
Energy Efficient Fault Tolerance for High Performance Computing (HPC) in the
Cloud

Ifeanyi P. Egwutuoha∗, Shiping Chen†, David Levy∗, Bran Selic∗ and Rafael Calvo∗
∗School of Electrical & Information Engineering, The University of Sydney, Australia

Email: {ifeanyi.egwutuoha, david.levy, bran.selic, rafael.calvo}@sydney.edu.au
†Information Engineering Laboratory, CSIRO ICT Centre, Australia

Email: shiping.chen@csiro.au

Abstract—With cloud computing, a large number of Virtual
Machines (VMs) can be provisioned to form high performance
computing (HPC) to run computation-intensive applications
using the Hardware as a Service (HaaS) model. Fault Tolerance
(FT) for HPC in the cloud is increasingly a challenging
issue, because any fault during the execution would result
in re-running the application, which will cost time, money
and energy. There has been a significant increase in energy
consumption of HPC systems in cloud as a result of rerunning
application and fault tolerance (e.g., redundant computing). In
this paper we present energy efficient fault tolerance for HPC
in the cloud. We develop a generic FT algorithm for HPC
systems in the cloud. Our algorithm uses proactive process-
level migration approach, however it does not rely on a spare
node or redundant computing prior to prediction of a failure.
Our experimental results obtained from a real cloud execution
environment show that the energy utilization for HPC in the
cloud while providing fault tolerance can be reduced by as
much as 30%.

Keywords-HPC, cloud computing, HaaS, proactive fault tol-
erance, computation-intensive applications, process-level mi-
grations.

I. INTRODUCTION

Cloud computing [1] is a revolutionary computing

paradigm for storing data and running applications, includ-

ing computation-intensive applications. It promises numer-

ous benefits, which includes, wide spread of servers across

the different location for disaster recovery and no upfront

investments. Cloud computing also reduces development

time, staff (e.g., administrators), hardware which results to

significant cost saving. It is expected that more computation-

intensive applications will be run in HPC system in the

cloud.

There are two major key players in cloud computing:

cloud providers and cloud users. Cloud providers (e.g.,

Baremetalcloud [2] and Amazon [3]) provide the hardware,

VMs, etc as services that can be subscribed to and consumed

on a pay-as-you-go basis without contracts. Cloud users are

organizations or individuals (e.g., scientists) who subscribe

to a selection of cloud services. It allows them either to

operate their IT at reduced costs in the cloud or to create

products (or perform experiments) that would be difficult

without the possibilities inherent in the cloud. Figure 1

illustrates and shows the level of involvement of the key

cloud players on HaaS architecture.

����

����	�

����	��

�	�����	���
���

�������	����
������������������ !"

����#

!��
���$��%���

&���%�	��

����'''

!��
���$��%���

&���%�	��

����'''

!��
���$��%���

&���%�	��

�����

!��
���$��%���

&���%�	��

(��%)�$�����
����� !

�
	�
�*	+'��,�	�%�
%-�

������	��*	'+'��
.��	�	%�$$�)�-

Figure 1. HaaS architecture

Based on the services provided by the cloud service

provider, clouds fall into four competing categories [1], [4],

[25] which are: Hardware as a Service (SaaS), Infrastructure
as a Service (IaS), Platform as a Service (PaaS), and
Application as a Service (AaaS).

This work focuses on Hardware as a Service (HaaS),
therefore, we briefly describe HaaS. Cloud provider ba-

sically rent out bare-bone hardware (e.g., server/host and

data). An example of cloud provider that offers HaaS is

Baremetalcloud [2]. The cloud users connect to this ser-

vice via the Internet, install and configure (e.g., VMs) the

server they leased. Cloud users choose HaaS, because it

gives them full control on the server, operating system,

and software stack, as well as the number of VMs they

execute on it. Research communities can easily lease HaaS

for computation-intensive and/or data-intensive applications

and configure HPC systems according to their needs. Con-

sequently, computation-intensive applications that were tra-

ditionally run on HPC systems can now be executed in the

2013 IEEE Sixth International Conference on Cloud Computing

978-0-7695-5028-2/13 $26.00 © 2013 IEEE

DOI 10.1109/CLOUD.2013.69

762

cloud. However, Cloud service providers do not provide FT

to users at this level at (HaaS).

Our work focuses on providing energy-efficient fault

tolerance for HPC systems in the cloud when HaaS is

leased. This work is inspired by [5] and it is based on

the algorithm we proposed in [6], [26]. In this work we

use a proactive technique to provide FT through process-

level migrations. Our implementation allows computation-

intensive applications with MPI implementations running

in a cloud to complete its execution with reduced energy

consumption in the presence of faults. Our approach does

not require an availability of spare nodes ahead of failure

prediction [5] or redundant [24] computing.

In the next Section we present an analysis of failures

in hpc systems. In Section III we present proactive fault

tolerance for HPC systems in clouds, while Section IV

presents design and implementation. Proactive fault toler-

ance algorithm and evaluation are presented in Section V and

Section VI respectively. Section VII discusses related work.

Finally, some conclusions and future work are presented in

Section VIII.

II. ANALYSIS OF FAILURES IN HPC SYSTEMS IN THE

CLOUDS

Fault tolerance is, however, one of the major challenges

that cloud services for HPC applications face and HPC

system in the cloud is not an exemption. They are three

primary failures that occur in HPC in the cloud: hardware

failure, VM failures and computation-intensive application

failure. We first analyzed the failures, which occurred in

HPC systems. We use large set of failure data, the computer

failure data repository (CFDR) released by usenix [7],

comprising the failure statistics of 22 HPC systems (18

clusters, 3 SMP and 1 NUMA). The data repository contains

failure data of the HPC systems recorded for a period

of 9 years at Los Alamos National Laboratory (LANL)

production systems. To analyze the failure data, we selected

7 HPC systems from the failure data repository. The system

selected consists of 5 clusters with highest number of totals

CPUs and/or compute nodes, 1 Symmetric MultiProcessing

(SMP) system with highest number of CPUs, and the only

Non-Uniform Memory Access (NUMA) system on the data

repository. Figure 2 shows the analysis of failure rate of

HPC systems with their system IDs. We can obtain from

Figure 2 that more than 60% of the recorded failures for

HPC systems are hardware failures.

The recent studies [8], [9], [23] and data sets available

[10], show that hardware (processors, hard disk drive, inte-

grated circuit sockets, and memory) causes more than 50%

of the failures on HPC systems. Their works also revealed

that:

1) Failure rate is almost proportional to the number of

CPUs (failure increases with the number of nodes

and/or processors). As the number of processors and

����

����

����
����

���� 	
��

�
��

����
����

���� ����

�	��

���
��������

����

���
��� ���

����
����

���

����

����

����

����

����

	���

����

����

���

	���� ����� ��
	� ��
	� ����� ��	� ���

�
� �	� ����� ����� ���� �� ��

�� �	� ��� �
� ��� ��� ���

�
���
��
��
��
��
�
��
�
�
�
��
��
��
�
��
��
��
�

�����
�
�� ���
�

����� �

��� !���� "�#!���� ����������������$��!��%����&� �������� �

Figure 2. Failure rate of HPC systems with different CPUs and nodes

virtual instances increase, with associated increases in

communication links and integrated circuits sockets,

the likelihood of failure rises.

2) The intensity of the workload affect the failure rate,

hence, failure rate increases with increase in the in-

tensity of workload, and

3) There exist a time varying correlation with failure rate

[11]. For example, HPC system that is seasonally used

by students to run course assignment with submission

deadlines.

It has been projected that a system with 100,000 proces-

sors will experience a processor failure every few minutes

[12]. A failure occurs when a hardware component is broken

and needs replacement or a node/processor is halted or

forced to reboot; or software has failed to complete its run.

In this case, an application utilizing the failed component

will fail. In addition, HPC applications deployed in cloud

environments run on VMs, which are more likely to fail due

to resource sharing and contention. Therefore, fault tolerance

(FT) technology is particularly important for FT can avoid

restarting, reducing thereby operational costs and energy

consumption.

III. PROACTIVE FAULT TOLERANCE FOR HPC SYSTEMS

IN THE CLOUDS

A reactive FT technique is commonly used for

computation-intensive applications in classical grid comput-

ing through checkpoints and restart. This approach does not

actually consider the current state of the system; hence it

does not rely on the dynamic runtime of the system in

order to predict future failure. However, it usually increases

the wall clock execution time of HPC applications thereby

increases the energy consumption. Reactive FT techniques

allow computation-intensive applications (which may take

763

hours or weeks to complete) to log their intermediate results

and states at checkpoints during their execution. Once a

failure occurs, the application can be restarted from the

checkpoint prior to the point of failure, rather than from

the beginning. The frequency at which a component or

application fails is an important measure in FT. It has been

predicted that in peta-scale computing the Mean Time To

Interrupt (MTTI) is short; i.e., an application running on a

peta-scale system will be interrupted by failure more often,

with the MTTI decreasing as the reciprocal of the number

of nodes [8], [12].

Proactive FT uses an avoidance mechanism to tolerate

faults. It accesses the monitored parameter to determine if

it may impose risk on the system that it may not deliver its

promised services. It achieves this by relying on the system

log and health monitoring facilities to predict future failure.

When future failure is predicted, actions are taken to mitigate

the effects of the failure. The system log (e.g., Reliability,

Availability, and Serviceability (RAS)), and health monitor-

ing provide information about the hardware/software state

[13]. Health monitoring of hardware has recently attracted

attention in fault tolerance communities because sensors are

installed on modern hardware to monitor, for example, the

processor temperature and fan speeds. This information is

used to predict future failures. Proactive FT will play an

active role in fault tolerance. The accuracy of prediction

algorithms has been discussed on [14]. We used rule-based

failure prediction technique to predict future failure.

In our work, we focus on Message Passing Interface

(MPI) [15] applications. MPI is a parallel programming

standard in which tasks executing in parallel on differ-

ent processors/VMs can exchange data via messaging. It

provides two modes of operation running or failed. MPI

applications, such as GROMACS (GROningen Machine for

Chemical Simulations) and molecular modeling applications

will greatly benefit from HPC systems in the cloud because

of its scalability and the availability of reliable implementa-

tions as shown in [16].

IV. DESIGN AND IMPLEMENTATIONS

Our Energy efficient fault tolerance for High Performance

Computing (HPC) in the Cloud requires four types of

modules:

1) Node monitoring module with an lm-sensor

2) A rule-based failure predictor

3) Migration policy module and

4) The controller module.

The primary goal of this design and implementation is to

provide a FT for HPC in the cloud with energy efficient

capability. We have considered how to achieve this without

significant impact to performance of the HPC system. Fig-

ure 3 shows the fundamental architecture of our proposed

solution. Xen hypervisor [17] is virtualization software,

which is installed on each of the host/server. This allows

multiples paravirtualized OSs to be installed on each host.

The Domain0 (the host OSs) provides the infrastructure

for the four modules monitoring, prediction, control, and

migration policies. They run the management console and

have special privileges to access the hardware. The backend

and FTDaemon communicate to the hardware through the

drivers. The DomU0, . . . , DomUn (unprivileged domains)

are the guest VMs(compute nodes). The guest VMs is

configured to form a cluster. The guest VMs executes the

computation-intensive applications. In the following section,

we explain the FT modules in details.

�'��

�������

�	
��	����
���	

�	
��	�����
���	

������

&�

��
���������	��

��������������������������
�� !�

�	���

!���
���������	

&�	
���

�	�����

!���
���������	

&�	
���

�	�����

!���
���������	

&�	
���

�	��

!���
���������	

&�	
���

������������
�
�� !

�	���
�������

��	������������������	
�	 �
!������������	
�

�	��

�������

�	
��	����
���	

�	
��	�����
���	

������

&�

��
���������	��

��������������������������
�� !�

�	���

!���
���������	

&�	
���

�	�����

!���
���������	

&�	
���

�	�����

!���
���������	

&�	
���

�	��

!���
���������	

&�	
���

������������
�
�� !

�	��
����������

Figure 3. Fundamental architecture of our proposed solution

A. Node monitoring with lm-sensors

Node monitoring with lm-sensors Lm-sensors is an open-

source software tool for monitoring the health of modern

computers. Modern processors are built with sensors that can

be used to monitor CPU temperature, fan speeds, memories

and other parameters [18]. We use the Lm-sensors package

that provides tools, libraries, and drivers for monitoring these

parameters. The libsensors library is used to access the

values of the monitored parameters. It provides user-space

support for the hardware monitoring drivers and console

tools that report sensor readings. Lm-sensors allows easy

setting of sensor limits [19]. We selected lm-sensors because

most HPC systems run Linux, and lm-sensors uses Linux OS

kernel drivers. We used lm-sensors to develop an FTDaemon

that can be easily deployed on an HPC system in the cloud.

764

Our methods, however, may easily be generalized to other

OS platforms.

To centrally monitor the health of all the nodes in an

HPC system with over 100,000 processors would impose

heavy overhead on the network as well as on the HPC

system. Therefore, we have designed our system to reduce

the monitoring overhead, by having each node monitor its

hardware by periodically reading its parameters. In our

prototype, the FTDaemon running on each computing node

collects lm-sensors information (e.g., processor temperature)

every 600 milliseconds (the user can also set this interval to

a higher value). However, FTDaemon uses more computer

resources if the frequency of the collection of the monitored

parameters is high. The information can be published to head

host if the user activates this feature. An alarm is triggered

whenever the monitored parameters exceed the maximum

set values. The alarm prompts the reading of the sensors

values and computation to determine if failure is likely to

occur.

B. Rule-based predictor

The FTDaemon runs on each node in the user space.

It uses rule-based prediction techniques to predict failure,

based on the history of past failures in the system log and the

maximum operating values obtained from the manufacturer’s

data sheet. The future failure situation is determined by

periodically reading the sensors values and CPU utilization.

Figure 4 illustrates the predictor model. The predictor has a

vector input of the four parameters: temperature T, voltage

V, fan speed F, and CPU utilization C. We assigned weight

values to the read parameter values in order to compute

the systems operating state. The current state are compared

against the set maximum operating state to determine if the

current operating state is failure prone. For example, we

assigned weights of 1, 2, and 3 to normal, warning, and

critical values respectively.

!"

#"

$"

%"

%&'(������� �	

Figure 4. Rule-based predictor model

The weights assigned are used to perform the calculation

using the following equation, which we have derived.

αc =
n∏

i=1

Ti.Fi.Vi.Ci +Kc (1)

where;

αc =

⎧⎨
⎩

critical state for |αc| > 24
warning state for |αc| = 24
normal state for |αc| < 24

(2)

The result αc is obtained by computation of current

sensors values and CPU utilization. We associate the input

valuables with weight as already state, therefore Ti ∈ [1,

2, 3], Fi ∈ [1, 2, 3], Vi ∈ [1, 2, 3] and Ci ∈ [1, 2, 3].

For example, after reading the sensor’s values and CPU

utilisation, if the weight of Ti = 3, Fi = 3, Vi = 2 and Ci =

2. Hence, the product of Ti.Fi.Vi.Ci = αc = 3x3x2x2 = 36.

Therefore, αc is critical and immediate action is required.

We generalize the result αc in (1). The result αc is used to

compare with the maximum set thresholds to determine if a

failure is likely to occur with the present state. Equation (2)

is the threshold 24 which we used based on the system log

and manufacturer’s data sheet. We introduced the constant

Kc which can be used to improve the accuracy of prediction.

In our implementation, we set Kc = 0. The migration policy

is activated when the system is operating at critical state.

The overhead due to failure predictor on the computation-

intensive application was considered by recording the time

to complete execution of the application while running

FTDaemon, as well as when FTDaemon is turned off. We

observed that there is no significant impact on the system

when FTDaemon is running.

C. Migration policy

The goal of the proactive FT policy is to reduce the impact

of failure on the execution of a computation-intensive appli-

cation while computation-intensive complete execution with

minimum energy utilization. We defined and implemented

four polices:

1) Lease an additional node,

2) Relinquish the unhealthy node

3) Publish the critical state to the head host

4) Inform the system administrator.

When future failure is predicted, the FTDaemon can

proceed either to lease an additional node or to inform the

administrator. The default policy is to lease an additional

node and to publish the details of the newly leased node to

the head host. The head host maintains a database of all hosts

and compute nodes (VMs). The functionality of the head

host is transferred to newly leased node in the event of head

host being predicted to fail. The relinquish the unhealthy

host policy is executed after process-level migration of the

computation-intensive applications from the unhealthy to the

newly leased node.

765

D. The controller module

The controller module implements the policies listed

above. This is the module for leasing, migrating processes

and relinquishing of the host. A controller module is in-

stalled on all the hosts; we call this approach a decentralized

technique. The controller module has the facility to lease

and execute the process-level migration. The unhealthy host

initiates the migration when it received message from its

FTDaemon to do the migration. The details of the compute

nodes to migrate their process to is also provided by the

FTDaemon. We prefer this approach (decentralized tech-

nique) to the head host (central control) approach because

all the information necessary to make decision resides on

each host. Moreover, head host approach will utilize more

bandwidth compare to decentralized approach. This allows

immediate action by the host that is failure prone. The

FTDaemon invokes this controller module when a failure is

predicted. The controller module algorithm shown is shown

in algorithm 1. The protocol of the approach is summarized

below:

1) It determines the number of the VMs on the unhealthy

host by querying the information centre on host.

2) It also obtains the process ID that are running on the

unhealthy VM from the information centre on the host.

3) It proceeds to lease an additional host from the service

provider by providing all the details required (e.g., user

name and password)

4) Starts VMs on the newly leased host based on the

number of the VMs running on the unhealthy host

5) Perform process-level migration of the computation-

intensive applications.

6) It relinquish the unhealthy node and

7) Publish details of the newly leased host and the VMs

running on it to the head host.

V. PROACTIVE FAULT TOLERANCE ALGORITHM AND

ANALYSIS

In this section, we describe our algorithm, and provide

a quantitative analysis of its properties. The current sensors

information is used to determine the state of system. The

algorithm predicts future failure, and takes action to reduce

the impact of failure on the applications. The actions include

leasing of additional node from service provider, process-

level migration of the applications, and publishing of the

warning state to the head host. Finally, it also relinquishes

the unhealthy node and installs an FTDaemon on the newly

leased host. The algorithm is given as algorithm 2

A. Energy consumption analysis

Model 1:
We first analyze the total energy utilization of the proac-

tive FT algorithm used in [5], [24], when a spare host

is provisioned ahead of prediction of failure or redundant

computing technique is used to provide FT to HPC systems.

� ����������	
�����	��	�������	��������

�� �� ���)���/���)������������

�� ������)����*���0�����)����������)�����������������	�

� ��	�����	�

1� ���� �� �������/����������������	��������������	��������

2� �����������	���

3� ������	���

4� ��� ��
�������	�������������	�� �	
�

5� ������� �0����������������������	��������������	�����

� � ��	�����������	�����	�

��� 	���!������0������!�		

�"� �����#$�%�	

�&� ��'�������6����������
�
� ���

�1� ���������

�2� ��	�����

�3� �����������	��0�������(��	���������

�4� ���������	�����	����6�������	�

 �'���������)���������������

Energy E, is equal to the product of power P and time T.

E = P x T. The total energy utilization for providing FT

to computation-intensive application in the cloud with this

model is expressed with the following equation:

Total energy critical state Te = Eh + Es (3)

where;

Te =

n∑
i=1

Ehi +

k∑
j=1

Esj (4)

• Ehi is the energy utilization of n computation hosts

• Esj is the energy utilization of k spare nodes.

Analyzing this model, the energy utilization in running

computation-intensive applications in cloud with fault toler-

ance provided will be relatively high, due to the energy uti-

lization of the spare nodes or redundant computing. Based on

the server details obtained from the HaaS service provider,

we assumed that each host/server consumes 150Watt. We

assume that at least one spare node is available base on

the [5, 24]. Table 1 shows the sampled analysis and energy

utilization for each model during the execution of HPL

application.

Model 2:
A configuration is established for which the host is not

operating at critical state (as described above). In this state,

there is no need to keep a spare node. From observations and

records, HPC systems operate in this region most of the time,

except when failure is about to occur (when a host enters its

critical state). Only in this state does the controller model

lease an additional node from the service provider as well

as relinquish the unhealthy one. Using the above equation

(1), the energy utilization of the spare node is close to

766

�� # FTDaemon running on all host Hi (i = {0, 1,…, n});

�� # Monitored parameters: α = {temperature, fan speed, voltages and

�� # CPU utilization};

�� # Variables => current operating state {αw}: weight (1, 2, 3);

�� # where: 1 = operating at normal value of the parameter

�� # 2 = operating at max value of parameters

	� # 3 = operating at critical value

� # For host Hi;

�� FTDaemon:

��� begin
��� record the ipaddress of all guest VMs active on host H i

��� read & compute:

��� while TRUE do;
��� read parameters α
��� assign weight to α
��� compute for αc;

�	� if (αw < 24) then;
�
� break; # exit loop

��� elseif (αw = 24) then;

��� record the max α;

��� delay;

��� else
��� check if alarm trigger is received;

��� end while;
��� controller module:

��� begin
�	� lease additional node;

�
� process-level migration

��� install FTDaemon on newly leased node;

��� publish details of newly leased node to head host;

��� relinquish the unhealthy node;

��� end
��� end

 ������������������

zero, because the unhealthy host is relinquished immediately

after the process-level migration of the application from the

unhealthy to the newly leased one. Our experimental results

show that that provision of a host and process migration

takes few seconds on our test system.

Energy utilization of spare host, Esj =
k∑

j=1

Esj ≈ 0 (5)

Therefore;

Total energy utilization of computation with FTDaemon

Te =
n∑

i=1

Ehi (6)

VI. EVALUATION

We have experimented with the characteristics of our

FT design in a real cloud environment. We leased five

servers from a HaaS cloud service provider [2]. Each com-

pute server/host had the following configuration: Dual core

processor (2 x 3.5GH), 4GB memory, PC3200 3.5 SCSI

1000rpm; and 100GB network drive using iSCSI SAN. We

installed Xen hypervisor [17] runs on each host. Xen hy-

pervisor is an open source, industrial standard virtualization

technology. Each host is configured to host 1 to 7 VMs. Each

VM is configured to have one processor, 250MB memory

and 5GB hard drive. With the five host we leased, we formed

a cluster of 2, 4, 8, 16 and 32 nodes for testing of our

algorithm. We installed OpenMPI [27] on each VM. We used

OpenMPI process-level migration tool available in OpenMPI

implementation.

We conducted two sets of experiments with the nodes

cluster to determine the CPU utilization of our FTDaemon;

and the functionality of our algorithm. We used the power

rating obtained from the service provider to calculate the

energy utilization based on our solution and compare it

with the solution proposed in [5] and redundant computing

[24]. The energy rating from the manufacture data was

used because we could not have physical access to the

HaaS provided measure the utilization with wattmeter. We

ran a real HPC application, the High Performance Linpack

benchmark (HPL) [20] in an OpenMPI environment. We

executed the HPL application with five different problem

sizes of 2000, 4000, 6000, 8000 and 10000 on 2, 4, 8, 16 and

32 nodes respectively. Table 1 summaries the relationship

between the problem sizes and the VMs numbers.

Table I
HPL WITH DIFFERENT PROBLEM SIZES AND NODES

Problem Spare Energy Energy
size VM Host host utilization utilization with

(sh) with sh (kJ) FTDaemon (kJ)

2000 2 1 1 111 55.5

4000 4 2 1 185.85 123.9

6000 8 3 1 379.8 284.85

8000 16 4 1 918 734.4

10000 32 5 1 1926.9 1605.75

The wall clock execution time of each the problem size

was recorded while we execute process-level migration

with spare nodes and with the FTDaemon (our proposed

solution). The result obtained from the experiments is shown

in figure 5. This helps to determine the energy utilization

of cluster when a spare node is positioned ahead of the

prediction.

To determine the CPU utilization of FTDaemon on each

host, we profile the CPU utilization. We observed that there

is no significant impact on the system due to the FTDaemon.

In the prototype implementation, we monitored the real-

time CPU usage; CPU temperature and CPU utilization

as system reliability metrics with the FTDaemon running

on each host. The variation of CPU temperature and CPU

utilization (work load) affects system reliability, degrades

performance, and causes failure of CPUs and circuits [18],

[9]. We simulated high temperatures on the CPU and high

CPU utilization with the running HPL. We also recorded

767

the time to lease and provision a newly leased node for

migration of the VMs. The time to lease and provision a

host with our pre-configured OS from Baremetalcloud [2] is

about 18 seconds, this time may varies if the provider allows

their unleased HaaS to be on hibernation state. We assume

that the time after failure prediction is enough to lease a host

and to perform process migration. The performance results

are shown in Figure 5.

From the experimental results, we can observed that

there is a signification reduction on the energy utilization

as shown in figure 5. We also observed that our algorithm

significantly improved application FT at a reduced energy

utilization compared to more commonly used approaches.

The energy utilization HPC system in the cloud can be

significantly reduced by 30% with our algorithm.

0.2 0.4 0.6 0.8 1

·104

0

500

1,000

1,500

2,000

HPL problem size

E
n
er

g
y

u
ti

li
za

ti
o
n

in
k
J

with spare

FTDaemon

Figure 5: Energy utilization of FT with spare node compared

with FTDaemon.

VII. RELATED WORK

Fault tolerance techniques for HPC applications with MPI

implementation can be classified into two major groups: (a)

reactive FT techniques and (b) proactive FT techniques. A

reactive FT technique tends to minimize the impact of failure

on the computation-intensive applications in the presence of

failure of one or more computational nodes. A good example

of reactive FT is checkpoint and restart. Checkpoint and

restart allows computation-intensive problems that may take

long time to execute in HPC systems to be restarted from the

point of failure in the event of errors or/failures. Checkpoint

and restart techniques have received a considerable attention

in the past [21], [22], [23]. Their works tend to reduce the

overhead caused by checkpoint and restart FT techniques to

computation-intensive applications. However, recent publi-

cations [12], [9] show that with steadily increasing numbers

of components in todays HPC systems, applications running

on HPC systems may not be able to achieve meaningful

progress with the basic checkpoint and restart approach.

Redundant computing has recently been proposed [24] to

reduce wall-clock time of computation-intensive application

running in HPC systems in the presence of failure. In

redundant computing, compute nodes are replicated twice.

The replication of the compute nodes increases the energy

utilization and and overhead while running computation-

intensive application in HPC systems in the cloud. Redun-

dant computing is however not energy efficient FT.

Proactive FT mitigates the effect of failure, during the

lifetime of a computation-intensive application by taking

proactive measures. It uses failure prediction techniques to

predict future failures. The commonly used failure prediction

techniques include analysis of the RAS log, and monitoring

the hardware parameters such as processor temperature, fan

speeds and voltages. They have been significant improve-

ment to accuracy and time lapses before the actual failure

occurred is enough to do process-level migration.

They are recent works on proactive FT, which uses live

process-level migration and VM migration techniques [6],

[5]. VM migration techniques has been shown to have

more overhead compare to process-level migration. Most

of the present FT works were not designed with Energy

efficient in mind nor designed for HPC system in cloud

computing. In the pioneering work of Wang et al [5] on

Proactive FT for HPC with Xen virtualization, processes are

migrated from unhealthy nodes to spare hosts. However, this

requires spare nodes to be always available. The work also

proposed that the process can be migrated to the less loaded

node. Generally, migrating processes to less loaded node has

higher probability of making the less load node overload.

The work was also not designed for clouding computing or

with energy efficient in mind because the cost of keeping

spare host will be high if the techniques is adapted for HPC

system in cloud computing.

Our work differs from previous works in that our FT

algorithm provides FT to HPC in the cloud at the hardware

level when HaaS is leased. It does not rely on the existence

of spare nodes as proposed in [5]. Our algorithm provides

energy efficient FT for HPC system in the cloud, while

running in user space (under users control). Our work is

designed to run on open mpi and MPI environments. It is

a FT solution particularly suited to users that lease HaaS.

Furthermore, we also analyzed the failure rate of HPC

systems and showed that hardware is the major contributor

of failure in HPC systems.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have presented the design and imple-

mentation of an Energy efficient fault tolerance for High

Performance Computing (HPC) in the Cloud. We analyzed

the large failure data repository CFDR provided by usenix.

We showed that hardware failure is commonly experienced

in HPC system especially when the number of compute

node runs in thousands. We analyzed the energy utilization

768

of holding spare nodes ahead of prediction of failure. We

showed that our solution does not rely on the provision of

spare nodes ahead of the prediction of failure or on redun-

dant computing. We presented experimental results carried

out in a real cloud environment. The experimental results

clearly show that the proposed proactive FT approach to

HPC systems in the cloud can significantly reduce the energy

consumption of computation-intensive applications running

in a cloud. Our solution compliments checkpoint/restart

solution. The frequency of checkpointing the applications

can be reduced by up to 50% with our FTDaemon. Thus,

our approach can help reduce energy consumption by 30%

because spare host is not provisioned.

In the future work, we will determine the accuracy of the

prediction model and also the mean time to failure (MTTF)

after failure prediction.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz,A.
Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica and
M. Zaharia. ‘‘Above the Clouds: A Berkeley View of Cloud
computing,” University of California at Berkley, 2009.

[2] Baremetalcloud. (2013)
http://baremetalcloud.com/index.php/en/

[3] Amazon. (2012). http://aws.amazon.com/ec2/

[4] B. P. Rimal, E. Choi, and I. Lumb, ‘‘A Taxonomy and Survey
of Cloud Computing Systems,” in Fifth International Joint
Conference on INC, IMS and IDC, 2009, pp. 4451.

[5] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott, ‘‘Proac-
tive process-level live migration in HPC environments,” in
SC 08: Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, Tampa, FL, 2008.

[6] I. P. Egwutuoha, S. Chen; D. Levy, Bran Selic and R. Calvo,
‘‘A Proactive Fault Tolerance Approach to High Performance
Computing (HPC) in the Cloud,” in The 2nd International
Conference on Cloud and Green Computing, Xiangtan, Hu-
nan, China, 2012, pp. 268 - 273.

[7] CFDR. (2012). http://cfdr.usenix.org

[8] B. Schroeder, and G.A. Gibson, ‘‘Understanding failures
in petascale computers,” in Journal of Physics: Conference
Series, 78:012022, 2007

[9] B. Schroeder, and G. Gibson, ‘‘A large-scale study of failures
in high performance computing systems,” IEEE Transactions
On Dependable and Secure Computing, vol. 7, no. 4, pp. 337-
351, Oct 2010

[10] Failure trace archive. (2013). http://fta.inria.fr

[11] N. Yigitbasi et al, ‘‘Analysis and Modeling of Time-
Correlated Failures in Large-Scale Distributed Systems,” in
International Conference on Grid Computing, 2010, pp. 65-
72.

[12] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M.
Snir., ‘‘Toward Exascale Resilience,” International Journal of
High Performance Computing Applications, vol. 23, no. 4,
pp. 374388, 2009.

[13] A. Oliner and J. Stearley, ‘‘What supercomputers say: A study
of five system logs,” in In DSN 07: Proceedings of the 37th
Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, Washington, DC, USA, 2007, pp.
575584.

[14] F. Salfner, M. Lenk, and M. Malek, ‘‘A survey of online
failure prediction methods,” ACM Comput. Surv., vol. 42,
no. 3, pp. 1 - 42, 2010.

[15] MPI Forum, ‘‘MPI: A message-passing interface standard,”
1994.

[16] Constantinos Evangelinos, and Chris N. Hill, ‘‘Cloud Com-
puting for parallel Scientific HPC Applications: Feasibility
of Running Coupled Atmosphere-Ocean Climate Models on
Amazon’s EC2,” 2008.

[17] Xen hypervisor. http://www.xen.org/products/xenhyp.html

[18] A. Kumar, L. Shang, L. Peh, and N. Jha., ‘‘System-Level
Dynamic Thermal Management for High-Performance Mi-
croprocessors,” vol. 27, no. 1, pp. 96108, 2008.

[19] Lm-sensors, (2013),
http://lm-sensors.org/wiki/Documentation

[20] A. Petitet, R. C. Whaley, J. Dongarra, A. Cleary. (2008, Sept)
HPL, http://www.netlib.org/benchmark/hpl/

[21] E.N.M. Elnozahy, L. Alvisi, Y.M. Wang, and D.B. Johnson,
‘‘A Survey of Rollback-Recovery Protocols in Message-
Passing Systems,” vol. 34, no. 3, 2002.

[22] J. T. Daly, ‘‘A higher order estimate of the optimum check-
point interval for restart dumps,” Future Generation Computer
Systems, vol. 22, pp. 303312, 2006.

[23] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen, ‘‘A
survey of fault tolerance mechanisms and checkpoint/restart
implementations for high performance computing systems,”
The Journal of Supercomputing (2013): 1-25, 2013. http:
//checkpointing.org/

[24] R. Riesen, K. Ferreira, J. Stearley, ‘‘See applications run and
throughput jump: The case for redundant computing in HPC.”
In: 1st International Workshop on Fault-Tolerance for HPC at
Extreme Scale, FTXS 2010 (2010)

[25] I. P. Egwutuoha, D. Schragl, R. Calvo, ‘‘A Brief Review
of Cloud Computing, Challenges and Potential Solutions,‘‘
Parallel & Cloud Computing (PCC), Vol.2, No.1, 2013, pp.
7-14.

[26] I. P. Egwutuoha, S. Chen, D. Levy, & B. Selic, ‘‘A Fault
Tolerance Framework for High Performance Computing in
Cloud”, In Cluster, Cloud and Grid Computing (CCGrid),
2012 12th IEEE/ACM International Symposium on (pp. 709-
710). IEEE.

[27] OpenMPI, http://www.open-mpi.org/

769

