S)yRavEa—F44

2012/11/05
INEERIT(12M38195)

Gt 5

“gpuDCI: Exploiting GPUs in Frequent Itemset
Mining”

Claudio Silvestri, Salvatore Orlando
Universit'a Ca’ Foscari Venezia

2012 20th Euromicro International Conference
on Parallel, Distributed and Network-based
Processing

QOutline

Frequent ltemset Mining(FIM)
Challenges

DCl algorithm

The CUDA framework

gpuDCI algorithm
Experiments

Conclusion

QOutline

Frequent Itemset Mining(FIM)
Challenges

DCl algorithm

The CUDA framework

gpuDCI algorithm
Experiments

Conclusion

Frequent ltemset Mining(FIM)

* Goal: Find the sets of items that are bought
together in not less than minimum support.

Ex) Market Basket Analysis

A Milk, Bread
B Milk, Bread, Butter
C Bread

Minimum support=50%
{ Milk}, { Bread }, { Milk, Bread }

{ Milk}, { Bread }, { Milk, Bread } are Frequent patterns in this example,
Because they are occurred at more than 50%

The minimum support is decided by user.

Term / Notation

o [=1/ii > ..., im!:asetof items.

. T) _ fi

* Transaction Database 7': a set of transactions
T'={u t .., ta)

- A Milk, Bread

B Milk, Bread, Butter

C Bread

The rows are transaction.
The columns are a set of items.

QOutline

Frequent ltemset Mining(FIM)
Challenges

DCl algorithm

The CUDA framework

gpuDCI algorithm
Experiments
Conclusion/future work

The challenges in FIM

* Large size of the search space candidate
{Milk}
— Power set of the items {Bread}
. {Butter}
the search space is {Milk, Bread}
. . {Bread, Butter}
exponential size { Milk, Butter}
{Milk, Bread}
{Milk, Bread, Butter}

* Large size of transaction/items
* Small minimum support

The Common techniques

* Apriori principle:
“all the subsets of a frequent set must be frequent”
Ex)
{ Milk, Bread } is frequent =
{Milk} is frequent and {Bread} is frequent

* restricting as much as possible search space
(candidate generation / pruning)

— starting with on short pattern, and increasing the size of
pattern

— If {Butter} is not frequent, frequent sets don’t has a subset
{Butter}.

DCI Algorithm

* |terative algorithm
— search k-size itemsets in k-step

* Multi-strategy algorithm
— Direct Count Phase (DC phase) Customers
A

* Count how many times
candidate itemsets occur in

Dataset. c

* And operation + count

* Vertical layout B O

i X

Milk, Bread
Milk, Bread, Butter
Bread

* Horizontal layout
- I
— Intersection Phase (I phase)
A o O X

O O
O X

DCl is a multi-strategy algorithm for Frequent Itemset
Mining (FIM), characterized by several phases, each exploiting
a different strategy.

Candidates item set is pruned by Apriori principle.
k is incremented at each iteration.

When k is small, this algorithm use DC phase.
When k is large, this algorithm use | phase.

10

Features of DCI Algorithm

* Simple static data structure
* Permits a lot of data parallelization
* Bitwise operations(l phase)

The bitwise operations are And operation and popcount operation

11

QOutline

Frequent ltemset Mining(FIM)
Challenges

DCl algorithm

The CUDA framework

gpuDCI algorithm
Experiments

Conclusion

12

The CUDA framework

Block Block
* Optimal GPU usage shared memory | shared memory |

— Processor utilization

local

memaory

* Resources
threaa

— Blocking operations ALl ; i
* Kernel launches Ehostﬁ global memory |
« Memory transfers i___ <t constant memory |

— Memory access patterns
* Coalesced access to global memory

13

QOutline

Frequent ltemset Mining(FIM)
Challenges

DCl algorithm

The CUDA framework

gpuDCl algorithm
Experiments
Conclusion/future work

14

DCl on GPUs

* The parallelizing strategies
* The data access patterns

— Global memory: Coalescing
— Shared memory: Bank conflict

* The careful management of the GPU memory
hierarchy

15

gpuDCI

* DC phase and candidate generation don’t use

GPU. CPU GPU
— 10 bound Fr——
: DC phase
— Transferring unpruned dataset | === |,
* two parallelization strategies | Na2u
. . Ul generate
— Transaction-wise candidate
— Candidate-wise _ :
datasel S calculate |}
;| support |
store - H 3
i ﬁneq”en,
itemset

When k is small, CPU calculate support with DC

When k is large, CPU generates candidates, and then sends them to GPU.
The generated candidates are pruned by Apriori principle.

16

Transaction-wise i

— po—
T IR o I o
I e '0--0100 RO oo...1110 [000..0100 |
|\~ @ @
R RN AR o 10 RO 001101 [RE)
e SIS 11011 KON 1011100 [R08
— o BN © ®
Sy T © ®
o gy (S N % ™
= T A o ol rro..oo
= RSl 00'...1001 KON 010..0101 [RGN 000..0001
= At (10 (10
RNSY o70..0o11 Kl oot..oooo [N o0o..0000 |
N o0o..0110 [EY 1..0001 [00o..0000 |
SR .. 1101 REBY 100..c010 [EBY 100..0000 |
RNy .. 1000 [o011 [N o0t..0000 |
= (19 (15
s P=a Pa
[001..0111 KeZf110..0100 NN 000..0100
e a ba
Roroibitimeger N I

(a) Intersection

ntersection

global memory

Each thread is
in charge of
an interleaved
portion of the
bitmap.

DCl uses a bitwise

data structure: each retained frequent item is associated
with a bitmap, where the bit in the nth position is equal

to 1iif the nth transaction contains the item.(vertical layout)

17

Transaction-wise count

BLOCK 0 BLOCK 1

Local count[] *~(15) (132)4— - count[] *&(20) (30 4=

reduction S S 203
countf] *~(147)«" - - - count(] **(50 - - -

global memory
LAST TERMINAT BLOC
(Thread |
count[]* (147) (50) (218)* -

BLOCK 2

Global
reduction

COAVACOWARE - e
(b) Count

%5@55 m@%gzg Shared memory
. 2

To avoid bank conflicts, both reduction are performed by using a pair-wise, tree

based, approach make use
of the fast shared memory that is present on each multiprocessor.

18

Transaction-wise
features

* fixed stride of blocks X threads
* thread blocks = GPU multiprocessors

— To ensure that all cores are involved in the
computation

» global memory access should be overlapped
with computation

— to ensure that the cores of each multiprocessor

are active

19

Transaction-wise
problems

The size of transaction is small

* Leave some multiprocessor

idle

* Latency for the global &
memory access

cese

it

96550

32 or 64 bit integer =+

©
9]
(@)
3
(S}
(5)
6)
[0}
(8)
()]
(10)
an
(12)
(13)
(14) [KEH
(15) Rl
|_—"1

[FLYN 110..0100

—

?vf&

trrrroroy

I

V.

A

(a) Intersection

©
()
2)

3)
4)
(5)
(8)
(6]
8)
@
(10)
an
(12)
(13)
(14)
(15)

[FZ3N 000..0100

20

bitmap1|]

bitmap2[]

Candidate-wise intersection

result_bO[]

Other
operations

@©— 100...1010 010...1101 RN 000..1101
HEE - 100...0100 010...1110 K&}

B @ 101...0010 111..0100 e

El ® 8 110..1010 RN 001...1101 [REN 000...1000
@~ , 001...1011 101...1100 RO 001..1000
O\ PRI 1111011 011..1110 [ROR 011..1010
Nl @, SN 701...1101 JNON 110...1100 JNOM 100...1100 |
BTG - m 1)

B o | R 10..1110 JRON 111..0110 JO)

[~ [

|~
ool

.
VO N\ I o) [
e o 1000011 RON

100...0001 |
101...0100

*global memory

(a) Intersection

In this approach each GPU multiprocessor works on the intersection and count
operations related to a different candidate.

The amount of GPU memory required is larger than the one required by the previous
strategy.

Candidate-wise count

BLOCK 0 BLOCK 1

*shared memory **global memory

(b) Count

Some results about the different items is calculated at the same time.

22

Implementation

* Batches of operation
— Send sequances

* Transaction-wise: kernel launch
* Candidate-wise : constant memory
* Basic operation on GPU
— operation 32/64bit logical and
— Popcount: An hardware implementation

— globalReduce / localReduce:
http://www.nvidia.com/object/cuda_sample_data-
parallel.html(Broken link)

23

QOutline

Frequent ltemset Mining(FIM)
Challenges

DCl algorithm

The CUDA framework

gpuDCI algorithm
Experiments

Conclusion/future work

24

Experiment: Dataset

Time (s)

ss0 | === GPUDCIcy, (30 blocks) % Machine
mmmm 9puDClyyy (30 blocks)
s00iL Intel Core2 Quad
250 |- CPU @ 2.66GHz
200 2 + 8 GB of RAM
150 6%
L _ : NVIDIA GTX275 GPU
5‘; I B ‘ A = e +30 MP(240 cores)

accidents . _sox kosrkms:m ;ms:aOK pumsbsarms:‘z'{ioh Der;llms:w T40¢_500 @ 1.4 GHz
Dataset _
+ 896MB device
memory +Cuda

Figure 6. Running time for different datasets device capability 1.3.
* CPU version use more aggressive pruning

algorithm
* gpuDClcw is faster than gpuDClrw

Experiment: Pattern length

Runtime vs pattern length
Dataset: accidents

50 700
gpuDCleyy (30 blocks) ——
45 9%-..a gpuDClty (30 blocks) —=— | gog
40 =, DCI - g
35 | o . # candidates e | ggp 5]
s 80f) A Ja0 3
= I — —300%
15 e % B {200 §
& P ., Q
10k Ny .
g U= 100
5 o o A %l
0 S i ———— N 0
2 4 6 8 10 12 14 16

Pattern length

Figure 7. Running time for different pattern
length on two different datasets

* gpuDCI has advantage of nearly one order

* Running time is roughly proportional to the
number of candidates

26

Experiment: Dataset size

Scalability
T10 dataset - ms = 5%

800 [~ 5pUDCIoy (@0 blocks) ——
500 L 9PuDClny (30 blocks) ——-x—
DCI ot
& 400 + .
g 300 |
E
200 | .
100
0 };_—:7--_?7--_ — c-q‘wv----—r-——-———---—n-----

T T T
0 2 4 6 8 10 12
transactions (x 106)

(a) Increasing dataset size.
* linear with respect to the dataset sizes
* gpuDClcw needed to exploit many caches.

27

Experiment: Multiprocessors

Scalability
Accident dataset - ms = 15%

140
i gpuDCloyy —+—
120 x gpuDClyy -
\
100 &

Time (s)

80
so»\

40 \

20 F e — |
0 T T T T T T T T
0 10 20 30 40 50 60 70 80 90
GPU Thread Blocks

(b) Increasing number of thread blocks.

* Multiprocessors are not under scheduled due
to memory access latency (gpuDClcw)

* The number of transactions is not sufficient.
(gpuDClrw)

The number of multiprocessors is 30.

28

QOutline

Frequent ltemset Mining(FIM)
Challenges

DCl algorithm

The CUDA framework

gpuDCI algorithm
Experiments
Conclusion/future work

29

Conclusion

* gpuDCI : a parallel algorithm, which exploits
GPUs to compute frequent itemset.
* Two parallelization strategies

— The candidate-wise approach is faster but uses
more memory.

* The experiments showed that using the GPU
gives clear advantages.

30

Future work

* Some other technique for DCI
* Expansion to the frequent closed itemset

frequent closed itemsets are a condensed representation of
frequent itemsets that can be directly computed from the
data.

31

