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ABSTRACT
With the fast technical improvement, flash memory based Solid
State Drives (SSDs) are becoming an important part of the com-
puter storage hierarchy to significantly improve performance and
energy efficiency. However, due to its relatively high price and low
capacity, a major system research issue to address is on how to
make SSDs play their most effective roles in a high-performance
storage system in cost- and performance-effective ways.

In this paper, we will answer several related questions with in-
sights based on the design and implementation of a high perfor-
mance hybrid storage system, called Hystor. We make the best
use of SSDs in storage systems by achieving a set of optimization
objectives from both system deployment and algorithm design per-
spectives. Hystor manages both SSDs and hard disk drives (HDDs)
as one single block device with minimal changes to existing OS
kernels. By monitoring I/O access patterns at runtime, Hystor can
effectively identify blocks that (1) can result in long latencies or
(2) are semantically critical (e.g. file system metadata), and stores
them in SSDs for future accesses to achieve a significant perfor-
mance improvement. In order to further leverage the exception-
ally high performance of writes in the state-of-the-art SSDs, Hystor
also serves as a write-back buffer to speed up write requests. Our
measurements on Hystor implemented in the Linux kernel 2.6.25.8
show that it can take advantage of the performance merits of SSDs
with only a few lines of changes to the stock Linux kernel. Our sys-
tem study shows that in a highly effective hybrid storage system,
SSDs should play a major role as an independent storage where
the best suitable data are adaptively and timely migrated in and re-
tained, and it can also be effective to serve as a write-back buffer.
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1. INTRODUCTION
High-performance storage systems are in an unprecedented high

demand for data-intensive computing. However, most storage sys-
tems, even those specifically designed for high-speed data process-
ing, are still built on conventional hard disk drives (HDDs) with
several long-existing technical limitations, such as low random ac-
cess performance and high power consumption. Unfortunately,
these problems essentially stem from the mechanic nature of HDDs
and thus are difficult to be addressed via technology evolutions.

Flash memory based Solid State Drive (SSD), an emerging stor-
age technology, plays a critical role in revolutionizing the storage
system design. Different from HDDs, SSDs are completely built on
semiconductor chips without any moving parts. Such a fundamen-
tal difference makes SSD capable of providing one order of magni-
tude higher performance than rotating media, and makes it an ideal
storage medium for building high performance storage systems.
For example, San Diego Supercomputer Center (SDSC) has built a
large flash-based cluster, called Gordon, for high-performance and
data-intensive computing [3]. In order to improve storage perfor-
mance, Gordon adopts 256TB of flash memory as its storage [24].
However, such a design, which is backed by a $20 million funding
from the National Science Foundation (NSF), may not be a typical
SSD-based storage solution for widespread adoption, because the
high cost and relatively small capacity of SSDs will continue to be
a concern for a long time [11], and HDDs are still regarded as in-
dispensable in the storage hierarchy due to the merits of low cost,
huge capacity, and fast sequential access speed. In fact, building
a storage system completely based on SSDs is often above the ac-
ceptable threshold in most commercial and daily operated systems,
such as data centers. For example, a 32GB Intel® X25-E SSD costs
around $12 per GB, which is nearly 100 times more expensive than
a typical commodity HDD. To build a server with only 1TB storage,
32 SSDs are needed and as much as $12,000 has to be invested in
storage solely. Even considering the price-drop trend, the average
cost per GB of SSDs is still unlikely to reach the level of rotating
media in the near future [11]. Thus, we believe that in most sys-
tems, SSDs should not be simply viewed as a replacement for the
existing HDD-based storage, but instead SSDs should be a means
to enhance it. Only by finding the fittest position of SSDs in stor-
age systems, we can strike a right balance between performance
and cost. Unquestionably, to achieve this goal, it is much more
challenging than simply replacing HDDs with fast but expensive
SSDs.

1.1 Critical Issues
A straightforward consideration of integrating SSD in the exist-

ing memory hierarchy is to treat the state-of-the-art SSDs, whose
cost and performance are right in between of DRAM memory and



HDDs, as a secondary-level cache, and apply caching policies,
such as LRU or its variants, to maintain the most likely-to-be-
accessed data for future reuse. However, the SSD performance
potential could not be fully exploited unless the following related
important issues, from both policy design and system deployment
perspectives, be well addressed. In this paper, we present a unique
solution that can best fit SSDs in the storage hierarchy and achieve
these optimization goals.

1. Effectively identifying the most performance-critical blocks
and fully exploiting the unique performance potential of SSDs
– Most existing caching policies are temporal locality based and
strive to identify the most likely-to-be-reused data. Our experi-
mental studies show that the performance gains of using SSDs over
HDDs is highly dependent on workload access patterns. For exam-
ple, random reads (4KB) on an Intel® X25-E SSD can achieve up to
7.7 times higher bandwidth than that on an HDD, while the speedup
for sequential reads (256KB) is only about 2 times. Besides identi-
fying the most likely-to-be-reused blocks as done in most previous
studies, we must further identify the blocks that can receive the
most significant performance benefits from SSDs. We have sys-
tematically analyzed various workloads and identified a simple yet
effective metric based on extensive experimental studies. Rather
than being randomly selected, this metric considers both temporal
locality and data access patterns, which well meets our goal of
distinguishing the most performance-critical blocks.

2. Efficiently maintaining data access history with low over-
head for accurately characterizing access patterns – A major
weakness of many LRU-based policies is the lack of knowledge
about deep data access history (i.e. recency only). As a result, they
cannot identify critical blocks for a long-term optimization and thus
suffer the well-known cache pollution problem (workloads, such as
reading a streaming file, can easily evict all valuable data from the
cache [14]). As a key difference from previous studies, we profile
and maintain data access history as an important part of our hybrid
storage. This avoids the cache pollution problem and facilitates an
effective reorganization of data layout across devices. A critical
challenge here is how to efficiently maintain such data access his-
tory for a large-scale storage system, which is often in Terabytes.
In this paper, a special data structure, called block table, is used to
meet this need efficiently.

3. Avoiding major kernel changes in existing systems while
effectively implementing the hybrid storage management poli-
cies – Residing at the bottom of the storage hierarchy, a hybrid
storage system should improve system performance without intru-
sively changing upper-level components (e.g. file systems) or rad-
ically modifying the common interfaces shared by other compo-
nents. Some previously proposed solutions attempt to change the
existing memory hierarchy design by inserting non-volatile mem-
ory as a new layer in the OS kernels (e.g. [18, 19]); some require
that the entire file system be redesigned [34], which may not be
viable in practice. Our design carefully isolates complex details
behind a standard block interface, which minimizes changes to ex-
isting systems and guarantees compatibility and portability, which
are both critical in practice.

In our solution, compared to prior studies and practices, SSD
plays a different role. We treat the high-capacity SSD as a part of
storage, instead of a caching place. Correspondingly, different from
the conventional caching-based policies, which frequently update
the cache content on each data access, we only periodically and
asynchronously reorganize the layout of blocks across devices for
a long-term optimization. In this paper, we show that this arrange-
ment makes SSDs the best fit in storage hierarchy.

1.2 Hystor: A Hybrid Storage Solution
In this paper, we address the aforesaid four issues by present-

ing the design and implementation of a practical hybrid storage
system, called Hystor. Hystor integrates both low-cost HDDs and
high-speed SSDs as a single block device and isolates complicated
details from other system components. This avoids undesirable sig-
nificant changes to existing OS kernels (e.g. file systems and buffer
cache) and applications.

Hystor achieves its optimization objectives of data management
through three major components. First, by monitoring I/O traf-
fic on the fly, Hystor automatically learns workload access patterns
and identifies performance-critical blocks. Only the blocks that can
bring the most performance benefits would be gradually remapped
from HDDs to high-speed SSDs. Second, by effectively exploit-
ing high-level information available in existing interfaces, Hystor
identifies semantically-critical blocks (e.g. file system metadata)
and timely offers them a high priority to stay in the SSD, which
further improves system performance. Third, incoming writes are
buffered into the low-latency SSD for improving performance of
write-intensive workloads. We have prototyped Hystor in the Linux
Kernel 2.6.25.8 as a stand-alone kernel module with only a few
lines of codes added to the stock OS kernel. Our experimental re-
sults show that Hystor can effectively exploit SSD performance po-
tential and improve performance for various workloads

1.3 Our Contributions
The contribution of this work is threefold. (1) We have identi-

fied an effective metric to represent the performance-critical blocks
by considering both temporal locality and data access patterns. (2)
We have designed an efficient mechanism to profile and maintain
detailed data access history for a long-term optimization. (3) We
present a comprehensive design and implementation of a high per-
formance hybrid storage system, which improves performance for
accesses to the high-cost data blocks, semantically-critical (file sys-
tem metadata) blocks, and write-intensive workloads with minimal
changes to existing systems. While we have prototyped Hystor as
a kernel module in software, a hardware implementation (e.g. in a
RAID controller card) of this scheme is possible, which can further
reduce system deployment difficulty as a drop-in solution.

In the rest of this paper, we will first examine the SSD perfor-
mance advantages in Section 2. We study how to identify the most
valuable data blocks and efficiently maintain data access history in
Section 3 and 4. Then we present the design and implementation
of Hystor in Section 5 and 6. Section 7 presents our experimental
results. Related work is presented in Section 8. The last section
concludes this paper.

2. SSD PERFORMANCE ADVANTAGES
Understanding the relative performance strengths of SSDs over

HDDs is critical to efficiently leverage limited SSD space for the
most performance gains. In this section, we evaluate an Intel® X25-
E 32GB SSD [13], a representative high-performance SSD, and
compare its performance with a 15,000 RPM Seagate® Cheetah®

15.5k SAS hard disk drive, a typical high-end HDD. Details about
the two storage devices and experiment system setup are available
in Section 7.

In general, a workload can be characterized by its read/write ra-
tio, random/sequential ratio, request size, and think time, etc. We
use the Intel® Open Storage Toolkit [21] to generate four typical
workloads, namely random read, random write, sequential read,
and sequential write. For each workload, we set the queue depth of
32 jobs and vary the request size from 1KB to 256KB. All work-
loads directly access raw block devices to bypass the buffer cache
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Figure 1: I/O Bandwidths for reads and writes on the Intel® X25-E SSD and the
Seagate® Cheetah® HDD.
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Figure 2: Accumulated HDD latency of sec-
tors sorted using different metrics.

and file system. All reads and writes are synchronous I/O with
no think time. Although real-life workloads can be a mix of vari-
ous access patterns, we use the four synthetic microbenchmarks to
qualitatively characterize the SSD. Figure 1 shows the experimen-
tal results. We made several findings to guide our system designs.

First, as expected, the most significant performance gain of run-
ning workloads on the SSD appears in random data accesses with
small request sizes, for both reads and writes. For example, with a
request size of 4KB, random reads and random writes on the SSD
achieve more than 7.7 times and 28.5 times higher bandwidths than
on the HDD, respectively. As request size increases to 256KB, the
relative performance gains of sequential reads and writes diminish
to 2 times and 1.5 times, respectively. It clearly shows that achiev-
able performance benefits are highly dependent on workload access
patterns, and we must identify the blocks that can bring the most
performance benefits by migrating them into SSDs.

Second, contrary to the long-existing understanding about low
write performance on SSDs, we have observed an exceptionally
high write performance on the SSD (up to 194MB/sec). Similar
findings have been made in recent performance studies on the state-
of-the-art SSDs [5, 6]. As a high-end product, the Intel® X25-E
SSD is designed for commercial environments with a sophisticated
FTL design [13]. The highly optimized SSD internal designs sig-
nificantly improve write performance and make it possible to use an
SSD as a write-back buffer for speeding up write-intensive work-
loads, such as email servers.

Third, we can see that write performance on the SSD is largely
independent of access patterns, and random writes can achieve al-
most identical performance as sequential writes. This indicates that
it is unnecessary to specially treat random writes for performance
purposes like in some prior work. This allows us to remove much
unnecessary design complexity. In addition, we also find that writes
on the SSD can quickly reach a rather high bandwidth (around
180MB/sec) with a relatively small request size (32KB) for both
random and sequential workloads. This means that we can achieve
the peak bandwidth on SSDs without need of intentionally organiz-
ing large requests as we usually do on HDDs.

Based on these observations, we summarize two key issues that
must be considered in the design of Hystor as follows.

1. We need to recognize workload access patterns to identify
the most high-cost data blocks, especially those blocks being
randomly accessed by small requests, which cause the worst
performance for HDDs.

2. We can leverage the SSD as a write-back buffer to handle
writes, which often raise high latencies in HDDs. Mean-
while, we do not have to treat random writes specifically,
since random writes on SSD can perform as fast as sequen-
tial writes.

3. HIGH-COST DATA BLOCKS
Many workloads have a small data set contributing a large per-

centage of the aggregate latency in data accesses. A critical task for
Hystor is to identify the most performance-critical blocks.

3.1 Identifying High-Cost Blocks
A simple way to identify the high-cost blocks is to observe I/O

latency of accessing each block and directly use the accumulated
latency as an indicator to label the ‘cost’ of each block. In a hybrid
storage, however, once we remap blocks to the SSD, we cannot
observe their access latency on HDD any more. Continuing to use
the previously observed latency would be misleading, if the access
pattern changes after migration. Thus, directly using I/O latency to
identify high-cost blocks is infeasible.

Some prior work (e.g. [12, 27]) maintains an on-line hard disk
model to predict the latency for each incoming request. Such a so-
lution heavily relies on precise hard disk modeling based on de-
tailed specification data, which is often unavailable in practice.
More importantly, as stated in prior work [12], as the HDD inter-
nals become increasingly more complicated (e.g. disk cache), it is
difficult, if not impossible, to accurately model a modern hard disk
and precisely predict the I/O latency for each disk access.

We propose another approach – using a pattern-related metric as
an indicator to indirectly infer access cost without need of knowing
the exact latencies. We associate each block with a selected metric
and update the metric value by observing accesses to the block. The
key issue here is that the selected metric should have a strong corre-
lation to access latency, so that by comparing the metric values, we
can effectively estimate the relative access latencies associated to
blocks and identify the relatively high-cost ones. Since the selected
metric is device independent, it also frees us from unnecessary bur-
dens of considering specific hardware details (e.g. disk cache size),
which can vary greatly across devices.

3.2 Indicator Metrics
In order to determine an effective indicator metric that is highly

correlated to access latencies, we first identify four candidate met-
rics, namely request size, frequency, seek distance, reuse distance,
and also consider their combinations. We use the blktrace tool [2]
to collect I/O traces on an HDD for a variety of workloads. In
the off-line analysis, we calculate the accumulated latency for each
accessed block, as well as the associated candidate metric values.
Then we rank the blocks in the order of their metric values. For
example, concerning the metric frequency, we sort the blocks from
the most frequently accessed one to the least frequently accessed
one, and plot the accumulated latency in that order.

Figure 2 shows an example of TPC-H workload (other workloads
are not shown due to space constraints). The X axis shows the top



percentage of blocks, sorted in a specific metric value, and the Y
axis shows the percentage of aggregate latency of these blocks. Di-
rectly using latency as the metric represents the ideal case. Thus,
the closer a curve is to the latency curve, the better the corre-
sponding metric is. Besides the selected four metrics, we have
also examined various combinations of them, among which fre-
quency/request size is found to be the most effective one. For
brevity, we only show the combination of frequency/request size in
the figure. In our experiments, we found that frequency/request size
emulates latency consistently better across a variety of workloads,
the other metrics and combinations, such as seek distance, work
well for some cases but unsatisfactorily for the others.

The metric frequency/request size is selected with a strong ba-
sis – it essentially describes both temporal locality and access
pattern. In particular, frequency describes the temporal locality
and request size represents the access pattern for a given work-
load. In contrast to the widely used recency-based policies (e.g.
LRU), we use frequency to represent the temporal locality to avoid
the well-recognized cache pollution problem for handling weak-
locality workloads (e.g. scanning a large file would evict valuable
data from the cache) [14]. It is also worth noting here that there
is an intrinsic correlation between request size and access latency.
First of all, the average access latency per block is highly corre-
lated to request size, since a large request can effectively amortize
the seek and rotational latency over many blocks. Second, the re-
quest size also reflects workload access patterns. As the storage
system sits at the bottom of the storage hierarchy, the sequence of
data accesses observed at the block device level is an optimized
result of multiple upper-level components. For example, the I/O
scheduler attempts to merge consecutive small requests into a large
one. Thus, a small request observed at the block device often
means that either the upper-level components cannot further opti-
mize data accesses, or the application accesses data in such a non-
sequential pattern. Finally, small requests also tend to incur high
latency, since they are more likely to be intervened by other re-
quests, which would cause high latencies from disk head seeks and
rotations. Although this metric cannot perfectly emulate the ideal
curve (latency), as we see in the figure, it performs consistently the
best in various workloads and works well in our experiments.

4. MAINTAINING DATA ACCESS HISTORY
To use the metric values to profile data access history, we must

address two critical challenges – (1) how to represent the metric
values in a compact and efficient way, and (2) how to maintain such
history information for each block of a large-scale storage space
(e.g. Terabytes). In short, we need an efficient mechanism to profile
and maintain data access history at a low cost.

4.1 The Block Table
We use the block table, which was initially introduced in our

previous work [15], to maintain data access history. Akin to the
page table used in virtual memory management, the block table
has three levels, Block Global Directory (BGD), Block Middle Di-
rectory (BMD), and Block Table Entry (BTE), as shown in Figure
3(a). The three levels, namely BGD, BMD, and BTE, of this struc-
ture essentially describe the storage space segmented in units of
regions, sub-regions, and blocks, accordingly.

In the block table, each level is composed of multiple 4KB pages,
each of which consists of multiple entries. A block’s logical block
number (LBN) is broken into three components, each of which is
an index to an entry in the page at the corresponding level. Each
BGD or BMD entry has a 32-bit pointer field pointing to a (BMD
or BTE) page in the next level, a 16-bit counter field recording data

(a) The block table structure

(b) Traversing the block table

Figure 3: The Block Table. Each box represents an entry
page. In BGD and BMD pages, left and right columns rep-
resent unique and counter fields. In BTE pages, two columns
represent flag and counter fields. The two steps show the order
of entries being traversed from BGD to BTE entries.

access information, and a 16-bit unique field tracking the number
of BTE entries belonging to it. Each BTE entry has a 16-bit counter
field and a 16-bit flag field to record other properties of a block (e.g.
whether a block is a metadata block). This three-level tree structure
is a very efficient vehicle to maintain storage access information.
For a given block, we only need three memory accesses to traverse
the block table and locate its corresponding information stored in
the BTE entry.

4.2 Representing Indicator Metric
We have developed a technique, called inverse bitmap, to encode

the request size and frequency in the block table. When a block is
accessed by a request of N sectors, an inverse bitmap, b, is calcu-
lated using the following equation:

b = 2max(0,7−�log2N�) (4.1)

As shown above, inverse bitmap encodes request size into a single
byte. The smaller a request is, the bigger the inverse bitmap is.

Each entry at each level of the block table maintains a counter.
The values of the counters in the BGD, BMD, and BTE entries
represent the ‘hotness’ of the regions, sub-regions, and blocks, re-
spectively. Upon an incoming request, we use the block’s LBN
as an index to traverse the block table through the three levels
(BGD→BMD→BTE). At each level, we increment the counter of
the corresponding entry by b. So the more frequently a block is
accessed, the more often the corresponding counter is incremented.
In this way, we use the inverse bitmap to represent the size for a
given request, and the counter value, which is updated upon each
request, to represent the indicator metric frequency/request size. A
block with a large counter value is regarded as a high-cost (i.e. hot)
block. By comparing the counters associated with blocks, we can
identify the blocks that should be relocated to the SSD.

As time elapses, a counter (16 bits) may overflow. In such a case,
we right shift all the counters of the entries in the same entry page
by one bit, so that we can still preserve the information about the
relative importance that the counter values represent. Since such a
right shift operation is needed for a minimum of 512 updates to a
single LBN, this operation would cause little overhead. Also note



that we do not need to right shift counters in other pages, because
we only need to keep track of the relative hotness for entries in a
page, and the relative hotness among the pages is represented by
the entries in the upper level.

The block table is a very efficient and flexible data structure to
maintain the block-level information. For example, the full block
table can be maintained in persistent storage (e.g. SSD). During the
periodic update of the block table, we can load only the relevant ta-
ble pages that need to be updated into memory (but at least one page
at each level). Also note that the block table is a sparse data struc-
ture – we only need to maintain history for accessed blocks. This
means that the spatial overhead in persistent storage is only propor-
tional to the working-set size of workloads. In the worst case, e.g.
scanning the whole storage space, the maximum spatial overhead
is approximately 0.1% of the storage space (a 32-bit BTE entry
per 4KB chunk). In practice, however, since most workloads only
access partial storage space, the spatial overhead would be much
lower. If needed, we can further release storage space by trimming
the rarely updated table pages. This flexibility of the block table
provides high scalability when handling a large storage space.

5. THE DESIGN OF HYSTOR
After introducing the indicator metric and the block table, we

are now in a position to present the design of Hystor. Our goal is
to best fit the SSD in the storage systems and effectively exploit its
unique performance potential with minimal system changes.

5.1 Main Architecture
Hystor works as a pseudo block device at the block layer, as

shown in Figure 4(a). The upper-level components, such as file
systems, view it simply as a single block device, despite the com-
plicated internals. Users can create partitions and file systems on
it, similar to any directly attached drive. With minimal system
changes, Hystor is easy to integrate into existing systems.

Figure 4: Architecture of Hystor.
Hystor has three major components, namely remapper, monitor,

and data mover. The remapper maintains a mapping table to track
the original location of blocks on the SSD. When an incoming re-
quest arrives at the remapper, the mapping table is first looked up.
If the requested block is resident in the SSD, the request is redi-
rected to the SSD, otherwise, it is serviced from the HDD. This
remapping process is similar to the software RAID controller. The
remapper also intercepts and forwards I/O requests to the monitor,
which collects I/O requests and updates the block table to profile
workload access patterns. The monitor periodically analyzes the
data access history, identifies the blocks that should be remapped to
the SSD, and requests the data mover to relocate data blocks across

storage devices. The monitor can run in either kernel mode or user
mode. The data mover is responsible for issuing I/O commands to
the block devices and updating the mapping table accordingly to
reflect the most recent changes.

5.2 Logical Block Mapping
Hystor integrates multiple HDDs and SSDs and exposes a linear

array of logical blocks to the upper-level components. Each logical
block is directly mapped to a physical block in the HDD and in-
dexed using the logical block number (LBN). A logical block can
be selected to remap to the SSD, and its physical location in the
SSD is dynamically selected. Hystor maintains a mapping table to
keep track of the remapped logical blocks. This table is also main-
tained in a statically specified location in the persistent storage (e.g.
the first few MBs of SSD), and it is rebuilt in the volatile memory at
startup time. Changes to the mapping table are synchronously writ-
ten to the storage to survive power failures. In memory, the table is
organized as a B-tree to speedup lookups, which only incur mini-
mal overhead with several memory accesses. Since only remapped
blocks need to be tracked in the mapping table, the spatial over-
head of the mapping table is small and proportional to the SSD
size. Techniques, similar to the dynamic mapping table [10], can
also be applied to only maintain the most frequently accessed map-
ping entries to further reduce the in-memory mapping table size.

In essence, Hystor manages remapped blocks in an ‘inclusive’
manner, which means that, when a block is remapped to the SSD,
its original home block in the HDD would not be recycled. We
choose such an inclusive design for three reasons. First, the SSD
capacity is normally at least one order of magnitude smaller than
the HDDs, thus, there is no need to save a small amount of ca-
pacity for low-cost HDDs. Also, if we attempt to fully utilize the
HDD space, a large mapping table has to be maintained to track ev-
ery block in the storage space (often in granularity of TBs), which
would incur high overhead. Second, when blocks in the SSD need
to be moved back to the HDD, extra high-cost I/O operations are
required. In contrast, if blocks are duplicated to the SSD, we can
simply drop the replicas in the SSD, as long as they are clean. Fi-
nally, this design also significantly simplifies the implementation
and avoids unnecessary complexity.

5.3 SSD Space Management
In Hystor, the SSD plays a major role as a storage to retain the

best suitable data, and a minor role as a write-back buffer for writes.
Accordingly, we logically segment the SSD space into two regions,
remap area and write-back area, as shown in Figure 4(b). The
remap area is used to maintain the identified critical blocks, such as
the high-cost data blocks and file system metadata blocks. All re-
quests, including both reads and writes, to the blocks in the remap
area are directed to the SSD. The write-back area is used as a buffer
to temporarily hold dirty data of incoming write requests. All other
requests are directed to the HDD. Blocks in the write-back area are
periodically synchronized to the HDD and recycled for serving in-
coming writes. We use a configurable quota to guard the sizes of
the two regions, so there is no need to physically segment the two
regions on the SSD.

We allocate blocks in the SSD in chunks, which is similar in
nature to that in RAID [25]. This brings two benefits. First, when
moving data into the SSD, each write is organized more efficiently
in a reasonably large request. Second, it avoids splitting a request
into several excessively small requests. In our prototype, we choose
an initial chunk size of 8 sectors (4KB). We will further study the
effect of chunk size on performance in Section 7.5. In Hystor, all
data allocation and management are performed in chunks.



5.4 Managing the Remap Area
The remap area is used to maintain identified critical blocks for

a long-term optimization. Two types of blocks can be remapped to
the SSD: (1) the high-cost data blocks, which are identified by ana-
lyzing data access history using the block table, and (2) file system
metadata blocks, which are identified through available semantic
information in OS kernels.

5.4.1 Identifying High-Cost Data Blocks

As shown in Section 4, the block table maintains data access
history in forms of the counter values. By comparing the counter
values of entries at the BGD, BMD, or BTE levels, we can easily
identify the hot regions, sub-regions, and blocks, accordingly. The
rationale guiding our design is that the hottest blocks in the hottest
regions should be given the highest priority to stay in the high-
speed SSD.

Program 1 Pseudocode of identifying candidate blocks.

counter(): the counter value of an entry
total_cnt(): the aggregate value of counters

of a block table page
sort_unique_asc(): sort entries by unique values
sort_counter_dsc(): sort entries by counter values
quota: the num. of available SSD blocks

sort_unique_asc(bgd_page); /*sort bgd entries*/
bgd_count = total_cnt(bgd_page);
for each bgd entry && quota > 0; do

bmd_quota = quota*counter(bgd)/bgd_count;
bgd_count -= counter(bgd);
quota -= bmd_quota;

bmd_page = bgd->bmd; /*get the bmd page*/
sort_unique_asc(bmd_page);/*sort bmd entries*/
bmd_count = total_cnt(bmd_page);
for each bmd entry && bmd_quota > 0; do

bte_quota = bmd_quota*counter(bmd)/bmd_count;
bmd_count -= counter(bmd);
bmd_quota -= bte_quota;

bte_page = bmd->bte;
sort_counter_dsc(bte_page);
for each bte entry && bte_quota > 0; do
add bte to the update list;
bte_quota --;

done
bmd_quota += bte_quota; /*unused quota*/

done
quota += bmd_quota; /*unused quota*/

done

Program 1 shows the pseudocode of identifying high-cost blocks.
We first proportionally allocate SSD space quota to each BGD en-
try based on their counter values, since a hot region should be given
more chance of being improved. Then we begin from the BGD en-
try with the least number of BTE entries (with the smallest unique
value), and repeat this process until reaching the BTE level, where
we allocate entries in the descending order of their counter values.
The blocks being pointed to by the BTE entries are added into a
candidate list until the quota is used up. The unused quota is ac-
cumulated to the next step. In this way, we recursively determine
the hottest blocks in the region and allocate SSD space to the re-
gions correspondingly. Figure 3(b) illustrates this process, and it is
repeated until the available space is allocated.

5.4.2 Reorganizing Data Layout across Devices

Workload access pattern changes over time. In order to adapt
to the most recent workload access patterns, Hystor periodically
wakes up the monitor, updates the block table, and recommends a
list of candidate blocks that should be put in SSD, called updates, to

update the remap area. Directly replacing all the blocks in the SSD
with the updates would be over-sensitive to workload dynamics.
Thus we take a ‘smooth update’ approach as follows.

We manage the blocks in the remap area in a list, called the res-
ident list. When a block is added to the resident list or accessed,
it is put at the top of the list. Periodically the monitor wakes up
and sends a list of updates as described in Section 5.4.1 to the data
mover. For each update, the data mover checks whether the block
is already in the resident list. If true, it informs the monitor that the
block is present. Otherwise, it reclaims the block at the bottom of
the resident list and reassign its space for the update. In both cases,
the new block (update) is placed at the top of the resident list. The
monitor repeats this process until a certain number (e.g. 5-10%
of the SSD size) of blocks in the resident list are updated. So we
identify the high-cost blocks based on the most recent workloads
and place them at the top of the resident list, and meanwhile, we al-
ways evict unimportant blocks, which have become rarely accessed
and thus reside at the list bottom. In this way, we gradually merge
the most recently identified high-cost data set into the old one and
avoid aggressively shifting the whole set from one to another.

Once the resident list is updated, the data mover is triggered
to perform I/O operations to relocate blocks across devices asyn-
chronously in the background. Since the data mover can monitor
the I/O traffic online and only reorganize data layout during idle
periods (e.g. during low-load hours), the possible interference to
foreground jobs can be minimized.

5.4.3 User-level Monitor

As a core engine of Hystor, the monitor receives intercepted re-
quests from the remapper, updates the block table, and generates a
list of updates to relocate blocks across devices. The monitor can
work in either kernel mode or user mode with the same policy. We
implemented both in our prototype.

Our user-level monitor functions similarly to blktrace [2]. Re-
quests are temporarily maintained in a small log buffer in the kernel
memory and periodically passed over to the monitor, a user-level
daemon thread. Our prototype integrates the user-level monitor
into blktrace, which allows us to efficiently use the existing infras-
tructure to record I/O trace by periodically passing requests to the
monitor. The kernel-level monitor directly conducts the same work
in the OS kernel.

Compared to the kernel-level monitor, the user-level monitor in-
curs lower overhead. Memory allocation in the user-level monitor
is only needed when it is woken up, and its memory can even be
paged out when not in use. Since each time we only update the data
structures partially, this significantly reduces the overhead.

5.4.4 Identifying Metadata Blocks

File system metadata blocks are critical to system performance.
Before accessing a file, its metadata blocks must be loaded into
memory. With only a small amount of SSD space, relocating file
system metadata blocks into SSD can effectively improve I/O per-
formance, especially for metadata-intensive workloads during a cold
start. Hystor attempts to identify these semantically critical blocks
and proactively remap them to the SSD to speed up file accesses at
an early stage, which avoids high-cost cold misses at a later time.
In order to avoid intrusive system changes, we take a conservative
approach to leverage the information that is already available in the
existing OS kernels.

In the Linux kernel, metadata blocks are tagged such that an
I/O scheduler can improve metadata read performance. So far, this
mechanism is used by some file systems (e.g. Ext2/Ext3) for meta-
data reads. In our prototype, we modified a single line at the block



layer to leverage this available information by tagging incoming
requests for metadata blocks. No other changes to file systems or
applications are needed. Similar tagging technique is also used in
Differentiated Storage Services [22]. When the remapper receives
a request, we check the incoming request’s tags and mark the re-
quested blocks in the block table (using the flag field of BTE en-
tries). The identified metadata blocks are remapped to the SSD.
Currently, our implementation is effective for Ext2/Ext3, the de-
fault file system in Linux. Extending this approach to other file
systems needs additional minor changes.

Another optional method, which can identify metadata blocks
without any kernel change, is to statically infer the property of
blocks by examining their logical block numbers (LBN). For exam-
ple, the Ext2/Ext3 file system segments storage space into 128MB
block groups, and the first few blocks of each group are always re-
served for storing metadata, such as inode bitmap, etc. Since the
location of these blocks is statically determined, we can mark them
as metadata blocks. As such a solution assumes certain file systems
and default configurations, it has not been adopted in our prototype.

5.5 Managing the Write-back Area
The most recent generation of SSDs has shown an exceptionally

good write performance, even for random writes (50-75µs for a
4KB write [5]). This makes the SSD a suitable place for buffering
dirty data and reducing latency for write-intensive workloads. As a
configurable option, Hystor can leverage the high-speed SSD as a
buffer to speed up write-intensive workloads.

The blocks in the write-back area are managed in two lists, a
clean list and a dirty list. When a write request arrives, we first
allocate SSD blocks from the clean list. The new dirty blocks are
written into the SSD and added onto the dirty list. We maintain a
counter to track the number of dirty blocks in the write-back area.
If this number reaches a high watermark, a scrubber is waken up
to write dirty blocks back to the HDD until reaching a low water-
mark. Cleaned blocks are placed onto the clean list for reuse. Since
writes can return immediately once the data is written to the SSD,
the synchronous write latency observed by foreground jobs is very
low. We will examine the scrubbing effect in Section 7.4. Another
optional optimization is to only buffer small write requests in the
SSD, which further improves the use of the write-back area

As mentioned previously, we do not specifically optimize ran-
dom writes, since the state-of-the-art SSDs provide high random
write performance [5, 6]. One might also be concerned about the
potential reliability issues of using SSD as a write-back buffer,
since flash memory cells can wear out after a certain number of pro-
gram/erase cycles. Fortunately, unlike early generations of SSDs,
the current high-end SSDs can provide a reasonably high reliabil-
ity. For example, the Mean Time Before Failure (MTBF) rating of
the Intel® X25-E SSDs is as high as 2 million hours [13], which
is comparable to that of typical HDDs. In this paper we do not
consider the low-end SSDs with poor write performance and low
reliability, which are not suitable for our system design goals.

6. IMPLEMENTATION ISSUES
We have prototyped Hystor in the Linux kernel 2.6.25.8 as a

stand-alone kernel module with about 2,500 lines of code. The
user-level monitor is implemented as a user-level daemon thread
with about 2,400 lines of code. Neither one requires any modifica-
tions in the Linux kernel. The alternative kernel implementation of
the monitor module consists of about 4,800 lines of code and only
about 50 lines of code are inserted in the stock Linux kernel.

In our prototype, the remapper is implemented based on the soft-
ware RAID. When the kernel module is activated, we use dmsetup

to create a new block device with appointed HDD and SSD de-
vices. By integrating the Hystor functionality on the block layer,
we can avoid dealing with some complex issues, such as splitting
and merging requests to different devices, since the block layer al-
ready handles these issues. The downside of this design is that
requests observed at this layer may be further merged into larger
requests later, so we track the LBN of the last request to estimate
the mergeable request size. Another merit of this design is that
Hystor can work seamlessly with other storage, such as RAID and
SAN storage. For example, a RAID device can be built upon Hys-
tor virtual devices, similarly, Hystor can utilize RAID devices too.
Such flexibility is highly desirable in commercial systems.

As a core engine of Hystor, the monitor can work in either kernel
mode or user mode. In both cases, the monitor is implemented as a
daemon thread. Periodically it is triggered to process the collected
I/O requests, update the block table, and generate updates to drive
the data mover to perform data relocation. In kernel mode, the
observed requests are held in two log buffers. If one buffer is full,
we swap to the other to accept incoming requests, and the requests
in the full buffer are updated to the block table in parallel. In user
mode, requests are directly passed to the user-level daemon. The
analysis of data access history can also be done offline. In our
current prototype, we maintain the block table and the mapping
table full in memory, and in our future work we plan to further
optimize memory usage by only loading partial tables into memory
as discussed previously.

7. EVALUATION

7.1 Experimental System
Our experimental system is an Intel® D975BX system with a

2.66GHz Intel® Core™ 2 Quad CPU and 4GB main memory on
board. Our prototype system consists of a Seagate® Cheetah® 15k.5
SAS hard drive and a 32GB Intel® X25-E SSD, both of which are
high-end storage devices on the market. Also note that we only use
partial SSD space in our experiments to avoid overestimating the
performance. Table 1 lists the detailed specification of the two de-
vices. The HDDs are connected through an LSI® MegaRaid® 8704
SAS card and the SSD uses a SATA 3.0Gb/s connector.

X25-E SSD Cheetah HDD

Capacity 32GB 73GB
Interface SATA2 SAS

Read Bandwidth 250 MB/Sec 125 MB/Sec
Write Bandwidth 180 MB/Sec 125 MB/Sec

Table 1: Specifications of the SSD and the HDD.

We use Fedora™ Core 8 with the Linux kernel 2.6.25.8 and Ext3
file system with default configurations. In order to minimize the in-
terference, the operating system and home directory are stored in a
separate hard disk drive. We use the noop (No-op) I/O scheduler,
which is suitable for non-HDD devices [5,6], for the SSD. The hard
disk drives use the CFQ (Completely Fair Queuing) scheduler, the
default scheduler in the Linux kernel, to optimize the HDD perfor-
mance. The on-device caches of all the storage devices are enabled.
The other system configurations use the default values.

7.2 Performance of Hystor
In general, the larger the SSD size is, the better the Hystor’s

performance is. In order to avoid overestimating the performance
improvement, we first estimate the working-set size (the number
of blocks being accessed during execution) of each workload by
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Figure 5: Normalized execution times and hit ratios of workloads. The horizontal line represents the time of running on HDD.

examining the collected I/O traces off line, then we conduct ex-
periments with five configurations of the SSD size, namely 20%,
40%, 60%, 80%, and 100% of the working-set size. Since we only
conservatively use partial SSD space in our experiments, the per-
formance of Hystor can be even better in practice. To examine the
effectiveness of the write-back area, we configure three write-back
area sizes, namely 0%, 20%, and 30% of the available SSD space.

For each workload, we perform the baseline experiments on the
SSD. We rerun the experiments with various configurations of the
SSD space. We show the execution times normalized to that of run-
ning on the SSD-only system. Therefore, the normalized execution
time ‘1.0’ represents the ideal case. In order to compare with the
worst case, running on the HDD-only system, we plot a horizontal
line in the figures to denote the case of running on the HDD. Be-
sides the normalized execution times, we also present the hit ratios
of I/O requests observed at the remapper. A request to blocks resi-
dent in the SSD is considered a hit, otherwise, it is a miss. The hit
ratio describes what percentage of requests are serviced from the
SSD. Due to space constraints, we only present results for the user-
mode monitor here, and the kernel monitor shows similar results.
Figure 5 shows the normalized execution times and hit ratios.

7.2.1 Postmark

Postmark is a widely used file system benchmark [28]. It creates
100 directories and 20,000 files, then performs 100,000 transac-
tions (reads and writes) to stress the file system, and finally deletes
files. This workload features intensive small random data accesses.

Figure 5(a) shows that as the worst case, postmark on the HDD-
only system runs 4.2 times slower than on the SSD-only system.
Hystor effectively improves performance for this workload. With
the increase of SSD space, the execution time is reduced till close
to an SSD-only system, shown as a linear curve in the figure. In this

case, most data blocks are accessed with similar patterns, which is
challenging for Hystor to identify high-cost data blocks based on
access patterns. However, Hystor still provides performance gains
proportional to available SSD space.

Since this workload features many small writes, allocating a large
write-back area helps improve hit ratios as well as execution times.
Figure 5(d) shows that with the SSD size of 310MB, allocating 30%
of the SSD space for write-back can improve hit ratio from 79% to
91%, compared to without write-back area. Accordingly, the exe-
cution time is reduced from 34 seconds to 24 seconds, which is a
29% reduction.

Also note that multiple writes to the same block would cause
synchronization issues. With a smaller write-back area, dirty blocks
have to be more frequently flushed back to the HDD due to capac-
ity limit. When such an operation is in progress, incoming write
requests to the same blocks have to be suspended to maintain con-
sistency, which further artificially increases the request latency. For
example, when the cache size grows to 310MB, the amount of hits
to the lock-protected blocks decreases by a factor of 4, which trans-
lates into a decrease of execution time.

7.2.2 Email

Email was developed by University of Michigan based on Post-
mark for emulating an email server [31]. It is configured with 500
directories, 500 files, and 5,000 transactions. This workload has
intensive synchronous writes with different append sizes and loca-
tions based on realistic mail distribution function, and it features a
more skewed distribution of latencies. Most data accesses are small
random writes, which are significantly faster on the SSD.

Figure 5(b) shows that running email exclusively on the SSD
is 18.8 times faster than on the HDD. With no write-back area,
the performance of Hystor is suboptimal, especially for a small



 20

 40

 60

 80

 100

 120

 140

 0  20  40  60  80  100  120  140  160

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)

SSD Size (MB)

Hystor-No-Metadata (32MB)
Hystor-Metadata (32MB)

Hystor-No-Metadata (16MB)
Hystor-Metadata (16MB)

Figure 6: Optimization for metadata
blocks. 32MB and 16MB refer to the two
workloads. Hystor with and without opti-
mizing metadata are referred to as Hystor-
Metadata and Hystor-No-Metadata.

Demand
Scrubs

  0

  1,000

  2,000

  3,000

  4,000

  5,000

  6,000

HDD8060402080604020

R
eq

ue
st

s/
Se

co
nd

SSD in Hystor HDD in Hystor

Figure 7: Request arrival rate in email.
The numbers on X axis for each bar refer
to various configurations of the SSD size
(% of the working-set size). HDD refers to
the HDD-only system.

 0

 5

 10

 15

 20

 25

20 40 60 80 100

N
or

m
al

iz
ed

 T
im

e

SSD Size (% of Working-Set Size)

tpch-q1 4K
postmark 4K

email 4K
tpch-q1 16K

postmark 16K
email 16K

Figure 8: Effect of chunk size on perfor-
mance. 4K and 16K refer to the chunk
sizes, respectively. The numbers on X axis
refer to various configurations of the SSD
size (% of the working-set size).

SSD size. As we see in the figure, with SSD size of 27MB (20%
of the working-set size), Hystor may even be slightly worse than
the HDD-only system, due to additional I/O operations and in-
creased probability of split requests. Without the write-back area,
data blocks remapped in the SSD may not be necessarily to be re-
accessed in the next run. This leads to a hit ratio of only 12.4% as
shown in Figure 5(e). In contrast, with the write-back area, the hit
ratio quickly increases to over 90%. This shows that the write-back
area also behaves like a small cache to capture some short-term data
reuse. As a result, the execution time is reduced by a half.

7.2.3 TPC-H Query 1

TPC-H Q1 is the query 1 from the TPC-H database benchmark
suite [33]. It runs against a database (scale factor 1) managed by
PostgreSQL 8.1.4 database server. Different from the other work-
loads, this workload does not benefit much from running on the
SSD, since its data accesses are more sequential and less I/O in-
tensive. As shown in Figure 5(c), running this workload on the
HDD-only system is only 16% slower than running on the SSD.
However, since the reuse of data blocks is more significant, the hit
ratio in this case is higher. Figure 5(f) shows that with SSD size
of 492MB, the hit ratio of incoming requests is about 30% to 40%.
When the SSD size is small, the write-back area may introduce ex-
tra traffic, which leads to a 2-5% slowdown compared to running on
HDD. As the write-back area size increases, the number of write-
back operations is reduced dramatically, which improves the I/O
performance.

7.3 Metadata Blocks
Hystor also identifies metadata blocks of file systems and remaps

them to the SSD. We have designed an experiment to show how
such an optimization improves performance.

In Ext2/Ext3 file systems, a large file is composed of many data
chunks, and indirect blocks are used to locate and link these chunks
together. As a type of metadata, indirect blocks do not contain file
content but are crucial to accessing files. We create a 32GB file and
use the Intel® Open Storage Toolkit [21] to generate two workloads,
which randomly read 4KB data each time until 16MB and 32MB
of data are read. This workload emulates data accesses in files with
complex internal structures, such as virtual disk file used by virtual
machines. In such random workloads, the accessed file data are
unlikely to be reused, while indirect blocks would be reaccessed,
thus holding metadata blocks in the SSD would be beneficial. We
use this example to compare the performance of Hystor with and
without optimization for file system metadata blocks, denoted as
Hystor-Metadata and Hystor-No-Metadata respectively.

Figure 6 shows the experimental results of Hystor-No-Metadata
and Hystor-Metadata. Both approaches eventually can speed up the
two workloads by about 20 seconds. However, Hystor-Metadata is
able to achieve that performance with a much smaller SSD space.
For the workload reading 32MB data, Hystor-Metadata identifies
and remaps nearly all indirect blocks to the SSD with just 32MB
of SSD space. In contrast, Hystor-No-Metadata lacks the capabil-
ity of identifying metadata blocks. Since only around 20% of the
blocks being accessed are metadata blocks, most blocks remapped
to the SSD are file content data blocks, which are unfortunately al-
most never reused. Therefore Hystor-No-Metadata requires about
160MB of SSD space to cover the whole working-set, while Hystor-
Metadata needs only 32MB SSD space. A similar pattern can be
observed in the case of reading 16MB data.

This experiment shows that optimization for metadata blocks can
effectively improve system performance with only a small amount
of SSD space, especially for metadata-intensive workloads. More
importantly, different from identifying high-cost data blocks by ob-
serving workload access patterns, we can proactively identify these
semantically critical blocks at an early stage, so high-cost cold
misses can be avoided. It is also worth noting that the three ma-
jor components in Hystor are complementary to each other. For
example, although the current implementation of Hystor identifies
metadata blocks only for read requests, writes to these metadata
blocks still can benefit from being buffered in the write-back area.

7.4 Scrubbing
Dirty blocks buffered in the write-back area have to be written

back to the HDD in the background, called scrubbing. Each scrub
operation can cause two additional I/O operations – a read from the
SSD and a write to the HDD. Here we use email, the worst case for
scrubs, to study how scrubbing affects system performance. Figure
7 shows the request arrival rate (number of requests per second) for
email configured with four SSD sizes (20-80% of the working-set
size) and a 20% write-back fraction . The requests are broken down
by the source, internal scrubbing daemon or the upper-layer com-
ponents, denoted as scrubs and demand in the figure, respectively.

As shown in Figure 7, the request arrival rate in Hystor is much
higher than that in the HDD-only system. This is due to two rea-
sons. First, the average request size for HDD-only system is 2.5
times larger than that in Hystor, since a large request in Hystor may
split into several small ones to different devices. Second, two ad-
ditional I/O operations are needed for each scrub. We can see that,
as the SSD size increases to 80% of the working-set size, the ar-
rival rate of scrub requests drops by nearly 25% on the SSD, due to
less frequent scrubbing. The arrival rate of on-demand requests in-



creases as the SSD size increases, because the execution time is re-
duced and the number of on-demand requests remains unchanged.

An increase of request arrival rate may not necessarily lead to
an increase of latency. In the case with 80% of the working-set
size, as many as 5,800 requests arrive on the SSD every second.
However, we do not observe a corresponding increase of execution
time (see Figure 5(b)) and the SSD I/O queue still remains very
short. This is mainly because the high bandwidth of the SSD (up
to 250MB/sec) can easily absorb the extra traffic. On the HDD
in Hystor, the request arrival rate reaches over 1,800 requests per
second. However, since these requests happen in the background,
the performance impact on the foreground jobs is minimal.

This case shows that although a considerable increase of request
arrival rate is resident on both storage devices, conducting back-
ground scrubbing causes minimal performance impact, even for
write-intensive workloads.

7.5 Chunk Size
Chunk size is an important parameter in Hystor. A large chunk

size is desirable for reducing memory overhead of the mapping ta-
ble and the block table. On the other hand, a small chunk size
can effectively improve utilization of the SSD space, since a large
chunk may contain both hot and cold data.

Figure 8 compares performance of using a chunk size of 8 sec-
tors (4 KB) and 32 sectors (16 KB). We only present data for the
cache with a 20% write-back fraction here. We can see that with
a large chunk size (16KB), the performance of email degrades sig-
nificantly due to the underutilized SSD space. Recall that most of
the requests in email are small, hot and cold data could co-exist in
a large chunk, which causes the miss rate to increase by four-fold.
With the increase of SSD size, such a performance gap is reduced,
but it is still much worse than using 4KB chunks. The other work-
loads are less sensitive to chunk size.

This experiment shows that choosing a proper chunk size should
consider the SSD size. For a small-capacity SSD, a small chunk
size should be used to avoid wasting precious SSD space. A large
SSD can use a large chunk size and afford the luxury of increased
internal fragmentation in order to reduce overhead. In general, a
small chunk size (e.g. 4KB) is normally sufficient for optimizing
performance. Our prototype uses a chunk size of 4KB in default.

8. RELATED WORK
Flash memory and SSDs have been actively studied recently.

There is a large body of research work on SSDs (e.g. [1, 5–8]). A
survey [9] summarizes the key techniques in flash memory based
SSDs. Here we present the work most related to this paper.

The first set of work is generally cache-based solutions. An early
work [19] uses flash memory as a secondary-level file system buffer
cache to reduce power consumption and access latencies for mobile
computers. SmartSaver [4] uses a small-factor flash drive to cache
and prefetch data for saving disk energy. A hybrid file system,
called Conquest [34], merges the persistent RAM storage into the
HDD-based storage system. Conquest caches small files, metadata,
executables, shared libraries into the RAM storage and it demands
a substantial change to file system designs. AutoRAID [35] mi-
grates data inside the HDD-based RAID storage to improve perfor-
mance and cost-efficiency based on patterns. Sun® Solaris™ [18]
can set a high-speed device as a secondary-level buffer cache be-
tween main memory and hard disk drives. Microsoft® Windows®

ReadyBoost [23] takes a similar approach to use a flash device as
an extension of main memory. Intel® TurboMemory [20] uses a
small amount of flash memory as a cache to buffer disk data and
uses a threshold size to filter large requests. Kgil et al. [16] pro-

pose to use flash memory and DRAM as a disk cache and adopt
an LRU-based wear-level aware replacement policy [16]. Sieve-
Store [29] uses a selective caching approach by tracking the access
counts and caching the most popular blocks in solid state storage.
Hystor views and places SSDs in the storage hierarchy in another
way – the high-speed SSD is used as a part of storage rather than
an additional caching tier. As such, Hystor only reorganizes data
layout across devices periodically and asynchronously, rather than
make caching decision on each data access. In addition, recogniz-
ing the non-uniform performance gains on SSDs, Hystor not only
adopts frequency, rather than recency that has been commonly used
in LRU-based caching policies, to better describe the temporal lo-
cality, and it also further differentiates various workload access pat-
terns and attempts to make the best use of the SSD space with min-
imized system changes.

Some other prior work proposes to integrate SSD and HDD to-
gether and form a hybrid storage system. Differentiated Storage
Services [22] attempts to classify I/O requests and passes informa-
tion to storage systems for QoS purposes. The upper-level com-
ponents (e.g. file systems) classify the blocks and the storage sys-
tem enforces the policy by assigning blocks to different devices.
ComboDrive [26] concatenates SSD and HDD into one single ad-
dress space, and certain selected data and files can be moved into
the faster SSD space. As a block-level solution, Hystor hides de-
tails from the upper-level components and does not require any
modification to applications. Considering the disparity of handling
reads and writes in SSDs, Koltsidas and Viglas propose to organize
SSD and HDD together and place read-intensive data in SSD and
write-intensive data in HDD for performance optimization [17].
Soundararajan et al. propose a solution to utilize HDD as a log
buffer to reduce writes and improve the longevity of SSDs [32]. Re-
cently, I-CASH [30] has been proposed to use SSD to store seldom-
changed reference data blocks and HDD to store a log of deltas, so
that random write traffic to SSD can be reduced. Our experimental
studies show that the state-of-the-art SSDs have exceptionally high
write performance. Specifically optimizing write performance for
SSDs can yield limited benefits on these advanced hardware. In
fact, Hystor attempts to leverage the high write performance of
SSDs and our experimental results show that such a practice can
effectively speed up write-intensive workloads.

9. CONCLUSION
Compared with DRAM and HDD, the cost and performance of

SSDs are nicely placed in between. We need to find the fittest po-
sition of SSDs in the existing systems to strike a right balance be-
tween performance and cost. In this study, through comprehensive
experiments and analysis, we show that we can identify the data
that are best suitable to be held in SSD by using a simple yet effec-
tive metric, and such information can be efficiently maintained in
the block table at a low cost. We also show that SSDs should play
a major role in the storage hierarchy by adaptively and timely re-
taining performance- and semantically-critical data, and it can also
be effective as a write-back buffer for incoming write requests. By
best fitting the SSD into the storage hierarchy and forming a hybrid
storage system with HDDs, our hybrid storage prototype, Hystor,
can effectively leverage the performance merits of SSDs with min-
imized system changes. We believe that Hystor lays out a system
framework for high-performance storage systems.

10. ACKNOWLEDGMENTS
We are grateful to the anonymous reviewers for their construc-

tive comments. We also thank our colleagues at Intel® Labs, espe-



cially Scott Hahn and Michael Mesnier, for their help and support
through this work. We also would like to thank Xiaoning Ding
at Intel® Labs Pittsburgh, Rubao Lee at the Ohio State University,
and Shuang Liang at EMC® DataDomain for our interesting discus-
sions. This work was partially supported by the National Science
Foundation (NSF) under grants CCF-0620152, CCF-072380, and
CCF-0913150.

11. REFERENCES
[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,

M. Manasse, and R. Panigrahy. Design tradeoffs for SSD
performance. In Proceedings of USENIX’08, Boston, MA,
June 2008.

[2] Blktrace. http://linux.die.net/man/8/blktrace.
[3] A. M. Caulfield, L. M. Grupp, and S. Swanson. Gordon:

using flash memory to build fast, power-efficient clusters for
data-intensive applications. In Proceedings of ASPLOS’09,
Washington, D.C., March 2009.

[4] F. Chen, S. Jiang, and X. Zhang. SmartSaver: Turning flash
drive into a disk energy saver for mobile computers. In
Proceedings of ISLPED’06, Tegernsee, Germany, Oct. 2006.

[5] F. Chen, D. A. Koufaty, and X. Zhang. Understanding
intrinsic characteristics and system implications of flash
memory based solid state drives. In Proceedings of
SIGMETRICS/Performance’09, Seattle, WA, June 2009.

[6] F. Chen, R. Lee, and X. Zhang. Essential roles of exploiting
internal parallelism of flash memory based solid state drives
in high-speed data processing. In Proceedings of HPCA’11,
San Antonio, Texas, Feb 12-16 2011.

[7] F. Chen, T. Luo, and X. Zhang. CAFTL: A content-aware
flash translation layer enhancing the lifespan of flash
memory based solid state drives. In Proceedings of FAST’11,
San Jose, CA, Feb 15-17 2011.

[8] C. Dirik and B. Jacob. The performance of PC solid-state
disks (SSDs) as a function of bandwidth, concurrency,
device, architecture, and system organization. In Proceedings
of ISCA’09, Austin, TX, June 2009.

[9] E. Gal and S. Toledo. Algorithms and data structures for
flash memories. In ACM Computing Survey’05, volume
37(2), pages 138–163, 2005.

[10] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: A flash
translation layer employing demand-based selective caching
of page-level address mappings. In Proceedings of
ASPLOS’09, Washington, D.C., March 2009.

[11] J. Handy. Flash memory vs. hard disk drives - which will
win? http://www.storagesearch.com/semico-art1.html.

[12] L. Huang and T. Chieuh. Experiences in building a
software-based SATF scheduler. In Tech. Rep. ECSL-TR81,
2001.

[13] Intel. Intel X25-E extreme SATA solid-state drive.
http://www.intel.com/design/flash/nand/extreme, 2008.

[14] S. Jiang, F. Chen, and X. Zhang. CLOCK-Pro: An Effective
Improvement of the CLOCK Replacement. In Proceedings
of USENIX’05, Anaheim, CA, April 2005.

[15] S. Jiang, X. Ding, F. Chen, E. Tan, and X. Zhang. DULO: An
effective buffer cache management scheme to exploit both
temporal and spatial localities. In Proceedings of FAST’05,
San Francisco, CA, December 2005.

[16] T. Kgil, D. Roberts, and T. Mudge. Improving NAND flash
based disk caches. In Proceedings of ISCA’08, Beijing,
China, June 2008.

[17] I. Koltsidas and S. D. Viglas. Flashing up the storage layer.
In Proceedings of VLDB’08, Auckland, New Zealand,
August 2008.

[18] A. Leventhal. Flash storage memory. In Communications of
the ACM, volume 51(7), pages 47–51, July 2008.

[19] B. Marsh, F. Douglis, and P. Krishnan. Flash memory file
caching for mobile computers. In Proceedings of the 27th
Hawaii Conference on Systems Science, Wailea, HI, Jan
1994.

[20] J. Matthews, S. Trika, D. Hensgen, R. Coulson, and
K. Grimsrud. Intel Turbo Memory: Nonvolatile disk caches
in the storage hierarchy of mainstream computer systems. In
ACM Transactions on Storage, volume 4, May 2008.

[21] M. P. Mesnier. Intel open storage toolkit.
http://www.sourceforge.org/projects/intel-iscsi.

[22] M. P. Mesnier and J. B. Akers. Differentiated storage
services. SIGOPS Oper. Syst. Rev., 45:45–53, February 2011.

[23] Microsoft. Microsoft Windows Readyboost.
http://www.microsoft.com/windows/windows-vista/
features/readyboost.aspx, 2008.

[24] A. Patrizio. UCSD plans first flash-based supercomputer.
http://www.internetnews.com/hardware/article.php/3847456,
November 2009.

[25] D. A. Patterson, G. Gibson, and R. H. Katz. A case for
redundant arrays of inexpensive disks (RAID). In
Proceedings of SIGMOD’88, Chicago, IL, June 1988.

[26] H. Payer, M. A. Sanvido, Z. Z. Bandic, and C. M. Kirsch.
Combo Drive: Optimizing cost and performance in a
heterogeneous storage device. In Proceedings of the 1st
Workshop on integrating solid-state memory into the storage
hierarchy (WISH’09), 2009.

[27] F. I. Popovici, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Robust, portable I/O scheduling with the
disk mimic. In Proceedings of USENIX’03, San Antonio,
TX, June 2003.

[28] Postmark. A new file system benchmark.
http://www.netapp.com/tech_library/3022.html, 1997.

[29] T. Pritchett and M. Thottethodi. SieveStore: A
highly-selective, ensemble-level disk cache for
cost-performance. In Proceedings of ISCA’10, Saint-Malo,
France, June 2010.

[30] J. Ren and Q. Yang. I-CASH: Intelligently coupled array of
ssd and hdd. In Proceedings of HPCA’11, San Antonio,
Texas, Feb 2011.

[31] S. Shah and B. D. Noble. A study of e-mail patterns. In
Software Practice and Experience, volume 37(14), 2007.

[32] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and
T. Wobber. Extending SSD lifetimes with disk-based write
caches. In Proceedings of FAST’10, San Jose, CA, February
2010.

[33] Transaction Processing Performance Council. TPC
Benchmark H. http://www.tpc. org/tpch, 2008.

[34] A. A. Wang, P. Reiher, G. J. Popek, and G. H. Kuenning.
Conquest: Better performance through a
Disk/Persistent-RAM hybrid file system. In Proceedings of
the USENIX’02, Monterey, CA, June 2002.

[35] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP
AutoRAID hierarchical storage system. In ACM Tran. on
Computer Systems, volume 14, pages 108–136, Feb 1996.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


