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Abstract—The volume and complexity of data produced and
analyzed in scientific collaborations is growing exponentially. It
is important to track scientific data-intensive analysis workflows
to provide context and reproducibility as data is transformed
in these collaborations. Provenance addresses this need and
aids scientists by providing the lineage or history of how data
is generated, used and modified. Provenance has traditionally
been collected at the workflow level often making it hard to
capture relevant information about resource characteristics and
is difficult for users to easily incorporate in existing workflows.
In this paper, we describe Milieu, a framework focused on the
collection of provenance for scientific experiments in High Per-
formance Computing systems. Our approach collects provenance
in a minimally intrusive way without significantly impacting the
performance of the execution of scientific workflows. We also
provide fidelity to our provenance collection by allowing users
to specify three levels of provenance collection. We evaluate our
framework on systems at the National Energy Research Scientific
Computing Center (NERSC) and show that the overhead is less
than the variation already experienced by these applications in
these shared environments.

Keywords-Provenance, High Performance Computing,
Database

I. INTRODUCTION

Data volumes and complexity is growing rapidly in scien-

tific collaborations. For example, the Large Hadron Collider

(LHC) projects 16PB/year, the Large Synoptic Survey Tele-

scope (LSST) projects 6PB/year of raw data and 3PB/year

of catalog data and climate scientists project collections of

hundreds of exabytes are expected by 2020 [1]. As assump-

tions and educated guesses are used to reduce or reorganize the

data sets, it is necessary to capture data provenance to provide

context and reproducibility. Data provenance is the lineage of

the data and brings a historical perspective to data products.

High Performance Computing (HPC) environments have

traditionally been used for large monolithic simulations run-

ning on thousands of nodes. More recently, HPC systems

are being used to process large volumes of data through

analysis workflows. It is important to track the runs and data

to enable lineage tracing of experiments and data. Users of

HPC systems currently maintain provenance indirectly. They

embed timestamps or other simple descriptions within file

names and/or through other manual methods. Since current

approaches are usually ad-hoc, these methods are error-prone

and do not scale to large data volumes and systems.

Provenance or tracking lineage of data and computation

has traditionally been done in the context of workflows [6].

However, provenance collection at the workflow level is not

very flexible to user needs and makes it difficult to capture

resource characteristics. Additionally, it is not accessible to a

large number of users who rely on scripts to manage their

computation and data on HPC systems. Our work addresses

this gap by providing a minimally intrusive, light-weight

provenance collection and storage system for HPC applica-

tions.

In this paper, we present Milieu, a provenance collection and

storage framework. Milieu, as the name suggests, is designed

to operate in the background being minimally-intrusive and

light-weight. Provenance collection and query systems have

been closely tied in the provenance systems so far. Thus,

provenance collection and storage systems are designed and

optimized for a range of queries anticipated and/or provenance

queries are limited by what is available in the storage. How-

ever, as we scale up to large systems and data volumes, it

is necessary to support semi-structured provenance collection

and more complex provenance analysis. Milieu achieves this

by operating in an envisioned tiered architecture where storage

for collection and storage for analysis might be different.

Milieu is designed to be flexible (i.e., support various prove-

nance data models), extensible (i.e., can be easily expanded

to support other resource environments), semi-transparent (i.e,

user initiates provenance but instrumentation is automated) and

scalable (i.e., able to support large provenance collections on

petascale systems).

Specifically, the contributions of this paper are:

• We present an architecture and implementation of Mi-

lieu: a provenance collection and storage framework for

scientific applications running on HPC systems.

• We evaluate Milieu on two large systems at the National

Energy Research Scientific Computing Center (NERSC)

including a petascale system and show that the prove-

nance overhead is minimal and within the normal varia-

tion experienced by the applications on the systems.

• We present and evaluate our query interface for prove-

nance collection and provide a framework for provenance

analysis support.
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II. OVERVIEW

Figure 1 shows the envisioned architecture for provenance

collection and querying for scientific applications. We propose

a tiered architecture for provenance collection and analysis

where the storage for provenance collection is separated from

the storage model for querying and analysis.

A. Tiered Provenance System
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Fig. 1: Overview of Provenance Collection and Analysis Framework.
Milieu is the first tier where provenance data is collected in unstruc-
tured or semi-structured format. The second tier is more focused on
provenance analysis and appropriate storage options might be used.
This architecture allows us to provide the best optimized storage
model for collection and specific analysis types.

Milieu, the focus of our paper, centers on the provenance

collection aspects of this architecture. Provenance is collected

from HPC systems through a collection mechanism that is

minimally intrusive. A mixture of provenance about data

products and provenance of resources and system environment

are also collected. The user is presented with the choice of

collecting provenance from multiple levels (described in more

detail in Section III).
The amount of provenance data may vary according to

the application and also the instrumentation done by the

user. Since provenance is captured in all forms and sizes,

Milieu does not store provenance in a well-structured manner,

prioritizing instead the ability to write the captured provenance

in a fast and efficient manner. Milieu provides a way to

collect all raw provenance data from the systems. Provenance

stored in the provenance buffer can then be queried directly

or further processed and transformed into different formats

and more structured provenance. Associating structure with

the data is left to downstream provenance systems (e.g.,

Karma [18] or other data analysis tools (e.g., graph analysis

or MapReduce/Apache ). By separating provenance collection

storage and query storage, optimizations will be possible at

both levels.

B. Use Cases
We consider two use cases for our provenance collection

system. The first use case is for user job submissions. In the

first case, provenance needs to be tracked for data processed

in job scripts that are submitted to the batch queue systems on

HPC systems. We need to track the job submission, execution

and completion so system administrators and users can track

every step of the execution. Additionally, users often perform

a myriad of data tasks on the command prompt. Tasks might

include data preparation for the run and moving data to

archival systems.

C. Design Goals

Milieu is based on the following design principles:

Support for various provenance data models. Provenance

systems have so far relied on structured data models that are

mirrored by a relational database in the backend. Provenance

collection systems capture a set of records at known points

in the execution cycle (e.g., workflow started). However, job

scripts on HPC systems vary widely and hence it is hard

to develop a strong-schema based data model. Thus, it is

important that we support semi-structured provenance data

models from different users, systems and applications.

Low overhead. As we process large volumes of data, high per-

formance is critical. Hence it is very important that provenance

collection has minimal impact on application’s performance.

Semi-transparent collection. Provenance collection needs to

be minimally intrusive to the user’s workflows. It is important

that provenance collection be easily initiated by the user but

mostly transparent during execution. Automated instrumen-

tation of user’s scripts are necessary at the scales of the

workflows we aim to address.

Support user annotations. In addition to automated instru-

mentation, it is often necessary to capture user’s notes or

metadata. Thus, we need an interface that allows users to add

their notes about the experiments and data either before, during

or after a run is over.

Staged provenance levels. HPC applications tend to vary

significantly in their needs and use. For example, routine

simulation runs might need just a base level of provenance to

know jobs start and finish times and other basic characteristics

of the data. However, some applications or use scenarios may

need a higher granularity of data collected during execution.

Scalability. Simulation sizes and data collections on HPC

systems are rapidly growing. In turn, provenance data is also

rapidly growing making it necessary to scale up provenance

collection and storage mechanisms. This is going to be espe-

cially true as we lead into the exascale era.

III. MILIEU

Figure 2 shows the design of Milieu to capture and query

provenance. The user submits a job to a batch queue system,

which is then executed when resources become available. The

provenance instrumentation module in Milieu first captures

the original job script and stores information of the script

in our data store. Next, it instruments the job script with

provenance calls and the modified job script is then submitted

to the queue. During execution, the instrumented provenance
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Fig. 2: Architecture of provenance framework. The activation of the
collection mechanism triggers user session provenance and prove-
nance from job script executions to be captured, which is stored in a
MongoDB data store. The stored provenance can be retrieved either
through a command line interface or via a web query interface.

calls load provenance data into the provenance store. The

provenance data is then accessible through a command-line

query and web interface.

With provenance capabilities built into HPC systems, the

user can rely on captured provenance to track their jobs and

data. Moreover, scientists can use the provenance system as

their scientific ‘notebook’ for keeping notes of their applica-

tions. Users can also perform searches and identify similarities

or differences between their experiments. In addition, system

administrators of HPC systems can also benefit from the use

of provenance by leveraging the collected provenance to help

with the debugging of scientific applications.

A. Collection

The collection component that we have designed is respon-

sible for the capture of provenance of job script executions

and those of user sessions. The provenance capture of a user

session is collected in its entirety by our framework. For the

provenance collection, we devised three levels of provenance

capture:

Level 1 - First level provenance consists of basic provenance.

These includes information about the script, the outputs of the

job run, basic environment about where the job was submitted

and user annotations. This is essentially provenance that a

scientific user would be interested in.

Level 2 - The second level includes all of the provenance

from level 1 and additionally provides more detailed resource

information of the resources involved for the computation.

Provenance at this level are more of interests to system

administrators and/or for detailed analysis of resource usage

for a particular class of problems.

Level 3 - In level three, we capture everything captured at level

2 with the addition of provenance in the form of detailed traces

of I/O calls for commands in the job script. We anticipate this

level to be used rarely to collect detailed I/O information for

data sets and/or debugging.

The collection levels in our framework are designed based

on current user requirements. These requirements were gath-

ered based on discussions with our users, where they are

generally scientists or system administrators. However, we

anticipate that the exact implementation of these levels might

vary by deployment and resource types and Milieu is extensi-

ble to accommodate these changes.

B. Storage

The captured provenance is diverse and varied. Thus, the

data store must be capable of supporting the storage of semi-

structured provenance documents. In our current implementa-

tion, we use MongoDB, a NoSQL data store for our storage

needs. MongoDB is a scalable, high-performance data store

that is open-source and developed in C++. MongoDB is ideal

for our needs due to its native support for semi-structured

data, its support for sharding. MongoDB also has the capability

for performing complex aggregate analysis using MapReduce

through both its native MapReduce framework as well as the

MongoDB-Hadoop connector that will allow rich provenance

analysis tools to be developed leveraging Milieu.

In our system, captured provenance is grouped around job

IDs (unique identifiers assigned by the batch queue system)

or file identifiers (location based). However, each entry in the

data store is not constrained by a specific format and may vary

among different jobs or files. This enables us to use a single

store across possibly multiple systems and user sessions (e.g.,

job vs shell).

C. Query

In Milieu, the resulting provenance can be accessed through

query interfaces that support a simple query language centered

around the notion of job IDs and file names. The query

language is designed to abstract the underlying language used

at the data store level and allows the user to query the

provenance in an intuitive manner without knowing too much

about how the underlying data is stored. In our framework,

both command line and a graphical web interface is designed

for different users. The command line interface is meant to be

used by users who are comfortable with the command line.

The web interface, on the other hand, is meant to be akin

to “Google” of provenance collection, supporting fairly open-

ended provenance queries on the collection.

IV. IMPLEMENTATION

Our initial implementation of Milieu was built for NERSC

HPC systems and we detail our implementation in this section.

A. Collection

The Milieu collection module is available to the user by

loading the module for provenance. Modules is a simple

environment management tool used on HPC systems that

allows setting up of the environment through a simple set of

commands (e.g., module load, module unload).

For the provenance capture from job executions, the user

needs to submit their job scripts via a command, qsub-
prov, which is a wrapper command around the original qsub
command (part of the Portable Batch System). We use a

different name for the job submission so that the early users of

our system are aware of their participation in the provenance.

Our eventual goal is to make this completely transparent to

the end-users.
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#!/bin/csh
#PBS -j oe
#PBS -q regular
#PBS -N GTCcloud
#PBS -l walltime=00:20:00
#PBS -l nodes=8:ppn=8
#PBS -S /bin/csh
module load python
python $USER/provenance/source/python_scripts/

timestamp.py $USER/provenance/source/
python_scripts/dbconfig.py run.pbs ’begin
script’ yocheah $PBS_JOBID

qstat -f $PBS_JOBID > $USER/GSCRATCH/GTC/qstat
.$PBS_JOBID

set verbose
cd $PBS_O_WORKDIR
cp ./gtc.input.64MPItasks.cloud gtc.input
record_provenance ‘‘Edit date’’ ‘‘2012-01-01’’
strace -tt -o $USER/GSCRATCH/GTC/strace.out

.1.31543.20120927185010 mpirun -n 64 ./
gtcmpi

rm gtc.input
cp $PBS_JOBID.OU ‘pwd’/output

.31543.20120927185010
echo ‘$USER/provenance/source/bin/

qsub_file_insert hopper12 yocheah
$PBS_JOBID 3 $USER/provenance/source/
python_scripts/file_insert.py $USER/
provenance/source/python_scripts/dbconfig.
py $USER/GSCRATCH/GTC/qstat.$PBS_JOBID
$USER/GSCRATCH/GTC/strace.out
.0.31543.20120927185010 $USER/GSCRATCH/GTC
/strace.out.1.31543.20120927185010 $USER/
GSCRATCH/GTC/strace.out
.2.31543.20120927185010 $USER/GSCRATCH/GTC
/output.31543.20120927185010’

python $USER/provenance/source/python_scripts/
timestamp.py $USER/provenance/source/
python_scripts/dbconfig.py run.pbs ‘end
script’ yocheah $PBS_JOBID

Listing 1: Example of an instrumented PBS script. Highlighted texts
are instrumentation added or modified by the provenance framework
or user.

$ cmdline_pc
# begin user session
...
# end user session
$ exit

Listing 2: Provenance capture for a user session.

The qsub-prov command also takes an optional integer

parameter that corresponds to the level of provenance capture

(akin to the levels that are specified in a logger). When

a job script passes through this wrapper, the original copy

of the script is kept as provenance along with other static

information about the system, such as the host name, IP

addresses, user credentials, and a host of other information.

The PBS headers of the script are also extracted, parsed and

stored as well. An instrumented copy of the script is then

forwarded to the PBS queue (Listing 1). Depending on the

level of provenance capture that was set by the user, the script

is instrumented at different granularities. The instrumentation

enables a range of things to be captured including the output

of a job, information in the PBS queue during execution, to

more detailed provenance such as straces of individual calls

and also outputs from the Integrated Performance Monitoring

(IPM) [19] used at NERSC. IPM is an application profiling

framework that provides details such as the time spent by the

application computing and communicating using MPI.

The more detailed level of provenance provides information

about the nodes that were involved in a distributed MPI job and

also more detailed information about system calls if necessary.

The design decision to enable provenance in various levels is

driven by the provenance demands that we foresee for different

users and also the flexibility that allows us to conserve storage

and reduce instrumentation overheads where possible.

In order to specify the calls that the user wants to strace,

the tag record trace provenance has to be added in front of

the intended call. Additional user provenance can also be

captured in the form of name value pairs by adding a line

record provenance name value in the users job scripts, as

shown in the listing.

Provenance is pushed off to storage in three stages, namely

pre-execution, the start of execution, and end of execution.

Once a job is submitted, initial provenance about the node

where the submission happens and the provenance of the

PBS headers are stored. Once the job is executed, runtime

provenance such as the execution variables, nodes on which

the job was distributed to and fields such as timestamps are

captured. Finally, straces (if enabled) and outputs are put into

files and stored right before the job is terminated. This is done

in stages to minimize the number of database I/O operations

and to also minimize the performance impact to the actual job.

Provenance about a users session is collected through a

wrapper cmdline pc that uses the shell command script. Basic

information about the system on which the session is initiated

and the timestamps of the start and end of the session are also

recorded. When a user is done with their session, the captured

provenance is stored in a file, which is then put into storage

on our provenance Mongo database (MongoDB).

We implemented our collection tools using a mixture of

Python and Shell scripts. In all cases, the Shell scripts were

used to interact at the front end, since this is native in a HPC

environment.

B. Storage

We group all provenance documents under a single prove-

nance collection. For a single job ID, multiple provenance doc-

uments may exist in MongoDB. Mandatory fields (“columns”

in the traditional sense) for each document include an associ-

ated job ID, user ID and timestamp. Most documents contain

two fields with one acting as a description and a second

field containing the value associated with that description. The

provenance store also has information about the systems. The

system information is more structured and will contain more

fields, such as the host name, IP address, user environment

variables, etc. Thus, we are able to use a single collection for

different types of data.
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For file management, we use the MongoDB GridFS specifi-

cation for storing the actual file contents due to its ease of use,

metadata and large file support. GridFS uses two collections

for storing data. Large data objects are split into small chunks,

which are then stored in the chunks collection, while metadata

that describes the data object is stored in the files collection.

C. Query and Access

Milieu provides two query interfaces a) command-line and,

b) web interface, that allows the user to query and make

simple edits to the MongoDB provenance storage. The web

query interface uses Django [9] (version 1.3). Our query

components support basic queries such as querying for the

name of a file, the name of a job, and any other attribute

that is associated with a job or data file. In both interfaces,

we also provide the capability for users to add annotations to

the captured provenance. These annotations are added to the

existing provenance in the form of name value pairs.

[Provenance Query$] jobid . (field,walltime) (
value,00:10:00)

Listing 3: Example of a query to return all job IDs that have walltime
00:10:00 in the command line.

[Provenance Query$] file MILC

Listing 4: Example of a query to return all filenames that contain
MILC.

The implemented query language is mainly focused on the

retrieval of provenance centered around jobIDs and file names.

Regular expression queries are also supported. A sample of a

query to return job IDs with a specific matching criteria is

given in Listing 3 and an example for querying all files in the

provenance store that has file name of the MILC application

is given in Listing 4. We anticipate that for more complex

queries and analysis, some of the specialized tools such as

graph query languages and MapReduce will be used.

V. EXPERIMENTS

We evaluated our provenance collection and query mecha-

nisms through examining the performance of our provenance

framework. We use three applications from the NERSC-6

application benchmark suite [2]. A range of problem sizes

and core counts were used to capture mid-range to large-

scale codes. Our experiments were evaluated on two NERSC

systems, namely Carver and Hopper, a petascale system.

A. Testbed Setup

Carver is an IBM iDataPlex system with 1202 compute

nodes. The compute nodes are a mix of 2.67GHz Intel Quad-

core Nehalem processors with 24GB and 48GB of memory,

two six-core Westmere 2.67GHz processors with 48GB of

memory and, four eight-core Nehalem-EX 2.00GHz proces-

sors with 1TB of memory. All nodes are connected using 4X

QDR InfiniBand technology.

Hopper is a Cray XE6 peta-flop system consisting of 6384

nodes. Each node consists of 2 twelve-core AMD ‘Magny-

Cours’, with 2.1GHz processors per node for a total of 24 cores

with 64GB of memory. The compute nodes are connected via

a custom high-bandwidth, low latency network provided by

Cray in a 3D torus topology.

In all experimental cases, we used the regular queue of the

system for evaluation, which is used by the users of these

systems. The storage and query mechanisms were hosted on

a single Carver node. A single MongoDB instance (version

2.0.6) was deployed for storing the collected provenance along

with the Django based web query interface.

Workload. For the evaluation of provenance collection, we

performed experiments using three applications from the

NERSC-6 applications benchmark suite [2]: GTC, MILC, and

PARATEC. Based upon previous research [2], these applica-

tions represent a significant portion of NERSC workloads.

GTC short for 3D Gyrokinetic Toroidal Code, is a 3-

dimensional particle-in-cell (PIC) code used to study micro-

turbulence in magnetically confined toroidal fusion plasmas.

We used version 2 of the GTC code with a large problem size

that involves 66,455,552 number of grid points as input on

Hopper and 2 million grid points on Carver.

MILC or MIMD Lattice Computation is used in part to

study quantum chromodynamics (QCD), the theory of the

subatomic “strong” interactions responsible for binding quarks

into protons and neutrons and holding them together in the nu-

cleus. We used version 7 of the MILC code in our experiments

using the extra large input lattice size of 64x64x64x144 on

Hopper. A smaller version using a lattice size of 32x32x16x18

with 2 quark flavors, four trajectories and eight steps per

trajectory was used on Carver for our evaluation.

The PARAllel Total Energy Code (PARATEC) benchmark

code performs ab-initio quantum-mechanical total energy cal-

culations using pseudopotentials, a plane wave basis set and

uses an all-band (unconstrained) conjugate gradient (CG) ap-

proach for solving Density Functional Theory’s (DFT) Kohn-

Sham equations. The version we used is based off the NERSC-

6 input that contains 6 conjugate gradient iterations and only

250 atoms in a diamond lattice configuration. This input does

not allow any aggregate over the transposed data.

The applications were executed on Carver using 8 nodes

with 8 processes per node. On Hopper, GTC was executed

using 2048 cores and MILC was executed using 4096 cores.

We conducted our experiments by comparing the different

levels of provenance capture along with the base case of just

running the application without any provenance capture. For

each application, we perform 15 measurements without any

provenance capture and also 15 measurements for each level of

provenance capture (levels 1–3). We only performed 7 Hopper

measurements for each scenario since jobs are more expensive

than their Carver counterparts both resource-wise and time-

wise. All results were generated from job runs during normal

production time on the NERSC machines discussed above.

B. Evaluation of Provenance Collection

In this subsection, we discuss our results from the evaluation

of three applications on two of NERSC HPC systems: Hopper

and Carver. Each box plot shows the timings of the three levels
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Fig. 3: Timings for base run and 3 different levels of provenance capture on Carver. Provenance capture does not yield significant overhead.

of provenance in comparison to the base case with the timings

without any provenance capture. The box plots capture the

median (dark bold lines in the middle of boxes), and also

the quartile values (lower and upper boundary of boxes) The

median is a more robust indicator over the mean and is less

affected by outliers than the average.
Carver. For our experiments on Carver, we conclude that the

overhead associated with GTC, MILC and PARATEC to be

insignificant compared to the base case with no provenance

capture. Based on the box plot for GTC (Figure 3a), we

observe that the medians for all levels of provenance capture

to be around 141–143 seconds. For MILC (Figure 3b), we

observe the same trend with the median for no provenance

capture being around 210 seconds and those with prove-

nance capture ranging from 211–214 seconds. In the case of

PARATEC (Figure 3c), the median without provenance capture

is around 267 seconds and the ones with provenance capture

having medians of 269–271 seconds. This shows us that the

provenance capture overhead is within the normal variability

(well within 2%) that these application already experience on

these systems.
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Fig. 4: Timings for base run and 3 different levels of provenance
capture on Hopper. Provenance capture shows a slight overhead (2–
3%) compared with the base case. Median timings for level 3 are
lower than level 1 and 2 but have more spread.

Hopper. For GTC (Figure 4a), we note that the provenance

capture accounts for about 22–28 seconds (overhead of slightly

over 2%). Figure 4b shows the performance of MILC on

Hopper with different provenance levels. The same trend

occurs for MILC on Hopper with an overhead of about 46–104

seconds (2–5% overhead).

This falls within the variability that applications experience

in these environments. This shows that the provenance capture

mechanism minimally impacts timings of the original job runs.

Analysis of Overhead. We timed the execution of each

individual script in our provenance capture module for a single

job submission. A total of five scripts were timed. The qsub-

prov shell script handles the pre-processing of the job script

and invokes a qsub pc.py python script. This python script

handles the ingestion of provenance captured at this stage into

MongoDB. Similarly, qsub file insert is a shell script that

searches and inserts files into our provenance storage via a

python script: file insert.py. The other script that we timed was

timestamp.py, which is responsible for capturing the begin and

end timestamp entries. Table I details the breakdown of our

timings for these scripts on Hopper and Carver respectively.

The timings reflect the average taken from three instrumented

runs on both systems. The provenance capture on Hopper uses

level 2 while on Carver, the provenance capture used is level 3.

From the results of both tables, we observe that our provenance

module contributes very little to the overhead of the end-to-end

execution of these applications. The Hopper overhead is a little

higher than Carver since Carver is more directly connected to

the file system server than Hopper.

TABLE I: Duration taken for individual scripts for provenance
capture of a GTC job on Hopper (level 2) and Carver (level 3).

Script Name Duration (s)
Hopper Carver

qsub-prov 6.05 3.00

– qsub pc.py1 (0.08) (0.07)

timestamp.py (begin) 0.25 0.05

qsub file insert 7.77 0.30

– file insert.py2 (0.43) (0.03)

timestamp.py (end) 0.16 0.11

1,2 Duration of qsub prov.py and file insert.py accounted within qsub-
prov and qsub file insert respectively.
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C. Evaluation of Provenance Query
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Fig. 5: Plot of query duration vs number of MongoDB documents
returned. The return time for each query is generally linear with the
number of results returned.
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Fig. 6: Plot of query duration for a regular expression query of a
single job ID vs number of MongoDB documents. Outliers reflect
the timings of the first query issued. The query performance here is
linear and the result size returned for each query is 16 documents.

We also evaluated the performance of querying the stored

provenance through a few queries.

Regular Expression. The first case that we have evaluated is

by observing the amount of time required to query for a regular

expression job ID query by iterating through all available

documents in MongoDB and returning all documents. We

observe that the query performance generally increases linearly

as the number of documents that are being stored in the

database increases. This is depicted in Figure 5. We do notice

that as the database scales up to approximately 10 million

records, the time needed to iterate through the entire database

is already 200 seconds, and for 25 million records it is 595

seconds. Thus, if there are queries that need to query all data

in a database, they will benefit from a MapReduce framework

that will allow scalability.

Limited set queries. The second case that we looked at was

the evaluation for a regular expression query of a single job ID

for a MongoDB database of different sizes. Figure 6 depicts

the results of our evaluation. The outliers in this figure are

the first queries issued against MongoDB. These first queries

are retrieved and cached in memory, resulting in subsequent

identical queries having less significant response times, ap-

proximately half the response times of the first queries.

Exact indexed queries. As a comparison, we also looked

at exact queries for the same job ID. For these queries, the

performance of the query is very fast with response times

within 600–800 microseconds even for a large database with

24 million documents.

VI. DISCUSSION

In this paper, we have described and evaluated the design

and implementation of Milieu for semi-structured provenance

collection and storage on HPC systems. In this section, we

discuss provenance quality, operational challenges, usability,

future storage and query scalability.

Uses of Provenance. Provenance captured in Milieu is a

mixture of data and process provenance and can be used for

a number of use cases. Our approach is useful in some cases

and falls short in others. We discuss the pros and cons of our

captured provenance in this section.

Data Management The captured provenance helps the user

identify with ease where data objects are stored. Users can

use Milieu to query the NoSQL data store using regular

expressions to search previous job runs for a variety of

information including data objects, status, etc.

Faults The provenance can be used to determine if the job

script terminated properly. The provenance of a job script that

terminates successfully contains a timestamp of when the job

script terminates. Faults that affected single jobs or a group

of jobs can be easily identified with queries and/or analyses.

Issues with the underlying hardware or environment can be

identified by examining the straces or the ipm log files.

Our current approach does not account for automatic identi-

fication of input data sources. Different scientific applications

take input sources in different formats (e.g., fixed file names,

on the command-line). This makes it difficult to automatically

identify input sources. In future work, we plan to address

this by prompting the scientists to indicate input data sources

for the framework. Additionally, the captured provenance is

not compatible with the OPM (Open Provenance Model)

specification [15] since our goal is on efficient capture in close

to raw format.

In future work, it will be important to assess the quality

of provenance to ensure that the captured provenance can be

used as intended [5]. The completeness and correctness of

the provenance trace needs to be assessed such that captured

provenance reflects unambiguous and factual events.

Flexibility. Milieu provides support for multiple levels of

provenance. This allows the scientist or system administrator

to pick the level that is most suitable for their use case. The

support for user annotations allows users to capture notes and

metadata that are often lost. It should be noted that Milieu

does not require users to make any changes to their job scripts.

The support for user annotations allows users to capture notes

and metadata that are often lost but is not required to collect

other provenance information. Provenance initiation is user

controlled but instrumentation is automated.

Operational considerations. In our current implementation,

all users are stored in a single collection. This optimizes the
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queries by system administrators performed across users. In

future work, we plan to provide a start-time configuration to

control per user collection if it is required in cases where the

usage model might differ.

Additionally, we operate MongoDB in a single-server mode.

MongoDB allows sharding that allows us to easily scale up

as data grows. MongoDB sharding is well-documented and

evaluated [8] and can be easily configured for MongoDB.

Scalable Storage. The “big data” movement has seen a num-

ber of NoSQL data stores for horizontal scalability distributed

over many servers [4]. In this paper, we used Mongo database

(MongoDB) [14], a document-oriented data store, since it

was well suited for semi-structured provenance documents.

MongoDB is typically well suited for write-once, read-many

times pattern data access, as is the case with Milieu. The

NoSQL systems are evolving rapidly and it is possible that

some other data store might provide additional features and/or

better performance. Our architecture and methodology is not

tied to the use of MongoDB and thus it will be possible to

use other data stores with Milieu in the future.

VII. RELATED WORK

In recent years, multiple provenance collection systems

have been developed in the context of workflow tools, e.g.,

VisTrails [3], Kepler [13], and Pegasus [12]. More recently,

we have systems such as RAMP [17] that targets collecting

provenance from MapReduce [7] workflows. Karma [18] is

a workflow based system that supports provenance capture

in semi-structured eScience environments and Provenance

Aware Storage System (PASS) [16] is targeted at capturing

provenance at the operating system and file system levels.

Gadelha Jr. et al. [10] described how the collection and

querying of provenance can help in managing large-scale

scientific computations in their respective environments. Jones

et al. [11] detail a provenance enabled file system that auto-

matically collections information flow provenance at the file

system level with the goal of aiding scientific users in better

organizing their data.

Our work captures and represents provenance from multiple

layers of an application including the resources and envi-

ronment on which an application is executed in the HPC

environment. It also captures traces for data provenance, and

provide the user with the ability to determine the level of

fidelity of provenance that they want captured. The novelty

of our work lies in our lightweight and minimally intrusive

provenance capture that also allows user fidelity. In addition,

our architecture design allows captured provenance to be

streamlined for specific use cases.

VIII. CONCLUSION

In this paper, we present the design, implementation and

evaluation of Milieu, a minimally-intrusive, light-weight,

multi-level provenance collection, storage and query frame-

work. Milieu supports the collection of semi-structured prove-

nance data from jobs and user commands on HPC systems.

Our evaluation on NERSC production systems, including a

petascale machine shows that the collection overhead is min-

imal. Milieu makes it possible to build a multi-tiered prove-

nance architecture where storage for collection and storage for

optimized queries can be separated. A multi-tiered architecture

will be able to support a wider range of provenance queries

and analyses that is difficult if not impossible today.
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