グリッドコンピューティング

2012/11/05 小島諒介(12M38195)

論文

"gpuDCI: Exploiting GPUs in Frequent Itemset Mining" Claudio Silvestri, Salvatore Orlando Universit`a Ca' Foscari Venezia

2012 20th Euromicro International Conference on Parallel, Distributed and Network-based Processing

- Frequent Itemset Mining(FIM)
- Challenges
- DCI algorithm
- The CUDA framework
- gpuDCI algorithm
- Experiments
- Conclusion

- Frequent Itemset Mining(FIM)
- Challenges
- DCI algorithm
- The CUDA framework
- gpuDCI algorithm
- Experiments
- Conclusion

Frequent Itemset Mining(FIM)

• Goal: Find the sets of items that are bought together in not less than *minimum support*.

Ex) Market Basket Analysis

Customers	products	
Α	Milk, Bread	
В	Milk, Bread, Butter	
С	Bread	

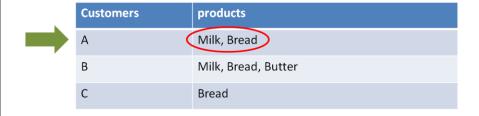
Minimum support=50% { Milk}, { Bread }, { Milk, Bread }

{ Milk}, { Bread }, { Milk, Bread } are Frequent patterns in this example, Because they are occurred at more than 50%

The minimum support is decided by user.

Term / Notation

- $I = \{i_1, i_2, ..., i_m\}$: a set of items.
- Transaction *t* : a set of items.
- Transaction Database T: a set of transactions $T = \{t_1, t_2, ..., t_n\}$.



The rows are transaction.

The columns are a set of items.

- Frequent Itemset Mining(FIM)
- Challenges
- DCI algorithm
- The CUDA framework
- gpuDCI algorithm
- Experiments
- Conclusion/future work

The challenges in FIM

- Large size of the search space
 - Power set of the items
 the search space is
 exponential size

candidate

{Milk} {Bread} {Butter} {Milk, Bread} {Bread, Butter} { Milk, Butter} {Milk, Bread} {Milk, Bread, Butter}

- Large size of transaction/items
- Small minimum support

The Common techniques

• Apriori principle:

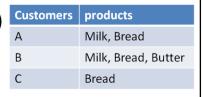
"all the subsets of a frequent set must be frequent" Ex)

{ Milk, Bread } is frequent → {Milk} is frequent and {Bread} is frequent

- restricting as much as possible search space (candidate generation / pruning)
 - starting with on short pattern, and increasing the size of pattern
 - If {Butter} is not frequent, frequent sets don't has a subset {Butter}.

DCI Algorithm

- Iterative algorithm
 - search k-size itemsets in k-step
- Multi-strategy algorithm
 - Direct Count Phase (DC phase)
 - Count how many times candidate itemsets occur in Dataset.
 - Horizontal layout
 - Intersection Phase (I phase)
 - And operation + count
 - Vertical layout



	Milk	Bread	Butter
А	0	0	X
В	0	0	0
С	X	0	\times

DCI is a multi-strategy algorithm for Frequent Itemset Mining (FIM), characterized by several phases, each exploiting a different strategy.

Candidates item set is pruned by Apriori principle.

k is incremented at each iteration. When k is small, this algorithm use DC phase. When k is large, this algorithm use I phase.

Features of DCI Algorithm

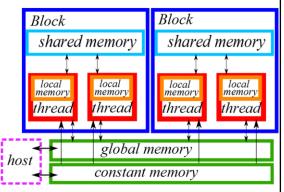
- Simple static data structure
- Permits a lot of data parallelization
- Bitwise operations(I phase)

The bitwise operations are And operation and popcount operation

- Frequent Itemset Mining(FIM)
- Challenges
- DCI algorithm
- The CUDA framework
- gpuDCI algorithm
- Experiments
- Conclusion

The CUDA framework

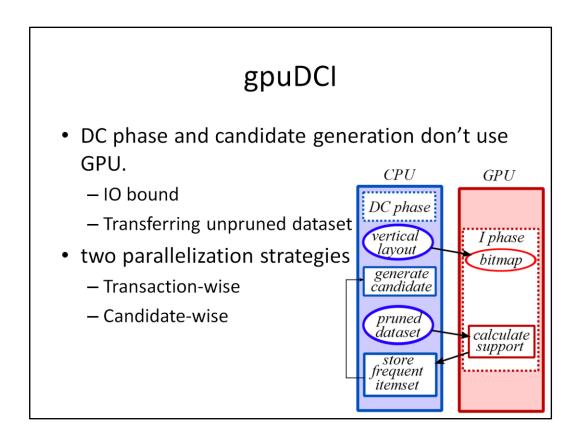
- Optimal GPU usage
 - Processor utilization
 - Resources
 - Blocking operations
 - Kernel launches
 - Memory transfers
 - Memory access patterns
 - Coalesced access to global memory



- Frequent Itemset Mining(FIM)
- Challenges
- DCI algorithm
- The CUDA framework
- gpuDCl algorithm
- Experiments
- Conclusion/future work

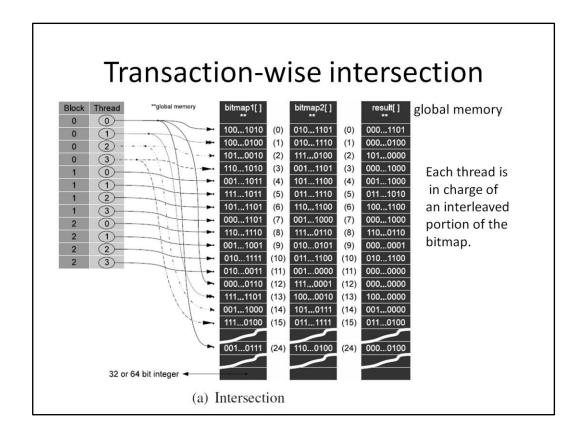
DCI on GPUs

- The parallelizing strategies
- The data access patterns
 - Global memory: Coalescing
 - Shared memory: Bank conflict
- The careful management of the GPU memory hierarchy



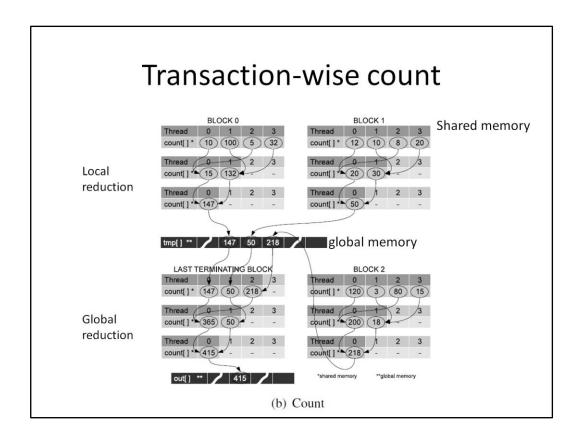
When k is small, CPU calculate support with DC

When k is large, CPU generates candidates, and then sends them to GPU. The generated candidates are pruned by Apriori principle.



DCI uses a bitwise

data structure: each retained frequent item is associated with a *bitmap*, where the bit in the *nth* position is equal to 1 iif the *nth* transaction contains the item.(vertical layout)



To avoid bank conflicts, both reduction are performed by using a pair-wise, tree based, approach make use

of the fast shared memory that is present on each multiprocessor.

Transaction-wise features

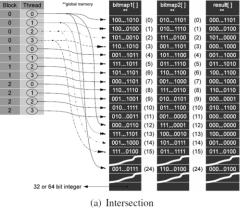
- fixed stride of blocks × threads
- thread blocks \leq GPU multiprocessors
 - To ensure that all cores are involved in the computation
- global memory access should be overlapped with computation
 - to ensure that the cores of each multiprocessor are active

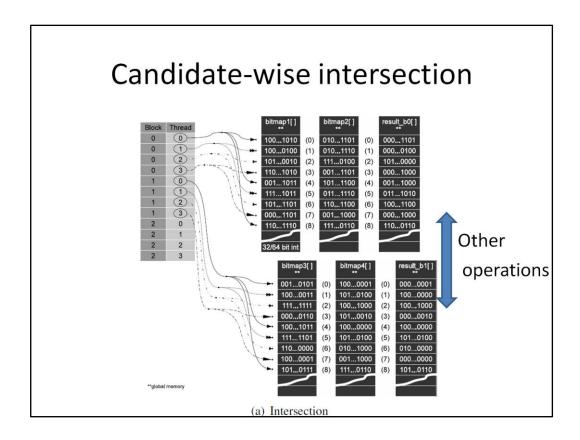
Transaction-wise problems

The size of transaction is small

• Leave some multiprocessor idle

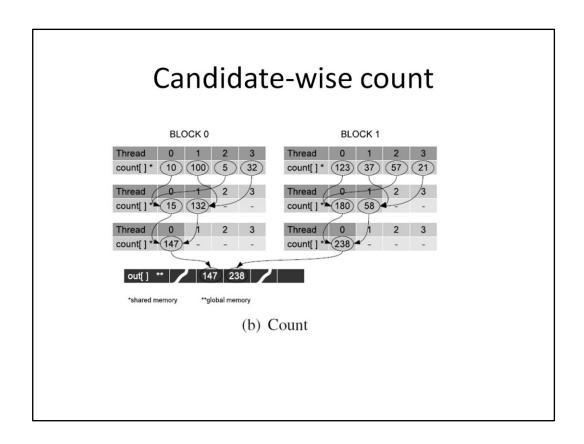
 Latency for the global memory access





In this approach each GPU multiprocessor works on the intersection and count operations related to a different candidate.

The amount of GPU memory required is larger than the one required by the previous strategy.



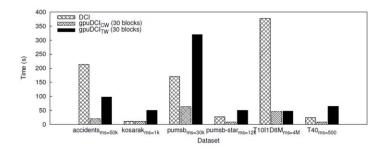
Some results about the different items is calculated at the same time.

Implementation

- Batches of operation
 - Send sequances
 - Transaction-wise: kernel launch
 - Candidate-wise : constant memory
- Basic operation on GPU
 - operation 32/64bit logical and
 - Popcount: An hardware implementation
 - globalReduce / localReduce: http://www.nvidia.com/object/cuda_sample_dataparallel.html(Broken link)

- Frequent Itemset Mining(FIM)
- Challenges
- DCI algorithm
- The CUDA framework
- gpuDCI algorithm
- Experiments
- Conclusion/future work

Experiment: Dataset



Machine Intel Core2 Quad CPU @ 2.66GHz + 8 GB of RAM

NVIDIA GTX275 GPU +30 MP(240 cores) @1.4 GHz + 896MB device memory +Cuda device capability 1.3.

Figure 6. Running time for different datasets

- CPU version use more aggressive pruning algorithm
- gpuDClcw is faster than gpuDCl™

Experiment: Pattern length

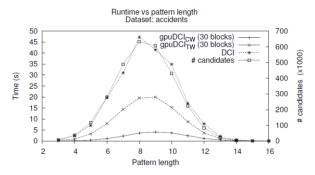
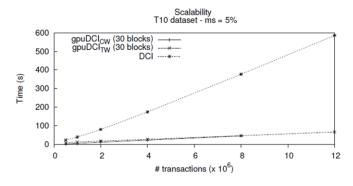


Figure 7. Running time for different pattern length on two different datasets

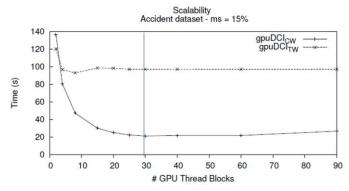
- gpuDCI has advantage of nearly one order
- Running time is roughly proportional to the number of candidates

Experiment: Dataset size



- (a) Increasing dataset size.
- linear with respect to the dataset sizes
- gpuDClcw needed to exploit many caches.

Experiment: Multiprocessors



(b) Increasing number of thread blocks.

- Multiprocessors are not under scheduled due to memory access latency (gpuDClcw)
- The number of transactions is not sufficient. (gpuDCl_{TW})

The number of multiprocessors is 30.

- Frequent Itemset Mining(FIM)
- Challenges
- DCI algorithm
- The CUDA framework
- gpuDCI algorithm
- Experiments
- Conclusion/future work

Conclusion

- gpuDCI: a parallel algorithm, which exploits GPUs to compute frequent itemset.
- Two parallelization strategies
 - The candidate-wise approach is faster but uses more memory.
- The experiments showed that using the GPU gives clear advantages.

Future work

- Some other technique for DCI
- Expansion to the frequent closed itemset

frequent closed itemsets are a condensed representation of frequent itemsets that can be directly computed from the data.