
Evaluation of Virtual Machine Scalability on
Distributed Multi/Many-core Processors for Big

Data Analytics
Amril Nazir, Yaszrina Mohamad Yassin, Chong Poh Kit, Ettikan Kandasamy Karuppiah

MIMOS Bhd, Technology Park Malaysia
57000 Kuala Lumpur, Malaysia

amrilnurman.nazir,yaszrina.yassin, pk.chong,ettikan.karuppiah@mimos.my

Abstract—Cloud computing makes data analytics an attractive
preposition for small and medium organisations that need to
process large datasets and perform fast queries. The remarkable
aspect of cloud system is that a nonexpert user can provision
resources as virtual machines (VMs) of any size on the cloud
within minutes to meet his/her data-processing needs.

In this paper, we demonstrate the applicability of running
large-scale distributed data analysis in virtualised environment.
In achieving this, a series of experiments are conducted to
measure and analyze performance of the virtual machine scal-
ability on multi/many-core processors using realistic financial
workloads. Our experimental results demonstrate it is crucial to
minimise the number of VMs deployed for each application due
to high overhead of running parallel tasks on VMs on multicore
machines. We also found out that our applications perform
significantly better when equipped with sufficient memory and
reasonable number of cores.

I. INTRODUCTION

Using the Infrastructure-as-a-service (IaaS) cloud comput-
ing model, users today can request dynamically provisioned,
virtualized resources such as CPU, memory, disk, and network
access in the form of virtualized resources. The user typically
requests resources based on computational needs and pays
for virtualised resources based on their capacity and time
utilized. Virtualisation enables users to deploy their application
workloads on multiple virtual machines (VMs). The VM
can be customized with a specific operating system, specific
applications and/or services.

This possibility make data analytics an attractive preposition
for small and medium organisations that need to process large
datasets and perform fast queries in cloud environment. The
remarkable aspect of such cloud system is that a nonexpert
user can provision virtual machines (VMs) of any size on the
cloud within minutes to meet his/her data-processing needs.
This feature gives tremendous power to the end user.

Typically, data analysis is being carried out over large data
sets. Hence, users still need to be aware and concerned of
how the datasets should be distributed across compute resource
nodes or virtual machines. This involves important steps
such as vm provisioning (how many VMs to deploy), data
partitioning (how to partition data), and data scheduling (how
to schedule data across VMs). More recently, the MapReduce
framework has been introduced by Google to eliminate the

burden of the user by enabling automatic and dynamic parti-
tioning of data set across multiple virtual machines in a fault-
tolerant manner. For example, an open-source implementation
of MapReduce paradigm is Hadoop, which has been widely
used for large-scale distributed analysis e.g., web indexing and
data mining. However, the performance of running application
can vary according to the capacity of the physical machine, the
number of virtual machines (VMs) deployed on the machine,
the number of cores assigned to each VM, the amount of
memory assigned to VMs and any several other factors.
Therefore, mapping these virtual resource requests to physical
hardware could vary and this could potentially cause variations
in the performance of applications deployed on such resources.

In this paper, we evaluate the effects of VM provisioning
on multi-core machines of which dual and quad cores are
now commonplace. Using realistic financial processing work-
loads, we experimentally study the effects of VM provisioning
behaviours and their impact on application performance. A
series of experiments are conducted to measure and analyze
the performance of performing large-scale financial distributed
analysis in cloud environment where financial tasks run on
different size/configuration of the VMs.

This paper is organised as follows. Section II provides
an overview of the overall architecture and the crucial steps
involved in real-world financial application. Section III sum-
marises specific computational needs and resource require-
ments for the financial application. Section IV describes our
methodology and experimental setup for performance eval-
uation and we subsequently present our benchmark results.
Section V and VI discuss related work and future work.
Finally, section VII concludes the paper.

II. A CASE STUDY OF REAL-WORLD DISTRIBUTED
FINANCIAL APPLICATION

In this section, we present the crucial steps involved in
running a real-world distributed financial application. We
demonstrate how such application can be executed in dis-
tributed manner to perform large-scale data analysis on very
large data sets. Figure 1 illustrates an overall architecture of
our financial application. In summary, the financial application
comprises three main components: data extraction, data pre-
processing, and data analysis. In the next subsection, we will



Figure 1. Overall Architecture of Financial Application

briefly describe each of these components.

A. Data Extraction

The first step involves identifying the source and collecting
the data. In this case, the source of financial data is extracted
and collected from various of websites that provide histor-
ical data and quotes on equities, futures and REITs (Real
Estate Investment Trusts). The financial websites are normally
available from official Stock Exchange websites (e.g., Bursa,
NASDAQ, LSE etc.) any other reliable financial data service
providers such as KLSE, and Yahoo! Finance. The financial
data is mined directly from the websites and they are extracted
from raw html pages.

B. Data Pre-processing

After collecting the raw data, an important step is to
transform it into the appropriate format for data analysis. As
a matter of fact, data cleaning often consumes a great deal of
computational power since the raw data in html and text format
needs to be cleaned and streamlined as transactional records
based its primary keys (i.e., security code and date), and
any mismatched records and duplications must be identified
and eliminated. The data pre-processing also involves text
matching of different fields of records from different web
sources. Furthermore, the records need to be sorted and
partitioned based on a number of primary keys such as the
security code and date of transactions. Therefore, the effort to
organise raw data for even a few hundreds of megabytes can
take considerable amount of time.

C. Data Analysis

Once the data has been cleaned and pre-processed, the data
will be further analysed based on specific financial model or
algorithm. In practice, even after data pre-processing, the data
to analyse can still be too large to analyse in a centralised
manner. For example, the same financial model may need to be
computed on different securities. The size of historical records
for each security can reach up to a few thousands, and multiple
securities will need to be processed in parallel before final
computation can be computed. Based on the complexity of the
algorithm and the chosen parameter, each financial model or
prediction model can run from a few seconds up to a few hours
for each security. This does not include the time it takes to
merge all the intermediate values from multiple transactional

Figure 2. An overview of the distributed financial application architecture

records and compute the final value. This is where we expect
the cloud resources could be useful to distribute these tasks
in parallel for on-demand financial analysis. It is expected
that cloud resources would further improve the data analysis
by exploiting the parallelism and fault-tolerance in the most
effective manner.

Figure 2 further illustrates an overview of the financial
application architecture for distributed processing. We can
observe two new components: data partitioning and data aggre-
gation. At the completion of data extraction, the data is stored
in the database. At this point, the data partitioning component
retrieves the data sets from the database, then partition the
data into a number of smaller segments to be distributed over
multiple virtual machines. Each VM will be responsible to
perform data pre-processing and data analysis based on the
segmented data. The result or the output of the analysis (e.g.,
prediction accuracy) is sent to the data aggregation component.
The data aggregation component collects and retrieves the
computation result from each VM upon task completion.

In the next section, we summarise the computational needs
for all the crucial steps and processes we have described above.

III. COMPUTATIONAL NEEDS FOR FINANCIAL
APPLICATION

In the previous section, we have described the crucial steps
needed for large-scale distributed financial data analysis. In
this section, we summarise the specific computational require-
ments and features inherited from our financial application.

A. Data-Intensive

Specific to financial application, the most common require-
ment is the extraction of financial data from source. The source
of data here is the websites which publish latest financial data
such as equities, bonds, and futures on daily basis. The data
extraction process is data-intensive because there is a need for
high-memory capable machines to extract the relevant data
from various websites and consolidate the data in specific
format that can be used directly by the application to perform
data analysis.

B. Compute-intensive

Since there is huge amount raw html and text data which is
needed to be processed and transformed into the appropriate



format for data analysis, the data pre-processing process is
also computationally intensive. However, the most intensive
part of computation is the data analysis process because many
of the financial algorithms involve computationally intensive
operations and complex processes.

C. Summary

In this section, we have identified the need for high-
memory capable machines for data extraction process. We also
identified the need to execute financial tasks in distributed
manner due to their highly computationally-intensive opera-
tions. Financial applications are therefore known to be highly
computationally and data intensive. It is envisaged that cloud
computing would enable users to run their financial application
workloads in a distributed manner providing faster results for
on-demand financial analysis.

IV. EVALUATION

A. Methodology and Experimental Setup

Our experimental hardware consists of a four node cluster.
The test-bed comprises four physical machines, namely phy1,
phy2, phy3, and phy4. Physical machine phy1 is equipped
with 8 processors with Intel(R) Xeon(R) 2.4GHz, RAM of
10.5 GB, running Ubuntu 12.04 with Xen hypervisor. Physical
machine phy2 has quad-core Intel® Xeon® 2.53GHz with
12GB RAM whereas physical node phy3 has 8 Intel® Core™
i7 3.2 GHz processors with 3GB RAM. Both phy2 and phy3
run Ubuntu 10.04 with KVM hypervisors. On the other hand,
physical machine phy4 is equipped with four 2.00GHz Xeon
processors, 3.2GB of memory and 14GB of disk, runs Ubuntu
Release 10.04 (lucid) with kernel 2.6.33, and is connected with
1 Gigabit Ethernet.

In VM-based environments, we use Virtual Machine Man-
ager 0.8.2 to monitor running VMs. The VMs are running with
RHEL5 with kernel 2.6.22. The same cluster nodes is used to
obtain performance results for both the VM-based environment
and the native, non-virtualized environment. Each physical
machine is installed with Xen hypervisor and the Virtual
Machine Manager initiates the provisioning and deployment
of a new VM. On each physical node, we assume the VM
image is persistent thereby there is no need to transfer VM
image from a storage server to the physical node each time a
new VM is deployed.

Our datasets contain historical financial data of Malaysian
securities from Bursa Malaysia, KLSE, and Yahoo! Finance.
Initially, we run each experiment under different size of
securities portfolio (i.e., 4, 8, 16, and 32 securities) as to
capture the effects of increasing workload. At later stage of
our experiments, we hold the number of securities fixed for
each experiment to investigate the behaviours of mixed VM
configurations under the same workload.

Our financial application is run on RapidMiner 5.2. Rapid-
Miner, formerly YALE (Yet Another Learning Environment)
provides data mining and machine learning procedures in-
cluding: data extraction and transformation, data preprocessing
and visualization, modelling, evaluation, and deployment. The
data mining processes can be made up of arbitrarily nestable

operators, described in XML files and created in RapidMiner’s
graphical user interface (GUI). RapidMiner is written in the
Java programming language.

All core components of our financial application: data
extraction, data pre-processing, and data processing, data parti-
tioning, and data aggregation are modelled as operators to form
a single workflow in RapidMiner. Hence, unlike any other
MapReduce applications that require users to operate at API-
level (i.e., map and reduce functions), RapidMiner enables all
financial steps to be created as a workflow by using graphical
user interface (GUI). However, to leverage parallelism on a
single VM with more than one virtual core (multi-core virtual
CPUs), we made some modifications to RapidMiner to spawn
n multiple threads based on n number of virtual cores available
on the VM.

All results described in this paper are obtained using
RapidMiner 5.2, while the data is stored as csv files in the
database repository. Each experiment is repeated three times
and an average is obtained. For a RapidMiner workflow that
runs in parallel on multi-core virtual CPUs, we also repeat
the experiment three times and obtain an average of its
minimum and maximum execution time to capture variations
in processor contention. In particular, we are interested in the
maximum execution time as that would give indication of the
worst-case scenario when running in multi-core virtual CPUs.

B. Benchmarks

In this section, we conduct performance test on our finan-
cial application in a cloud environment involving multi-core
physical machines. Performance evaluation was conducted to
answer the following question: what is the performance impact
when running financial tasks on a variety of virtual machine
configurations?

The first experiment is to measure (i) the amount of time it
takes for a financial task to be served with an increasing data
sets (financial securities data) and (ii) the amount of time it
takes for the financial task to complete its execution under a
variety configurations of VMs. Each experiment is repeated 3
times and an average is obtained. For a parallel task running
on multi-core VMs, we also repeated the experiment 3 times
to obtain an average of its minimum and maximum execution
times. To leverage parallelism on multi-core VM, we enable
our financial application to spawn n multiple threads based on
n number of physical cores available.

Size of Securities 1 core 4 core 1 core per VM 4 cores per VM 4 VMs 1 core each
4 10 (6,7) 12 (8,9) (11,13)
8 19 (13,14) 24 (16,17) (22,24)
16 38 (19,20) 46 (27,28) (49,50)
32 66 (20,21) 104 (25,34) (36,128)

Table I
THE IMPACT OF TIME EXECUTION (IN SECONDS) UNDER INCREASING SIZE

OF SECURITIES. (x, y) DENOTE THE MINIMUM EXECUTION TIME x AND
MAXIMUM EXECUTION TIME y

Figure I presents the breakdown of the total time for running
different security sizes under physical machines and different
configurations of VMs with increasing size of securities. The
experiment is run on phy4 machine, equipped with 4-cores,



3.2GB RAM, and 96GB hard disk capacity. We carry out
benchmark with 3 different VM configurations: a single VM
with 1-core (1-core VM), 4-cores on a single VM (4-core VM),
and 4 VMs assigned 1 core each. From the measurments,
we can observe that the execution time of running on 4-
core VM is significantly faster that running the same financial
task sequentially on 1-core VM. We can see almost linear
improvement in execution time (approximately 3.2x faster) as
the financial task is running on parallel on 4-core VM. This
is to be expected as the application is utilising all processors
for computation.

When comparing the performance of sequential run on a
physical machine versus a sequential run on a VM (1-core
VM), it can be seen that performance on the VM is reduced by
58%. Similarly, when comparing the performance of a parallel
run on a physical quad-core machine versus a parallel run on
a single VM with 4 cores (4-core VM), the performance of
a parallel run on 4-core physical machine is slightly better
by 29%. We can see that the performance gap between the
physical and virtual machine is getting less significant as the
number of cores is increased on the VM.

Size. of Securities 1 core per VM 4 cores per VM 8 cores per VM
32 73 (16,17) (119,1430)

Table II
COMPARISON OF TIME TAKEN FOR DIFFERENT NUMBER OF VIRTUAL

CORES PER VM.

For subsequent experiments, we fix the number of securities
to 32 units then measure the total execution time against
different VM configurations. We run the experiment on phy1
which is twice as powerful compared to phy4. The total
amount of memory allocated to all VMs for each experiment
is fixed to 2048MB while the number of cores assigned to
each VM is also varied. Furthermore, for each run, the 32-
units of securities size are split equally in parallel based on
the number of physical cores.

Table II presents our results for constant size of 32 securities
with 3 different set of VM configurations: 1 core per VM (1-
core VM), 4 cores per VM (4-core VM), and 8 cores per VM
(8-core VM). We can observe that it would take approximately
73 seconds to execute 32 units of securities on a single VM
with 1 core. On the other hand, as we increase the number of
cores to 4 in a single VM, the execution time reduces greatly
by approximately 3.3 times to execute the same task. However,
as we increase the number of virtual cores beyond four cores,
we can observe that the execution time increases significantly.
This shows when we increase the number of cores from 4
to 8 on a single VM on a quad-core machine. It can be
seen that the minimum execution time for an 8-core VM is
1 minute and 59 seconds whereas the maximum execution
time significantly reaches up to 23 minutes 50 seconds. We
are seeing a huge difference in performance when compared
to the execution on a 4-core VM. This shows that there
is a point of bottleneck where the performance somewhat
degrades significantly as we increase the number of virtual
cores on a single VM. At first instance, the result seems to
be counter-intuitive as the performance should not be affected

adversely as the virtual cores do not overrun the number of
physical cores. The total number of virtual cores i.e., 8-cores
is in fact proportional to the number of physical cores – the
phy1 has 8-cores. However, the best plausible explanation for
this poor performance is most likely due to the low memory
assigned to each core. As we increase the number of cores,
we still retain the memory capacity to 2048MB. Hence, as the
number of cores is increased up to 8, each core is allocated
with 256MB memory only. As a result, this has a significant
impact on the performance as the financial task is struggling
to execute efficiently when the machine is low on memory.
This is possibly due to the frequent memory swaps between
the physical hard disk and virtual machine memory.

Size. of Securities 1 core per VM 4 cores per VM 8 cores per VM
32 71 (12,13) (14,18)

Table III
COMPARISON OF TIME TAKEN FOR DIFFERENT NUMBER OF VIRTUAL

CORES PER VM FOR A HIGHER MEMORY OF 10GB ALLOCATED TO THE
PHYSICAL MACHINE.

To test our hypothesis, we repeated the same experiment
but we assign a much higher memory of 10GB to the VM.
Similar to our previous experiment, the number of virtual
cores is set to 8 and the size of securities is fixed at 32
units. Figure III illustrates our result. We can observe that
our hypothesis is indeed true. When assigning 10GB of
RAM memory with 8-cores (proportion to the number of
real cores on physical machine) on a single VM, we can
observe tremendous improvement of execution – the minimum
execution time is 14 seconds whereas the maximum time is
only 18 seconds. This demonstrates that assigning sufficient
amount of memory is highly important when assigning higher
number of virtual cores. Interestingly, we can observe that the
performance of 4-core VM with 2048MB virtual memory is
almost equivalent to that of 8-core with 10GB virtual memory.
This is somewhat interesting which indicates that the number
of virtual cores assigned to a single VM does not guarantee
a linear increase in performance even when there is sufficient
memory. In fact, from our results, it can be seen that there is
only a minor improvement in performance. Therefore, from
this, we conclude that when determining where to schedule
VM, sufficient memory allocation should be given higher
priority than the number of virtual cores. This holds true for
our example of financial data analysis application.

We may also ask this question: does actual capability of
the physical machine has a significant impact on application
performance if we were to allocate two identical VMs with the
same number of virtual cores and the same amount of virtual
memory on two separate machines with different physical
machine capabilities? To do this comparison, we compare
the total execution time for running a fixed 32 unit size of
securities on the powerful phy1 machine running a single VM
with 4 virtual cores and compare it with the less powerful
phy4 machine running a single VM with 4 virtual cores. Each
machine is allocated with 2048MB of virtual memory for the
experiment. Interestingly, we observe noticeable differences
on performance. As for the low-end phy4 machine, we can



observe that average time it takes to complete the task is
within 34 seconds. However, for the powerful phy1 machine,
it takes in average 17 seconds to complete the same task.
This demonstrates that the actual physical core capacity and
memory of the machine does indeed play an important factor
in determining how fast task can finish its execution. As can be
observed in our case, the time it takes to complete the task is
two times faster on phy1 in comparison to phy4 machine even
when both VMs are identical. The most plausible explanation
is due to the fact that phy1 has twice as number of cores
and almost four times higher memory in comparison to phy4
machine. Therefore, we conjecture that the mapping of virtual
machines on different physical machine configurations have
significant impact on the application performance.

Size. of Securities 4 cores per VM 2 VMs with 2 cores each
32 (29,32) (37,112)

Table IV
THE TOTAL AMOUNT OF TAKEN TO EXECUTE 32 UNITS OF SECURITIES (IN

SECONDS) FOR 4 VIRTUAL CORES PER VM VERSUS 2 VMS WHICH ARE
ASSIGNED 2 VIRTUAL CORES EACH

Next, we investigate the impact of assigning number of
virtual cores to multiple VMs. We try to answer the following
question: can we get similar performance when assigning a
single VM with 4 virtual cores in comparison to assigning
2 VMs with 2 virtual cores each? Similarly, we conducted
the experiment on phy4 physical machine. Table IV presents
our results. We can clearly observe that 4 virtual cores on
a single VM outperforms the performance of 2 VMs with
2 virtual cores each. Interestingly, when we compare the
minimum execution time between the two, the performance
gap is not significant: there’s only a difference of 8 seconds.
However, the overall performance between the two becomes
very significant when we consider the maximum execution
time. We can observe that the maximum execution time
reaches up to 1 minute and 52 seconds for 2VMs with 2-cores
whereas the maximum execution time of a single VM with 4-
cores only reaches up to 32 seconds. In this case, there is a
2.5x degradation in performance. Hence, we advocate that it is
more efficient to minimise the number of running VMs if it is
all possible (if it can be avoided) since running multiple VMs
have significant effects on the performance of task execution,
as we have observed from our example of financial task
execution. Moreover, from our performance results on a wide
variety of VM configurations, we have observed that it is
in fact more efficient to allocate sufficient memory to each
physical core when running our financial application.

So far, we have conducted our experiments by initiating VM
provisioning directly to the Xen hypervisor. We now aim to
further test our conjecture by carrying out similar experiments
on OpenNebula Cloud to compare the performance of non-
optimized VM provisioning in standard cloud environment
against an approach that makes intelligent decision based on
the discovery of physical resource capacity (i.e., current avail-
able memory and number of CPU cores etc). In OpenNebula
Cloud, the standard VM provisioning is based on a round
robin scheduling strategy. OpenNebula aims to select the first

physical node that is found in its database in such way that
nodes are selected one after another until one node is found
that can run the VM.

Based on our experiments earlier, we identified that each
processor core should run at least on 1024MB of memory for
optimal task execution. Hence, the discovery and scheduling
should be made based on the following rules: schedule and
deploy a single VM with n virtual cores to any of the physical
machine as long av ≥ m×n where av is the available machine
memory and m is the optimal memory set by the user. In our
case, m is set to 1024MB. Hence, if the number of virtual
cores available on the machine is 4, the VM should only
schedule on a machine with at least 4096MB of memory. On
the other hand, we compare it to the approach where each
virtual core is assigned to a single VM with at least 1024MB.

Again, the test-bed comprises four physical machines,
namely phy1, phy2, phy3, and phy4. We timed certain major
cloud operations, measuring the cost of individual operations,
as well as the total overhead time required to schedule and
provision VMs. These include the measurement of the invo-
cation costs (delays) of the discovery time, scheduling time
and VM deployment time, as well as the execution time.

1 virtual core per VM Schedule if av ≥ m×n
Discovery+Scheduling Time 0.6 (600 ms) 0.6 (600 ms)
Deployment Time 3 3
Execution Time 104 8
Total Completion Time 107.6 secs 11.6 secs

Table V
COMPARISON OF TIME TAKEN FOR 1 VIRTUAL CORE PER VM

PROVISIONING METHOD VS. OUR INTELLIGENT VM PROVISIONING
METHOD THAT PROVISIONS VMS BASED ON AVAILABLE MEMORY AND

THE NUMBER OF AVAILABLE VIRTUAL CORES.

Table V presents the breakdown of the total overhead time
taken to discover, schedule, deploy VM, and execute task
on VM for standard VM deployment versus our intelligent
discovery approach. As can be observed, the total completion
time for 1-core VM provisioning method is significantly higher
(10 times higher) than our intelligent provisioning method.
This demonstrates that in cloud environment, the way how we
provision VMs even have greater impact on the application
performance due to higher variations of physical machine
capacity in cloud environment.

V. RELATED WORK

Ever since the advent of cloud-enabling technologies such
as virtualization, a lot of studies [2], [1], [4], [10], [9] have
been devoted to their applicability and gauging performance
for various application domains as well as scientific and High
Performance Computing (HPC) applications.

Venkatraman et. al. conducted a benchmarking effort of
virtual machines on multi-core machines [12]. The perfor-
mance evaluation was conducted using a series of independent
benchmarks, testing the performance of a database server,
java server and web server. The multi-workload benchmark
is used to evaluate the two server machines and study how
the different server workloads interact to utilize the hardware
resources.



Some studies have reported successful porting of traditional
HPC workloads onto public cloud environments [6], [7], [5].
The effect of virtualization on new generation programming
models and environments for data-intensive applications like
Hadoop has been explored in [8]. Schad et. al. carried out
an extensive study on long-term performance variance of big
data analytics on Amazon EC2 [11]. Moreover, Dejun et. al
show that different supposedly identical VM instances often
have very different performance in cloud environment, up to a
ratio 4 from each other [3]. From their experiments, they also
reported that they could not see homogeneous performance of
an application even across identical VM instances.

In our work we conducted our experiments using realistic
financial workloads at the hypervisor level and on a private
OpenNebula cloud test-bed. This also allows us to design
and test various VM configurations on physical multi-core
machines in a controlled environment which enables us to
determine the behaviours of different VM configurations on
a variety of physical multi-core machines. To our knowledge,
our work is one of the earliest attempts that evaluate the virtual
machine scalability for large-scale distributed data analysis
using realistic financial workloads as the base of our study.

VI. FUTURE WORK

There are several directions for future work. We have
evaluated the performance of real-world financial applications
and have found that effective discovery, scheduling, and load
balancing of virtual machines are essential. Therefore, in
future work, we aim to investigate various mechanisms that
enable effective discovery, scheduling and load balancing in
virtualised environment. However, understanding the nature of
application (parallelizable) is important to optimally utilize
available multi/many core machines. For instance, different
application domains impose different loads on available phys-
ical resources which may effect on how we do discovery,
scheduling, and load balancing. Examples vary between com-
pute, memory or potentially I/O bound applications.

Moreover, hardware accelerators like Graphical Processing
Units (GPUs) are highly attractive for computationally inten-
sive tasks since they consist of many-core processors, and
support thousands of concurrent threads. GPUs have been
reported to deliver substantial speedups (between 10X and
100X) over multi-core CPUs for highly computational tasks.
For our financial scenario, we identify that some financial
processing such as data extraction and sorting operations can
be ideally outsourced to GPUs. Therefore, we also aim to
investigate further on the applicability and mechanisms of
leveraging GPUs for our financial tasks.

VII. CONCLUSION

This work presents preliminary results on the true im-
pact of provisioning VMs in cloud environment for large-
scale distributed data analysis, focusing mainly on financial
applications. We hope to continue our investigation using
more different types of applications in the future and evaluate
the effects of VM provisioning in much larger VM cluster
deployments and possibly public cloud services.

Our experimental results demonstrate it is crucial to min-
imise the number of VMs deployed for each application due to
high overhead of running parallel tasks on VMs on multi-core
machines. We also found out that our applications perform
significantly better when equipped with sufficient memory and
reasonable number of cores.

Guided by these observations, we propose that applications
should be able to initiate resource discovery and directly influ-
ence VM scheduling and load balancing to take advantage of
the number of cores and memory available by dedicating cores
and memory for specific application operations. We further
conclude that there is a need for more effective discovery,
scheduling and load balancing than the typical round robin
approaches employed by current Cloud middleware systems
such as OpenNebula and Eucalyptus.

REFERENCES

[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the
art of virtualization. In Proceedings of the nineteenth ACM symposium
on Operating systems principles, SOSP ’03, pages 164–177, New York,
NY, USA, 2003. ACM.

[2] Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat. Comparison
of the three cpu schedulers in xen. SIGMETRICS Perform. Eval. Rev.,
35(2):42–51, September 2007.

[3] Jiang Dejun, Guillaume Pierre, and Chi-Hung Chi. Ec2 performance
analysis for resource provisioning of service-oriented applications. In
Asit Dan, Frédéric Gittler, and Farouk Toumani, editors, Service-
Oriented Computing. ICSOC/ServiceWave 2009 Workshops, volume
6275 of Lecture Notes in Computer Science, pages 197–207. Springer
Berlin / Heidelberg, 2010.

[4] Constantinos Evangelinos and Chris N. Hill. Cloud Computing for
parallel Scientific HPC Applications: Feasibility of Running Coupled
Atmosphere-Ocean Climate Models on Amazon’s EC2. Cloud Comput-
ing and Its Applications, October 2008.

[5] Robert Grossman and Yunhong Gu. Data mining using high performance
data clouds: experimental studies using sector and sphere. In Proceed-
ings of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD ’08, pages 920–927, New York, NY,
USA, 2008. ACM.

[6] Scott Hazelhurst. Scientific computing using virtual high-performance
computing: a case study using the amazon elastic computing cloud.
In Proceedings of the 2008 annual research conference of the South
African Institute of Computer Scientists and Information Technologists
on IT research in developing countries: riding the wave of technology,
SAICSIT ’08, pages 94–103, New York, NY, USA, 2008. ACM.

[7] Keith R. Jackson, Lavanya Ramakrishnan, Krishna Muriki, Shane
Canon, Shreyas Cholia, John Shalf, Harvey J. Wasserman, and
Nicholas J. Wright. Performance analysis of high performance com-
puting applications on the amazon web services cloud. In Proceedings
of the 2010 IEEE Second International Conference on Cloud Computing
Technology and Science, CLOUDCOM ’10, pages 159–168, Washing-
ton, DC, USA, 2010. IEEE Computer Society.

[8] Karthik Kambatla, Abhinav Pathak, and Himabindu Pucha. Towards
optimizing hadoop provisioning in the cloud. In Proceedings of the 2009
conference on Hot topics in cloud computing, HotCloud’09, Berkeley,
CA, USA, 2009. USENIX Association.

[9] Amril Nazir, Hong Ong, Sidek Salleh, S.Selvi, and Rajendar K. In-
telligentgrid: Rapid deployment of grid compute nodes for immediate
execution of batch and parallel applications. In ICOS, pages 180–184.
IEEE Open Systems, 2011.

[10] M. Suhail Rehman and Majd F. Sakr. Initial findings for provisioning
variation in cloud computing. In CloudCom, pages 473–479, 2010.

[11] Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz. Runtime
measurements in the cloud: observing, analyzing, and reducing variance.
Proc. VLDB Endow., 3(1-2):460–471, September 2010.

[12] Aparna Venkatraman, Vinay P, Beth Plale, and Shing shong Shei.
Benchmarking effort of virtual machines on abstract multicore machines.


