as in the GPU implementation.1

Specifically, if the level of a node equals the current level, it

means the node belongs to the current-level set (Line 36).

Likewise, setting a node’s level value to be current level

plus one is, in fact, putting the node into the next-level set

(Line 40). We refer this method as the Read-based method.

The Read-based method provides two major advantages.

First, it is completely free from queue overhead. Not only do

we remove atomic instructions previously used for the queue

operations, we also save on cache and memory bandwidth.

Second, the Read-based method’s memory access pattern is

more sequential. This idea is illustrated in Fig 3. Fig 3.(a) de-

picts the data access pattern for a Queue-based implementation

in which there are six nodes ({0, 4, 2, 9, 7, 1}) in the current-

level queue and a thread processes the first three nodes in

order. Consequently, the algorithm accesses the adjacency list

in random order. On the other hand, Fig 3.(b) shows that, for

the same input, the Read-based method maximizes opportunity

for sequential reads during level and adjacency list exploration

(Line 36,37 in Fig 2).

As further justification of our approach, we measured the

sequential and random read bandwidths on various machines

(See Table III in Section IV for detailed specifications of these

machines). Table II displays the results. Most notably, the data

shows about a 9x difference in bandwidth between sequential

and random reads on the multi-core CPUs, further highlighting

the importance of our Read-based method’s more sequential

1The per-node lev field in Fig 2 is actually implemented as a separate byte
array. That is, c.lev in fact is lev[c.id].

8080

1 BFS_Queue(G: Graph, r: Node) {
2 Queue N, C, LQ[threads];
3 Bitmap V;
4 N.push(r); V.set(r.id);
5 int level = 0; r.lev = level;
6 while (N.size() > 0) {
7 swap(N,C); N.clear(); // swap Curr and Next
8 fork;
9 foreach(c: C.partition(tid)) {

10 foreach(n: c.nbrs) {
11 if (!V.isSet(n.id)) { // test and test-and-set
12 if (V.atomicSet(n.id)) {
13 n.lev = level+1;
14 LQ[tid].push(n); // local queue
15 if (LQ[tid].size()==THRESHOLD){
16 N.safeBulkPush(LQ[tid]); // global queue
17 LQ[tid].clear();
18 } } } } }
19 if (LQ[tid].size() > 0) {
20 N.safeBulkPush(LQ[tid]);
21 LQ.clear();
22 }
23 join;
24 level++;
25 } }

Fig. 1. Queue-Based BFS Implementation Method

26 BFS_Read(G: Graph, r: Node) {
27 Bitmap V;
28 Bool fin[threads];
29 V.set(r.id);
30 int level = 0; r.lev = level;
31 bool finished = false;
32 while (!finished) {
33 fork;
34 fin[tid] = true;
35 foreach(c: G.Nodes.partition(tid)) {
36 if (c.lev != level) continue;
37 foreach(n: c.nbrs) {
38 if (!V.isSet(n.id)) { // test and test-and-set
39 if (V.atomicSet(n.id)) {
40 n.lev = level+1;
41 fin[tid] = false;
42 } } } }
43 join;
44 finished = logicalAnd(fin, threads);
45 level++;
46 } }

Fig. 2. Sequential Array Read-Based BFS Implementation Method

0 4 2 9 7 1

a b c h i j k n o p q

Current
Queue

Packed
Adjacency
List

a b c d e f g h i j k n o p q
Packed
Adjacency
List

1 1 1
I
N
F

1
I
N
F

I
N
F

…

…

Level List

0 2 4

1 0 1

0 1 2 4

0 1 2 3 4

(a) Data-Access Pattern of Queue-Based Method

(b) Data-Access Pattern of Read-Based Method

Fig. 3. Data Access Patterns

Machine Seq. Read Random Read

Nehalem CPU 8.6 GB/s 0.98 GB/s

Core CPU 3.0 GB/s 0.25 GB/s

Fermi GPU 76.8 GB/s 2.71 GB/s

Tesla GPU 72.5 GB/s 3.15 GB/s

TABLE II
MEMORY READ BANDWIDTH MEASURED ON MACHINES IN TABLE III.

memory access pattern. We remind the reader, however, that

even the Read-based method does not completely eliminate

random read accesses. The algorithm still requires additional

indirection from the adjacency list to the destination node

(Line 38 in Fig 2), an inherently random operation. Also,

note that both the Queue-based method and Agarwal et al’s

proposal perform the same random accesses to the bitmap as

well. All these methods including ours, however, rely on the

last-level cache to process such random acceses fast.

The primary disadvantage of the Read-based method is that

it reads out the entire level array at every level iteration,

even if only a few nodes belong to that level. However,

this seldom affects the overall performance because of the

following characteristics of real-world graph instances: (1) the

diameter of the graph is small so the maximum amount of

re-read is bounded and (2) there are a few critical levels in

which the number of nodes is O(N) (see Table I) and thus

sequentially reading out the whole O(N) array is not wasteful

for these levels. In addition, the total algorithm execution time

is already governed by the processing time of these critical

levels. We remind the reader that this small world property is

not merely an observation made in certain graph instances, but

rather a fundamental characteristic of randomly-shaped real-

world graphs [22]. So while the Read-based approach may be,

in theory, algorithmically inefficient, the small world property

guarantees that realistic execution in real-world graphs is

rarely near the worst case.

Nevertheless, this disadvantage can create an undesirable

performance cliff when using the Read-based method for

worst-case data inputs. Two specific examples are (1) small

(sub-)graphs and (2) long diameter graphs such as meshes.

In the next subsection, we propose a hybrid scheme which

alleviates this problem.

B. Hybrid Methods

To address the inefficient processing of non-critical levels,

we propose a hybrid scheme that dynamically determines

which method to apply when processing each level. The basic

idea is simple: If the current level contains only a few nodes,

use the Queue-based method (Fig 1). Otherwise, use the Read-

based method (Fig 2).

Our hybrid method can be represented as a state machine,

shown in Fig 4. The hybrid method begins in Seq state so that

level 0 (the root) is processed sequentially. Afterward, if the

size of the next level is larger than T1, the method switches

to Queue state and the level is processed with the (parallel)

Queue-based method. Similarly, Queue state is exited when

the next level size is larger than T2; such critical levels are

8181

SEQ QUEUE

READ

READ
To

QUEUE

|Next| > T1

|Next| > T2 or
(|Next| > *|Curr| and

|Next| > T3)

|Next| T2 or
(|Next| < *|Curr|)

|Next| > T1

Otherwise

Queue
To

READ

Fig. 4. State machine of Hybrid Read and Queue Method (for CPU
execution).

processed with the Read-based method. The size of the next-

level set can be easily counted after a test-and-set operation

(i.e. Line 12 or Line 39) using private counters which are

merged upon synchronization.

There is also an additional QueueToRead state which rep-

resents the transitional state between Queue and Read states.

In QueueToRead state, the current level set is read from the

current-level queue but the next-level nodes are written back

not in the queue, but to the level array.

If exponential growth in the number of nodes in the next

level is detected (|Next| > |Curr| ∗ α), we exit Queue

state early (T3). This is based on the following observation:

Since Read state is reached through one extra transitional state

(QueueToRead) and the number of nodes in successive levels

grows very rapidly, there will be enough nodes in the current

level by the time Read state is finally reached.

The transition from Read state to Queue state is similar.

Read state is exited when the size of next-level set becomes

small or when the exponential growth in the number of nodes

stops; the second condition is checked only if read state is

reached via exponential growth.

We refer to this method, shown in Fig 4, as the Hybrid
Read and Queue method. The Hybrid Read and Queue method

avoids the worst-case inefficiency problem of the Read-based

method by applying the Queue-based method for non-critical

levels. We used (T1, T2, T3) = (64,max(218, N ∗0.01), 2048)
and (α, β) = (2.0, 2.0).

We now observe that the idea of the hybrid method can

enhance the previous GPU BFS implementation [19] using

the same principles. Although not explicitly mentioned in its

paper, this GPU implementation does suffer from the same

non-critical level inefficiency issue as the Read-based method,

since it also reads out the whole array at every level iteration.

Fig 5 shows the extension of our Hybrid Read and Queue

method for GPU execution. Fundamentally, the first few levels

are executed on the CPU-side before migrating to the GPU

when the size of the current level becomes larger than T4 (our

default was 16384). GPU execution is initiated only if there

is exponential growth in the number of nodes in each level.

Otherwise, we fall back to the Queue state in Fig 4. Such

SEQ
QUEUE

FOR
GPU

GPU

|Next| > T1

|Next| > *|Curr|
and |Next| >T4

InitGPUCopyBack

Finished

QUEUE

|Next| T4

Fig. 5. State machine of the Hybrid CPU and GPU Method.

a decision is based on the observation that in high-diameter

graphs (e.g. 2-D meshes) there is not enough parallelism at

each level to saturate the massive parallel hardware of the

GPU.

Also, once GPU execution is initiated, execution never

returns to the CPU until finished, since the benefit of moving

back to the CPU is quickly negated by the overheads required:

(a) the size of the next-level set has to be counted during GPU

execution in order to determine when to come back and (b)

the bitmap for the visited set has to be reconstructed on the

CPU-side.

Note that in InitGPU stage in Fig 5, the whole level array is

not simply copied to the GPU. Instead, we save all the contents

of current-level queues during CPU-side processing and copy

only those queues to the GPU. Using those queues, the GPU

can reconstruct the entire level array, a much faster operation

than copying the whole O(N) level array from the CPU. We

refer to this scheme, shown in Fig 5, as the Hybrid CPU and
GPU method.

To summarize, this section proposes a series of new

methods for BFS implementation. We began with the Read-

based method which is simple but utilizes memory-bandwidth

efficiently for large graphs. Our hybrid methods prevent

worst-case execution patterns when processing small or high-

diameter graphs.
IV. METHODOLOGY

This section provides details of our experiments. In our

experiments, we measure the performance of our BFS imple-

mentation methods in Section III with various machines and

different graph instances. We primarily compare our results

against those of Agarwal et al’s[18], since their implemen-

tation was said to outperform virtually all other previous

proposals [12], [14], [16].

As for input data, we use two different kinds of popular

graph generators which produce differently shaped graph

instances with a given number of nodes (N) and edges (M).

The first one is the Erdős-Rényi, or uniformly random, model;

this model uniformly and randomly picks M pairs of nodes out

of N nodes and creates edges between them. The second one

is the RMAT model [23] which produces a so-called scale-

free graph, characterized by its skewed degree distribution and

8282

Nehalem CPU Fermi GPU Core CPU Tesla GPU SC10-EP SC10-EX
Core Architecture Intel Nehalem Nvidia Fermi Intel Core Nvidia Tesla Intel Nehalem Intel Nehalem

Model No. Xeon X5550 Tesla C2050 Xeon E5345 GeForce GTX275 Xeon X5570 Xeon X7500
Core Frequency 2.67 GHz 1.15 GHz 2.33 GHZ 1.40 GHz 2.93 GHz 2.26 GHz

Num Socket 2 1 2 1 2 4

Num Core/Socket 4 14*2(a) 4 30 4 8
HW-thread/Core 2 ∼32 1 ∼32 2 2

SIMD/SIMT width - (not used) 32 - 32 - -
Total Last Level Cache 16 MB 2MB 8 MB - 16 MB 96 MB

Main Memory 24 GB 3GB 32 GB 896MB 48 GB 256 GB

Memory Bandwidth(b) 100 GB/s 128 GB/s 10.4 GB/s 127 GB/s 100 GB/s 266 GB/s
Total Num Transistors 1.4 Billion 3.0 Billion 1.1 Billion 1.4 Billion 1.4 Billion 9.2 Billion

Total Power (TDP) 190 W 238 W 160 W 210 W 190 W 520 W
(a) Each core processes two warps at a time.
(b) Theoretical maximum: For GPU and Nehalem CPU, this is (num channels) x (dram bandwidth). For Core CPU, this is FSB bandwidth.
See Table II for bandwidths actually measured on the systems.

TABLE III
THE SPECIFICATION OF MACHINES USED IN OUR EXPERIMENTS AND THE PREVIOUS WORK [18]

fractal community structure. Both of our generators came from

a graph library called SNAP [24]. For the parameters of the

RMAT graph, we used default values in the SNAP library:

(a,b,c)=(0.45,0.25,0.15).
As for graph representation, we used the CSR (Compressed

Sparse Row) format which merges the adjacency lists of all

nodes into a single O(M)-sized array, with the beginning

location of each node’s adjacency list stored in a separate

O(N)-sized array. This data structure has been popularly used

in many previous works [15], [17], [19] due to its low memory

requirement and simplicity. The BFS-level of each node is

stored in a separate O(N) byte array. Our code ware compiled

with gcc 4.3.3 and nvcc 3.2 with the -O3 option.
Table III summarizes the specification of the machines used

in our experiments and in the previous work [18]. Our main

experiments are conducted on the first two machines in the

table, which are referred to as Nehalem CPU and Fermi GPU

in the rest of the paper.
Our experiments have two goals. First, we evaluate the

effectiveness of our methods, described in Section III. Second,

we study the architectural effects on BFS performance of

multiple kinds of GPUs and CPUs. While evaluating our meth-

ods, we directly compare our performance against the values

reported in the previous paper [18]. Note that the previous

work used two different machines (SC10-EP and SC10-EX in

Table III); we compare our results against the SC10-EP results

since it is comparable to– although faster than– our machine

(Nehalem CPU). When exploring the architectural effects, we

measure the best BFS performance on all four of our machines

detailed in Table III. We include both results in the previous

work [18] in comparison as well.
We measure our performance by executing BFS 10 times

from 10 different root nodes which are (pseudo-)randomly

chosen. However, all the root nodes belonged to the same

connected component whose size is O(N). We take the average

of multiple of such measurements. When measuring GPU

performance, we do not include the time to set up the graph

data structure (i.e. nodes and edges) in the GPU memory

because the graph is not mutated during execution; this step is

analogous to a CPU loading the graph into the main memory

from the file system. However we do include the time for

initializing the BFS-level array in GPU memory and copying

back its final values to CPU memory, since these steps have

to be repeated at every BFS execution.

V. EXPERIMENTAL RESULTS

In the first part of our experiments, we validate the ef-

fectiveness of the implementation methods we presented in

Section III. To begin, we measure the performance of those

methods on our Nehalem CPU machine (Table III), using

Uniform and RMAT graph instances with 32 million nodes

and 256 million edges.

The result is shown in Fig 6 where the y-axis is the mea-

sured performance (number of processed edges per second;

higher is better) and the x-axis is the number of threads used.

We remind the reader that the machine has only 8 physical

cores but supports two hardware threads per core. In the fig-

ures, three plots indicate our measured performances: Queue is

the result of the Queue-based method (Fig 1), Read represents

the Read-based method (Fig 2) and Read+Queue represents

the Hybrid Read and Queue method (Fig 4). The figures also

display the performance values reported in the state-of-the-art

previous work [18]; their results were conducted on a machine

comparable to ours (SC10-EP in Table III) with identically-

sized graphs. Note that Queue-based method is not our main

contribution but rather illustrates the case when a sophisticated

queue data structure, such as the one Agarwal et. al.’s work

relies on (Section III), is not utilized.

In the figure, one can first notice that our simple Read-

based method outperforms both the plain Queue-based method

and the previous work, although the previous work seems

to better utilize hardware multi-threading. The performance

difference comes from the Read-based method’s saving of

memory bandwidth and more sequential data access pattern,

as discussed in Section III. Second, the Hybrid Read and

Queue method provides additional performance improvement

over the Read-based method but marginally. We will analyze

this marginal improvement later in this section.

8383

(a) Uniform

(b) RMAT

Fig. 6. Performance of BFS implementation methods measured on Nehalem
CPU.

(a) Uniform

(b) RMAT

Fig. 7. Performance of BFS implementations on Fermi GPU.

Next we measure BFS performance of the same graph

instances on our Fermi GPU machine (Table III) using a GPU-

only execution and Hybrid CPU and GPU method. The GPU-

only execution is based on Hong et al’s [19] implementation.

The result is shown in Fig 7, where two CPU results (Hy-

brid Read and Queue, and SC10-EP) are also displayed for

comparison. From Fig 7, it is immediately clear that GPU

execution still performs better than CPU execution, even with

our new best CPU implementation. More detailed study on

such architectural effects will be presented later in this section.

The Hybrid CPU and GPU method provides extra performance

benefits, but it is again marginal.

Next,we explore the effect of graph size. Using the same

Uniform and RMAT graph generator, we scale the size of the

graphs and measure the performance on both CPU and GPU.

The results are shown in Fig 8. In Fig 8, graphs (a) and (b)

change the number of nodes from 1 million to 64 million,

while keeping the average degree of the graph as 8–i.e., M

equals to 8 * N. To represent larger graphs, (c) and (d) change

the number of edges from 256 million to 1 billion while the

number of nodes is fixed at 32 million. We omit the results of

GPU-only and Read-based method for brevity, as they show

similar relative performance as in Fig 6 and 7.

Both Fig 8 (a) and (b) show that the GPU execution sustains

a constant performance level even for large numbers of nodes,

while CPU-based methods tend to drop as the number of nodes

increases in the graph. This is because, as the size of the

graph grows, more memory requests escape the cache and

are serviced by DRAM. In addition, the plots also show that

our method (Hybrid Read and Queue) performs better than

Agarwal et al’s method when the size of graph is large. The

performance difference becomes even larger as the size of

graph grows. We speculate that the performance of Agarwal et

al’s work would converge to that of the Queue-based method

when the graph size gets large enough.

This phenomenon can be explained as the following: it is

beneficial to minimize coherence misses among the last level

caches as long as most data fits in those caches. But this benefit

is greatly reduced when the data size outgrows the cache

and the execution time is dominated by capacity misses. Our

method makes use of the unified array to completely eliminate

the cache/memory bandwidth used for queue management.

This saved memory bandwidth is especially beneficial when

the execution time is dominated by main memory accesses.

Similar trends can be also observed in (c) and (d), where we

scaled up the number of edges: As the size of graph grows, the

performance gap between our method and the previous work

widens. Note that the graph did not fit in GPU memory when

the number of edges was more than 512 million.

We now analyze more thoroughly the impact of our hybrid

methods on random (i.e. low-diameter) graphs. Fig 9 shows

the level-wise break down of the execution time for each BFS

method, obtained from a specific run for the 32 million node

RMAT instance. The number of nodes in each level can be

found in Table I, which reveals that most of the nodes belong

to only two levels (level 4 and 5). Since the execution time of

8484

(a) Node (Uniform) (b) Nodes (RMAT)

(c) Edges (Uniform) (d) Edges (RMAT)

Fig. 8. Effect of Graph Size Scaling.

0

200

400

600

800

1000

Queue Read Read+Queue GPU GPU+CPU

T
im

e
(m

s)

Level 0 Level 1 Level 2 Level 3 Level 4
Level 5 Level 6 Level 7 GPU Init Copy Back

Fig. 9. Breakdown of Execution Time for Various Methods.

each level is determined by the number of nodes in the current

level and the next level, the total execution time is naturally

governed by the processing times of level 3, 4, and 5. As seen

in Fig 9, compared to the Queue-based method, the Read-

based method performs better for these critical levels due to

its efficient utilization of memory bandwidth. For non-critical

levels, however, the Read-based methods performs worse.

Similar observations can be made for GPU-only execution,

when compared to CPU-based methods. Note that our hybrid

methods reduce the execution time for non-critical levels (e.g.

level 1, 2). However, since the fraction of these levels to the

0

50

100

150

200

250

300

350

Queue Read Read+Queue GPU CPU+GPU

T
im

e
(m

s)

Large Search Instance (1~3) Small Search Instance (4~20)

Fig. 10. Accumulated Execution Time of 20 BFS runs performed on a tree:
Small and Large search instances were intentionally mixed.

total execution time is little, the gains from Hybrid methods

became marginal.

Despite its marginal benefit on low-diameter graphs, the

hybrid method remains very valuable since it acts as a safety

net to prevent performance degradation for worst-case inputs:

small (sub-)graphs or high-diameter graphs. To illustrate this

point, we first synthesized a complete 4-ary tree (5.5 million

nodes, 11 levels) and performed 20 BFS executions on it. We

started three BFS runs from the nodes in top two levels and

the remaining 17 from the bottom three levels except the leaf

8585

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Nehalem
CPU

Fermi
GPU

Core
CPU

Tesla
GPU

SC10
(EP)

SC10
(EX)

Bi
llo

n
Ed

ge
s

Pe
r S

ec

RMAT 16

RMAT 32

Uniform 16

Uniform 32

Fig. 11. BFS Execution Performance on Various Machines: RMAT and Uniform is the type of the graph. Number 16 and 32 stand for number of nodes of
the graph, in millions. Each graph instance has the same average degree of 8.

Method Normalized Execution Time

Queue 1.00

Read 12.63

Queue+Read 1.01

GPU 15.23

TABLE IV
NORMALIZED BFS EXECUTION TIME ON A 2-D MESH.

level; this setup dictates that the first three BFS executions visit

at least a quarter of all nodes in the tree while the remaining

17 only visit a couple. The accumulated execution time of

these searches is shown in Fig 10. The figure shows that

the Read-based method or pure GPU execution suffer from

huge fixed overhead for small search instances (solid boxes)

while performing well for large ones (checker boxes). The

Hybrid methods perform better than those methods because

an appropriate iteration method is chosen for each instance

size.

Similarly, we synthesized a 2-D mesh (4,000 x 4,000) to

represent low-diameter graphs and measured BFS performance

using various methods. Table IV shows execution time for each

method, normalized by the execution time of the queue-based

method. We omitted the Hybrid CPU and GPU result since it

is essentially the same as the Hybrid Queue and Read method

in this case. Note that there are O(
√
N) BFS levels in this

graph. As can be seen in the table, performance of the Read

and GPU methods suffers due to repeated unnecessary memory

accesses while the hybrid method avoids this pitfall. The GPU

also suffers especially since the degree of parallelism in each

level is low for these kinds of graphs.

Now, we study the effect of the machine architectures on

BFS execution. For this purpose, we executed our best BFS

implementation on all of our available machines (first four

columns in Table III): For CPU, we used the Hybrid Read and

Queue method and for GPU, we used pure GPU execution. We

used two differently-sized graphs (16 million nodes with 128

million edges and 32 million nodes with 256 million edges)

of both graph types (Uniform and RMAT).
We summarize the result of our experiment in Fig 11.

The first four sets of columns in the figure display our

measured performance on each system. The remaining two are

performance values reported in the previous work of Agarwal

et al’s [18], which was said to outperform all previous results

prior to it [12]–[14], [16].
We first compare the difference between the CPU archi-

tectures: Nehalam CPU, Core CPU, SC10-EP and SC10-

EX. First, the performance difference between Core CPU and

Nehalam CPU is noticeably large – more than 2x difference.

We can attribute this performance gap to the difference in

memory bandwidth of these machines (Table II) rather than

cache size if we compare RMAT16 performance on Core

CPU and RMAT32 performance on Nehalem CPU. Similarly,

the performance gap between SC10-EP and SC10-EX is also

closely correlated with the bandwidth difference between these

machines, rather than the cache size difference (6x difference)

or number of processors (4x difference).
Next we compare the difference between two GPU architec-

tures: Tesla GPU and Fermi GPU. The Tesla GPU was unable

to accommodate large graph instances. For smaller instances,

Fermi GPU performed around 60% better than Tesla GPU,

even though both have comparable memory bandwidth. 2 This

improvement can be attributed to the shared last level (L2)

cache, newly adopted in Fermi GPU, as we explain in the

following experiment.
To better understand the GPU performance, we measured

the difference in BFS performance on the Fermi GPU as

we changed its cache configuration using the -dlcm compiler

flag. We used graph instances with 32 million nodes and

256 million edges. The result is shown in Fig 12. Enabling

the L2 cache alone yielded the best performance for BFS

execution on the GPU, while disabling the cache resulted

in performance comparable to Tesla GPU’s. Interestingly,

2As a side note, we also observed that the negative effect of workload
imbalance due to skewed degree distribution [19] was less severe in Fermi
GPU than in Tesla GPU.

8686

0

0.1
0.2

0.3

0.4

0.5
0.6

0.7

RMAT Uniform

Bi
llio

n
Ed

ge
s

Pe
r S

ec
Cache Off L2 on L1 + L2 on

Fig. 12. Effect of GPU cache on BFS execution.

enabling L1 cache along with the L2 cache negatively affected

performance, which could be due to an unrelated side-effect:

disabling the L1 cache using -ldcm automatically reduces the

transfer granularity from the L2 from 128 bytes to 32 bytes,

thereby degrading bandwidth utilization. All our performance

measurements for Fermi GPU in this paper used only the L2

cache.

Lastly, we compare the best GPU performance (Fermi

GPU, single socket) and best CPU performance (SC10-EX,

quad-socket). The performance between the two machine is

quite comparable; although Fermi GPU still performs better,

we expect that SC10-EP performance would increase if our

methods were used on that machine 3.

We believe the final judgement between CPU systems and

GPU systems would be individual since it should consider

many other factors such as power consumption, cost of the

system and the size of target graph instances as well as abso-

lute performance number; each reader might suggest different

weights on these factors.

VI. RELATED WORKS

Large graphs are drawing more attention due to the increas-

ing number and importance of graph-based applications, such

as social networking services. However, efficient processing

of large graphs is still considered challenging [6]; one rea-

son is the natural random memory access patterns exhibited

in graph traversal. To accurately capture the computational

requirements of large graph applications, a benchmark called

Graph500 [11] has been created.

Much research has been conducted on efficient parallel im-

plementations of BFS, targeting various computer architectures

[12]–[19]. Among these works, we have extensively discussed

the most recent work for multi-core CPU [18], and GPU [19]

in Section III since they outperformed the others on those

machines.

Although we focused on a level synchronous strategy for

BFS (Section II), there are other studies that have used

3We did not include multi-GPU systems in our experiment. However,
considering the random access nature of this problem, the additional benefit
of using a multi-GPU system is unclear.

fixed-point strategies. Hassaan et al [25] compared fixed-

point and level synchronous strategies and confirmed that

level synchronous strategy allows for a sufficient degree of

parallelism in BFS. Pearce et al [26] applied a fixed-point

strategy for various graph algorithms including BFS, focusing

on reducing synchronization overhead. Finally, Yoo et. al. [12]

adopted a fixed-point strategy in order to implement BFS on

a huge distributed system (64k cpu nodes) using a message

passing library. Yoo et. al.’s performance on their distributed

system was notably 5x less than on a four-socket multi-core

system [18].

Distributed graph processing is considered to be challenging

in general, due to the natural irregularity of the underlying

graph [6]. Nevertheless, there is an important case in which

distributed processing is mandatory: the graph does not fit

in a single machine’s memory. There are a few frameworks

or libraries which aim to simplify graph processing in dis-

tributed envrionements. PBGL [27] is a message-passing im-

plementation of the classic boost graph library. Pregel [28]

is a distributed framework that encapsulates message passing

and fault-tolerance in a similar manner to the MapReduce

framework; traditional graph algorithms should be expressed

in a description suitable for MapReduce, however.

There also has been developed supercomputers that are spe-

cially designed for graph processing [29], which features high

memory bandwidth, huge memory capacity, and many cores

that are heavily multi-threaded. Graph algorithms, including

BFS, showed impressive performance on these machines [13],

[16]. Unfortunately, such machines are rare and costly.

Some researchers [15], [19] used GPU to accelerate graph

algorithms, because GPU shares many architectural properties

of aforementioned supercomputers but is much economical.

However the benefit of GPU execution is often limited by

GPU’s relatively small memory capacity. Our hybrid method

utilizes GPU only when the graph size fits.

In this paper, we compared BFS performance across mul-

tiple CPU and GPU machines, studying their architectural

effects. According to our observation, random memory access

bandwidth was most critical to BFS performance. We refer the

readers to recent papers regarding CPU vs. GPU debates [1],

[30].

VII. CONCLUSION

In this paper, we propose new methods for parallel breadth-

first search (BFS) implementations. Our multi-core CPU

methodology is simple to apply yet efficient in utilizing

memory bandwidth.Our method outperforms the state-of-the-

art method by up to 45%, with the performance gap widening

as the graph size grows. We also propose a hybrid method

that dynamically chooses the best implementation for each

BFS-level iteration–such a method benefits both large and

small graphs while preventing poor worst case performance.

Finally, our experiments showed that a single high-end GPU

performs as well as a quad-socket high-end CPU system for

BFS execution; the governing factor for performance was

primarily random memory access bandwidth.

8787

Acknowledgements

This work is supported by DOE contract, Sandia or-

der 942017; Army contract AHPCRC W911NF-07-2-0027-

1; DARPA contract, Oracle order US103282; and Stanford

PPL affiliates program, Pervasive Parallelism Lab: Oracle/Sun,

NVIDIA, AMD, NEC, and Intel.

REFERENCES

[1] J. Nickolls and W. J. Dally, “The gpu computing era,” IEEE Micro,

vol. 30, no. 2, 2010.

[2] T. Coffman, S. Greenblatt, and S. Marcus, “Graph-based technologies

for intelligence analysis,” Communications of the ACM, vol. 47, no. 3,

pp. 45–47, 2004.

[3] R. Sim and N. Roy, “Global a-optimal robot exploration in slam,” in

Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005
IEEE International Conference on, 2005, pp. 661–666.

[4] U. Brandes, “A faster algorithm for betweenness centrality,” The Journal
of Mathematical Sociology, vol. 25, no. 2, pp. 163–177, 2001.

[5] A. Tong, B. Drees, G. Nardelli, G. Bader, B. Brannetti, L. Castagnoli,

M. Evangelista, S. Ferracuti, B. Nelson, S. Paoluzi et al., “A combined

experimental and computational strategy to define protein interaction

networks for peptide recognition modules,” Science, vol. 295, 2002.

[6] A. Lumsdaine, D. Gregor, B. Hendrickson, J. Berry, and J. Guest Editors,

“Challenges in parallel graph processing,” Parallel Processing Letters,

vol. 17, no. 1, pp. 5–20, 2007.

[7] S. Skiena, The algorithm design manual. Springer, 1998, pp. 166–168.

[8] M. E. J. Newman and M. Girvan, “Finding and evaluating community

structure in networks,” Physiscal Review E, vol. 69, no. 2, 2004.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. MIT press and McGraw-Hill, 2001, pp. 651–665.

[10] D. Bader and K. Madduri, “Design and implementation of the hpcs graph

analysis benchmark on symmetric multiprocessors,” High Performance
Computing–HiPC 2005, 2005.

[11] M. Anderson, “Better benchmarking for supercomputers,” Spectrum,
IEEE, vol. 48, no. 1, pp. 12–14, 2011.

[12] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson,

and U. Catalyurek, “A scalable distributed parallel breadth-first search

algorithm on BlueGene/L,” in SC 2005 ACM/IEEE.

[13] D. Bader and K. Madduri, “Designing multithreaded algorithms for

breadth-first search and st-connectivity on the Cray MTA-2,” in ICPP
2006. IEEE.

[14] D. Scarpazza, O. Villa, and F. Petrini, “Efficient breadth-first search on

the cell/be processor,” IEEE Transactions on Parallel and Distributed
Systems, 2007.

[15] P. Harish and P. J. Narayanan, “Accelerating large graph algorithms on

the gpu using cuda,” in HiPC, vol. 4873. Springer, 2007.

[16] D. Chavarria-Miranda, A. Marquez, J. Nieplocha, K. Maschhoff, and

C. Scherrer, “Early experience with out-of-core applications on the Cray

XMT,” in IEEE IPDPS 2008.

[17] D. Bader and K. Madduri, “Snap, small-world network analysis and par-

titioning: An open-source parallel graph framework for the exploration

of large-scale networks,” in IEEE IPDPS, 2008.

[18] V. Agarwal, F. Petrini, D. Pasetto, and D. Bader, “Scalable Graph

Exploration on Multicore Processors,” in Supercomputing. Proceedings
of the ACM/IEEE SC 2010 Conference.

[19] S. Hong, S. Kim, T. Oguntebi, and K. Olukotun, “Accelerating CUDA

graph algorithms at maximum warp,” in Proceedings of the 16th ACM
symposium on Principles and practice of parallel programming, 2011.

[20] Intel, “Intel microarchitecture codenamed nehalem,”

http://www.intel.com/technology/architecture-silicon/next-

gen/index.htm?iid=nehalem.

[21] Nvidia, “Next generation cuda architecture, code named fermi,”

http://www.nvidia.com/object/fermi_architecture.html.

[22] D. Watts and S. Strogatz, “Collective dynamics of small-world net-

works,” Nature, vol. 393, no. 6684, 1998.

[23] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model

for graph mining,” in SDM, 2004.

[24] D. A. Bader and K. Madduri, “Snap: small-world network analysis and

partitioning,” http://snap-graph.sourceforge.net.

[25] M. Hassaan, M. Burtscher, and K. Pingali, “Ordered vs. unordered: a

comparison of parallelism and work-efficiency in irregular algorithms,”

in PPoPP. ACM, 2011.

[26] R. Pearce, M. Gokhale, and N. Amato, “Multithreaded asynchronous

graph traversal for in-memory and semi-external memory,” in Pro-
ceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, 2010.

[27] D. Gregor and A. Lumsdaine, “The parallel bgl: A generic library

for distributed graph computations,” Parallel Object-Oriented Scientific
Computing (POOSC), 2005.

[28] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,

and G. Czajkowski, “Pregel: a system for large-scale graph processing,”

in SIGMOD ’10. ACM.

[29] Cray, Inc., “Cray xmt,” http://www.cray.com/products/xmt/.

[30] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,

N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal,

and P. Dubey, “Debunking the 100x gpu vs. cpu myth: an evaluation of

throughput computing on cpu and gpu,” in ISCA’10.

8888

