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Abstract—As HPC systems continue to grow to meet the
requirements of tomorrow’s exascale-class systems, two of the
biggest challenges are power consumption and system resilience.
On current systems, the dominant resilience technique is check-
point/restart. It is believed, however, that this technique alone
will not scale to the level necessary to support future systems.
Therefore, alternative methods have been suggested to augment
checkpoint/restart – for example process replication. In this
paper we address both resilience and power together, this is
in contrast to much of the competed work which does so
independently. Using an analytical model that accounts for both
power consumption and failures, we study the performance of
checkpoint and replication-based techniques on current and fu-
ture systems and use power measurements from current systems
to validate our findings. Lastly, in an attempt to optimize power
consumption for replication, we introduce a new protocol termed
shadow replication which not only reduces energy consumption
but also produces faster response times than checkpoint/restart
and traditional replication when operating under system power
constraints.

I. INTRODUCTION

The race to build the worlds first exascale-class system has

been underway for the last 10 years and many challenges

remain. Two of the biggest challenges facing these future

systems are power and resilience, each a direct result of the

massive amount of parallelism necessary to achieve this goal.

Delivering exascale performance could require a system over

a million sockets, each supporting many cores [1]. This would

result in a system with many-millions of components including

increases in memory modules, communication networks and

storage devices. With this explosive growth in component

count will come a sharp decrease in the overall system

reliability and an increase in system power requirements.

System power is a leading design constraint on path to

exascale, established by the DOE at no more than 20MW [1].

This challenges the research community to provide a 1000x

improvement in performance with only a 10x increase in

power. It is expected that exascale-class machines will be
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capable of consuming more power than that set by the power

cap. For example a system might have 150,000 sockets each

consuming 200 watts of power at full speed, therefore if all

sockets were operating at full power we would be consuming

30 mega-watts. To stay under the 20 mega-watt limit we would

need to power off 50,000 of these sockets, or reduce the power

consumption of some or all of the cores to stay within budget.

While this may seem inefficient, as more hardware is available

than can be supported by the power infrastructure, not all

applications will be capable of fully utilizing system.

Maintaining efficiency will also be a significant challenge

due to the increasing number of expected faults. As the number

of components grow, system failures will become routine.

Therefore, any resilience scheme must consider its effect on

the application’s energy and power consumption. In today’s

systems the response to faults mainly consists of restarting

the application, including those components of its software

environment that have been affected by the fault. To avoid

full re-execution, these techniques checkpoint the execution

periodically. Upon the occurrence of a hardware or software

failure, recovery is then achieved by restarting the computation

from a known good checkpoint.

Given the anticipated increase in failure rate and the

time required to checkpoint large-scale compute- and data-

intensive applications, it is predicted that the time required

to periodically checkpoint an application and restart its ex-

ecution will approach the system’s mean time between fail-

ures (MTBF) [5]. Consequently, applications will make little

forward progress, thereby reducing considerably the overall

performance of the system [13], [15].

To increase overall system performance process replication

has been proposed as a scalable fault tolerance method that

can be more efficient in exascale-class systems [5]. A major

criticism of replication is the necessary additional resources,

especially when considering the power limitations imposed in

exascale-class machines.

The objective of this paper is to compare the power and

energy consumption of coordinated checkpointing and repli-

cation techniques. By looking at fault tolerance from the

perspective of power we have found opportunities for making

power-aware optimizations to replication. To this end, we

propose shadow replication, a power-aware process replication

protocol which provides faster response times and is more
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efficient than both checkpoint/restart and traditional replica-

tion. We show that shadow replication can save 40% of the

consumed energy while also being 40% faster in exascale-class

machines.1

The remainder of the paper is organized as follows: section

II provides a brief review of work in this area. Section III

provides a description of the resilience methods explored in

this paper. Section IV introduces the analytical framework

used to model the behaviors of these methods in large-scale

systems, presenting this analysis in Section V. We validate our

methods in current systems using experimental data presented

in Section VI. We then provide some conclusing remarks in

Section VII.

II. RELATED WORK

The analysis of energy/power concern and resilience for

HPC is still in its formative stages and as such we are only

aware of two papers which look at the energy consumption

of fault tolerance schemes. In [4], the authors measure en-

ergy consumption of the three main tasks associated with

checkpoint-restart methods: writing the checkpoint, recovering

from a checkpoint and message logging. They make no

attempt to optimize these tasks nor do they explore replica-

tion techniques. In [12], the authors look at three different

checkpointing techniques and evaluate the energy consumption

required. They find that uncoordinated checkpointing with

parallel recovery was the best technique at both small and large

scale saving up to 17% at 256,000 sockets. Also they show

that as the number of sockets grows beyond 256,000 the trend

in energy savings of parallel recovery is decreasing. Our work

shows that replication increases energy savings as the system

size grows, in contrast to this fault tolerance technique.

While not focused upon energy consumption, there is

much research attempting to expand checkpoint techniques

to exascale-class machines. This work revolves around two

main concepts, reducing the checkpoint time and enhancing

uncoordinated checkpointing. To our knowledge there is no

work looking at optimizing the energy/power consumption of

replication to make it a more viable solution for exascale-class

environments.

III. RESILIENCE METHODS

A. Coordinated Checkpoint/Restart

Coordinated checkpoint/restart methods are the most widely

used fault tolerance method in HPC environments. The dom-

inant reason for this popularity is its simplicity to implement

and the natural synchronization points required are present in

most applications. In coordinated checkpointing, all running

processes periodically pause their execution and write their

state to a stable storage device. Once they have finished

writing, the application proceeds with its execution. In the

event of a failure, all processes restore from the last good

checkpoint and resume execution collectively from that point.

1Example shown in detail in Section V, assumes a socket MTBF of 25
years and 53,000 sockets.

B. Uncoordinated Checkpointing

Another approach that has been suggested to improve the

performance of checkpointing systems is uncoordinated or

asynchronous checkpointing [2], [8], [9]. In these systems,

nodes generally checkpoint and restore from local storage

without the synchronization used by coordinated checkpoint-

ing. To support a node restoring from a local asynchronous

checkpoint, nodes in this approach keep a log of recent

messages that they have sent. When a node restores from a

previous checkpoint, it can then replay reception of messages

using remote nodes’ logs.

While this approach can increase checkpointing perfor-

mance, it also generally assumes the availability of local stor-

age. In addition, logging increases the latency of messaging

operations and potentially takes significant amounts of space.

Finally, asynchronous checkpointing approaches can result in

cascading rollbacks; recent work attempts to bound the amount

of rollback that may be necessary [7], but also places non-

trivial limits on application behavior.

C. Traditional Replication

Traditional replication is a method in which each application

process is replicated on independent computing nodes, such

that if one process fails its replica process can continue

executing as if the failure did not occur. This is also referred to

as process replication and has long been deployed in mission

critical applications. Replication in HPC has largely been

dismissed because of the additional resources required, but

in recent years has been revisited [5] because of the increased

failure rates expected in exascale-class machines. Furthermore,

in this paper we show that power-aware replication techniques

can mitigate this concern by using fewer resources.

D. Replication Optimizations

In this work we propose and analyze the potential of a

number of power-aware optimizations to traditional replication

termed stretched and shadow replication.

1) Stretched Replication: Stretched replication works on

the assumption that performing work slowly can save energy.

This is typically done through the use of dynamic voltage and

frequency scaling (DVFS); while this is widely available in

modern HPC environments it is rarely used. Stretched repli-

cation is a naı̈ve approach which slows down the execution of

all processes to the slowest possible speed while maintaining

the applications targeted response time.

There are at least two reasons one might want to reduce

the execution speed of nodes in an HPC environment. The

first we have already mentioned, reducing the execution speed

might be necessary to satisfy power limits. Another reason is

that coordinated checkpointing already significantly increases

the application’s time to solution due to the checkpoints and

restarts. If we can increase reliability by slowing down while

still staying below this checkpoint slowdown, we can maintain

an efficiency greater than that of traditional checkpointing.
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2) Shadow Replication: Stretched replication assumes that

by going slower one can always save energy regardless of how

long it actually takes to complete the job. This is not always

the case in today’s computers because machines require a base

amount power to operate regardless of the processor speed,

we refer to this as the machine’s “overhead” power. Previous

studies [6], [10] have shown this to be somewhere between 50-

85% of the computing nodes’ total power. Our experimental

results show an overhead power of 60-67%. As the time to

solution is increased it results in more energy consumption

over the entire job, resulting in a time vs power tradeoff.

Exploring the energy consumption of replication led to

the idea that the replica processes could execute at different

execution speeds, while still guaranteeing a response time

as good or better than that provided by checkpointing. For

each process, shadow replication associates a suite of “shadow

processes”, whose size depends on the “criticality” and perfor-

mance requirements of the underlying application. In order to

overcome failure, the shadow executes concurrently with the

main process, with the shadow and main processes on separate

computing nodes. To minimize power, when multiple shadows

of a single process exist, each replica shadow operates at de-

creasingly lower processor speeds. The successful completion

of the main process results in the immediate termination of

all shadow processes. If the main process fails, the primary

shadow process takes over the role of the main process and

resumes computation, possibly at an increased speed, in order

to complete the task at a targeted response time.

Depending on the occurrence of failure, two scenarios are

possible. The first scenario, depicted in Figure 1(a), takes

place when no failure occurs2. In this scenario, the main

process executes at the optimum processor speed, namely the

speed necessary to achieve the desired level of fault-tolerance,

minimize power consumption and meet the target response

time of the supported application. During this time, the main

process completes the total amount of work required by the

underlying application. However, the shadow process, execut-

ing at a reduced processor speed, completes a significantly

smaller amount of the original work. Because the likelihood of

an individual socket failure is low, this scenario is most likely

to occur, resulting in a relatively small amount of additional

energy consumption to achieve fault-tolerance.

The second scenario, depicted in Figure 1(b), takes place

when failure of the main process occurs. Upon failure de-

tection, the shadow process increases its processor speed and

executes until completion of the task. The processor speed at

which the shadow executes after failure is determined such that

the targeted response time is achieved. To maximize energy

savings failure detection should occur as soon as possible but

if this is not possible the shadow process could compute the

time the main process should complete, then if that time is

reached and the shadow has not been notified, it can assume

a failure has occurred.

2For the purpose of this discussion, only a single shadow is considered. The
discussion can be easily extended to deal with multiple shadow processes
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(a) Case of no failure

����

����	


����
����	







��	�
����

����

������	�	

���

��������
��	
��	�

�
��
�
�
��

��
	

	�

�������

�

����

(b) Case of failure

Fig. 1. Shadow replication execution model.

As mentioned earlier, it is expected we will have additional

sockets that will need to be powered off due to the power

consumption limits. Given a power limit and socket power

consumption there will be a fixed number of sockets available

at any one time. Coordinated Checkpoint/restart would use all

of the available sockets to perform work and in the event of

failure rollback all sockets, therefore staying under the power

limit by restricting the number of sockets used. Traditional

replication would take half of the available sockets and use

them as replicas, which has been shown to increase system

efficiency in exascale-class machines. In contrast, shadow

replication has the ability to use additional sockets because the

replica sockets are consuming less power by running at a re-

duced speed. This has the added benefit of allowing additional

sockets to work as main processes while still providing system

resilience as in traditional replication. In the event of failure

there is the potential delay in the time to solution because of

the replica’s slower execution speed. However, because of the

ability to use additional sockets we can show that the expected

time to solution is actually faster than both checkpoint/restart

and traditional replication methods.

IV. ANALYTICAL FRAMEWORK

To evaluate these methods on exascale-class machines we

develop a framework of analytical models that represent the

energy consumed for each of these methods. We first develop

a model that describes the power consumption of a process

or group of processes for a given type of work. Next, we

derive a model that describes the expected amount of time

those processes will be performing a given type of work.

By combining these we can then estimate the total expended

energy for a given application and system.

A. Computational Model

We consider a distributed computing environment of a large

number of collaborative tasks (equivalent to ranks in MPI)

which communicate frequently. The successful execution of

the application depends on the successful completion of all
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tasks. Therefore, the failure of a single task delays the entire

application. We assume the application is perfectly parallizable

and has a total amount of work to accomplish, W . The work

is assumed to be evenly divided into N tasks which also

correspond to the number of system sockets. Because the

work is evenly divided each socket will have Wtask = W
N

work to complete. We assume an application with strong

scaling, therefore as the number of sockets increases, the

amount of work each individual process performs decreases.

The amount of work is given in number of clock cycles and

each computing socket has a variable speed, σ, given in clock

cycles per second. Therefore the total solution time for an

application when all sockets are operating at maximum speed

is Ts =
Wtask

σmax
.

Each task also has an associated targeted response time,

tresp, which is the maximum time that the process will

complete it’s task. We will represent the targeted response

time as a laxity factor, α, of the minimum response time. For

example, if the minimum response time is 100 seconds and

the targeted response time is 125 seconds, the laxity factor is

1.25. In contrast, checkpointing techniques assume that if a

failure occurs the system must always have enough time to

re-execute. In our framework this results in α = 2.0. 3

B. Power Model

We start by considering the dynamic CPU power which is

affected by the execution speed of the processor. Specifically,

one can reduce the dynamic CPU power at least quadratically

by reducing the execution speed linearly. Dynamic CPU

power, P , can be determined by knowing the chip activity

factor, A, the capacitance C, operating voltage, V , and the

frequency, f . The dynamic CPU power is therefore represented

by the function P = A ∗ C ∗ V 2 ∗ f . In this paper we will

be performing DVFS, resulting in a execution speed of σ.

Because we are scaling both voltage and frequency, the last

component allows us to represent power as the function p(σ),
as a polynomial of at least second degree, p(σ) = σn where

n ≥ 2. In the remainder of this paper we assume that the

dynamic power function is the cubic, P (σ) = σ3.

Next, consider the “overhead” power which is consumed

regardless of the speed of the processor. This includes both

CPU static leakage and all other components consuming power

during execution (memory, network, etc.). In this work we

define overhead power to be a fixed factor, ρ, of the power

consumed when the CPU is operating at full speed. The

percentage of overhead power in a system is thus defined as
ρ

ρ+1 . By reducing the execution speed one can only change

the dynamic power, the overhead power remains constant.

The energy consumed by a socket executing at speed σ
during an interval [t1, t2] is given by:

Esoc(σ, [t1, t2]) =

∫ t2

t=t1

(σ3 + ρσ
3

max)dt (1)

3This assumes a single failure, if multiple failures occur checkpointing has
the potential to have α > 2.0.

The last component we consider is the energy consumed

during an I/O operation, assumed to occur while writing

or recovering a checkpoint. We handle this case separately

because studies [4] have shown that this operation consumes

a significant amount of energy. Similar to overhead power,

we define maximum I/O power as a factor of the CPU when

operating at full speed. This factor is defined as γ.

Eio([t1, t2]) =

∫ t2

t=t1

(γσ3

max)dt = (γσ3

max)(t2 − t1) (2)

C. Failure Model

A failure can occur at any point during the execution of the

main task and the completed work is unrecoverable. Because

the tasks are executing on different computing nodes we

assume failures are independent events and that only a single

failure can occur during the execution of a task. We further

assume that a probability density function, f(t), exists which

expresses the probability of the main task failing at time t. In

the remainder of this paper we use this exponential probability

density function, thus f(t) = 1
Msoc

e−t/Msoc where Msoc is the

socket MTBF.

D. Checkpointing Energy Model

Coordinated checkpointing periodically pauses tasks and

writes a checkpoint to stable storage. If any one socket fails

then this checkpoint is read into memory and used to restart

execution. Daly [3] computes the expected total wall clock

time, tw, given the original total solve time (Ts), a system

MTBF (Msys), checkpoint interval (τ ), checkpoint time (δ)

and recovery time (R). System MTBF is dependent upon the

number of sockets and the socket MTBF, Msoc, this assumes

that socket failures are independent events.

Tw = Msyse
R/Msys(e(τ+δ)/Msys − 1)(

Ts

τ
−

δ

τ + δ
) (3)

Given this we can define the estimated energy required for

a single process using checkpoint and restart (CPR) as Ecpr.

Ecpr =Esoc(σmax, [0, Tw])

+ Eio([0, δ)])×
Ts

τ
+ Eio([0, R)])×

Tw

Msys

(4)

The first part of this equation is because at any given time all

processes are either working, writing a checkpoint or restoring

from a checkpoint and all sockets are always executing at

σmax. The second part adds the energy required to write or

restore from a checkpoint times the number of times we will be

writing or recovering from a checkpoint. Lastly, we multiply

this by the number of sockets, N .

E. Replication Energy Model

This section develops a model to represent the energy con-

sumption of a replica pair. Then uses this model to determine

the energy consumption of the combination of replication and

checkpointing. This is equivalent to replacing a single socket

in the checkpointing model described above with a replica pair.
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Shadow replication has a main process executing at a single

execution speed denoted as σm. One of the primary goals of

high performance computing is to achieve maximum possible

system throughput. Thus when we apply shadow replication

to this environment we assume that the execution speed of

the main process should be the maximum possible execution

speed, σm = σmax. If no failure occurs then the task will

be completed as soon as possible, known as the minimum

response time. In contrast, the shadow process executes at two

different speeds, a speed before failure detection, σb, and a

speed after failure detection, σa, depicted in Figure 2.
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Fig. 2. Overview of Shadow Replication for HPC

We define some specific time points signaling system events.

The time at which the main process completes a task, tc, is

given as tc = Wtask/σmax. Additionally, we define tf as the

time at which a failure in the main process is detected. If no

failure is detected we assume that tf = tc, this is done just

to make the formulations below easier to understand. We can

also define the time at which the shadow process will complete

a task regardless of a failure as, tr = tf +(Wtask−σbtf )/σa.

We define the expected energy of a shadow replica-set as the

summation of the expected energy consumed by the main and

shadow process given our failure model. We assume at most

one failure in the main process occurs but this can easily be

extended to support multiple failures. In our analysis we have

found that multiple failures made no discernible difference

for socket MTBF’s exceeding one year – a reliability easily

reached for future systems.

Erep =

∫ tc

t=0

(Esoc(σmax, [0, t]) + Esoc(σb, [0, t]))f(t)dt

+

∫ tc

t=0

Esoc(σa, [t, tr])f(t)dt

+(1−

∫ tc

t=0

f(t)dt)(Esoc(σmax, [0, tc]) + Esoc(σb, [0, tc]))

(5)

The first part of this equation represents the expected

energy consumed by the main and shadow process before a

failure occurs in the main process. This is the summation of

the expected energy consumed by the main plus the energy

consumed by the shadow given our failure model over the

total duration, 0 to tc. The second part of this equation is the

expected energy consumed by the shadow after failure occurs.

The duration of this is from the time of failure, tf , until the

shadow completes execution, tr. The last part is the expected

energy consumed by the main and shadow processes in the

event that no failure occurs.

This equation is then used as an objective function in the

construction of an optimization problem used to find energy

optimal execution speeds. We let the speed of the shadow

process after failure be σa = σmax, this is because we can

trade the power consumed by the main process with the

shadow process after failure of the main. This reduces the

unknowns in the objective to the speed of the shadow process

before failure, σb. Using traditional optimization techniques

we take the derivative, set the result to zero and solve for

σb. Additionally, we must constrain σb such that if the main

process fails the shadow process will be able to complete

the given work, W , by the targeted response time, R. This

is known as the “work constraint” and is represented by the

following inequality.

tc ∗ σb + (tresp − tc) ∗ σmax ≥W (6)

In addition to providing a model for shadow replication this

can be used to represent traditional replication and stretched

replication. Traditional replication would be represented by

letting σm = σb = σa = σmax. Stretched replication is

represented by letting σm = σb = σa = Wtask

tresp
.

V. ANALYSIS

Our analysis finds several system parameters to be important

in determining which fault tolerant method is most efficient.

• I/O Bandwidth - This dictates how long it will take to

write or recover a checkpoint.

• System Size - The number of total sockets.

• Socket MTBF - Reliability of a single socket in the

computing system.

• Overhead Power - The overhead power consumed by the

socket, as described in Section IV-B.

When comparing fault tolerant methods, we calculate the

energy consumption and time using the power, failure and

energy models described in the previous section.

A. Scaling and Failure Rates

We compare fault tolerance efficiencies by identifying the

breakeven point at which the replication technique is equiva-

lent to that provided by coordinated checkpointing. We use two

different breakeven metrics, the expected energy consumed

and the expected time to solution. These are related to one

another because energy is a function of time, but due to

overhead power they are not equivalent. All of the area above

the breakeven curve is where the replication technique is more

efficient than coordinated checkpointing. Breakeven values are

calculated by computing the energy and time required for

coordinated checkpointing and comparing that to the energy

and time required for the replication technique, when those

values match that is the breakeven point.

Figure 3(a) shows the energy breakeven point varying

system size and socket MTBF using a fixed checkpoint time

of 15 minutes. These results show that shadow replication can

provide a significant energy savings over traditional replica-

tion. For example when socket MTBF is 25 years traditional
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Fig. 3. Breakeven points for both energy and time given a fixed checkpoint time of 15 minutes and a system overhead power of 60%.

replication is viable at 96, 700 sockets whereas shadow replica-

tion is more efficient at 53, 100. This represents a 46% energy

efficiency gain. Unfortunately, stretched replication turns out

to be less energy efficient because of the increased time to

solution and the presence of overhead power.

Shadow replication achieves this energy savings by slowing

down the replicas, this raises the question of how this will

effect the expected time to solution. Figure 3(b) plots the

time to solution breakeven point, and shows that even though

shadow replication slows the replicas the expected time to

solution is actually shorter than that provided by traditional

replication. For example, when socket MTBF is 25 years

traditional replication is viable at 97, 600 sockets, whereas

shadow replication is more efficient at just 52, 700 sockets,

representing a 46% improvement in expected time to solution.

The improvement in time to solution is because shadow

replication can utilize additional sockets while consuming the

same power because the replicas are consuming less power.

This is illustrated in Table I which shows the active socket

counts allowable given a 20 mega-watt fixed power budget.

Both stretched and shadow replication have the ability to use

additional sockets because they reduce the power consumed by

the individual sockets. Stretched replication reduces the power

consumed by all processes equally whereas shadow replication

only reduces the power consumed by the replica sockets. This

is the reason that the expected time to completion of shadow

replication outperforms traditional replication. Stretched repli-

cation is able to add additional nodes but because it also

reduces the processor speed of the main processes, the time to

solution is higher than both traditional and shadow replication.

In pure replication the total amount of work remains con-

stant but the the number of sockets is half of that available

to coordinated checkpointing. Our model assumes a strongly

scaled application which is a fair comparison because each

socket would have less work to accomplish in coordinated

checkpointing, thus in a failure free case it would be faster

than replication techniques. However, because with replication

there are two sockets instead of one, the MTBF for the pair

is greater than that provided in the single-socket case. The

change in MTBF is what allows replication to out perform co-

ordinated checkpointing at large scale. In shadow replication,

instead of assuming half of the original sockets are replicas,

Overhead % Method # Sockets # Main Sockets

60% Checkpointing 100, 000 100, 000

60% Traditional Replication 100, 000 50, 000

60% Stretched α = 2.0 153, 846 76, 923

60% Shadow α = 2.0 124, 998 62, 499

80% Checkpointing 100, 000 100, 000

80% Traditional Replication 100, 000 50, 000

80% Stretched α = 2.0 120, 230 60, 115

80% Shadow α = 2.0 110, 636 55, 318

TABLE I
AVAILABLE SOCKETS ASSUMING A 20 MEGA-WATT POWER LIMIT AND

200W PER SOCKET.

we calculate the energy optimal σb for α = 2.0. Then “add”

additional sockets remaining under the original power limit,

but continuing to use half the sockets as replicas. Stretched

replication is similar to shadow replication but both the replica

and main use less power.

The conclusion is that shadow replication is both more

energy efficient and produces solutions faster than traditional

replication in power-limited systems. This is true for the

majority of the exascale design space, illustrated by the region

in the grey box in Figure 3. We assumed a fixed checkpoint

time of 15 minutes [5] and a overhead power of 60% which

are reasonable system parameters given expected exascale

I/O bandwidth and increased system efficiencies. In the next

sections we further relax these assumptions and study the

models sensitivity to these parameters.

B. Scaling at Different Checkpoint I/O Rates

The checkpoint write times have a significant effect on

the efficiency of coordinated checkpointing. These times are

directly related to the available I/O bandwidth, as modeled

in [13]. Figure 4 uses these models to determine the energy

breakeven points for I/O bandwidth rates from 500GB/s to

50TB/s, representing a wide range of values for an exascale-

class machine. For space reasons we only show results for

shadow replication, other replication techniques follow a pat-

tern similar to that in Figures 3(a) and 3(b). Shadow replication

is viable for all but very extreme levels of I/O bandwidth.

C. Scaling at Different Overhead Power

Table I illustrated that the number of available sockets de-

creases as the percentage of overhead power increases. Shadow
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Fig. 4. Shadow replication energy breakeven for different I/O bandwidths.
Assumes 16Gb per socket.
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Fig. 5. Shadow replication energy breakeven for various overhead power
percentages. Checkpoint time of 15 minutes.

replication can only reduce dynamic power consumption,

leaving it with less power headroom to improve efficiency.

This means it can take advantage of fewer main sockets

as the available power headroom decreases. Figure 5 shows

the affect overhead power has upon the energy breakeven

point. As the power overhead increases the potential energy

savings also decreases, moving the breakeven point further

out into the exascale domain. The conclusion is that overhead

power does have an effect upon shadow replication but even

if the overhead is 100% it will be no worse than traditional

replication. It is expected that future hardware will reduce this

overhead making shadow replication more efficient.

D. Energy Savings
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Fig. 6. Energy savings achieved by all replication method for a system with
1TB/s I/O bandwidth and 25 Year MTBF.

Figure 6 shows the relative energy savings for a system

with 1TB/s I/O bandwidth and 25 Year MTBF. The trend

is consistent with that observed in the breakeven graphs and

shows that shadow replication consistently consumes about

20% less energy than that consumed by pure replication. For

space reasons we have only shown one system configuration

but this trend is consistent across different configurations,

although as we have previously shown, the breakeven location

changes. In this graph the breakeven point is the x-axis.

VI. IMPLEMENTATION AND EVALUATION

To provide additional insight into the energy consumption

of the methods described in this paper and validate the results

of our models, we implemented the replication techniques in

MPI and measured the energy usage of several applications.

Replication has previously been implemented within MPI

[15] but existing implementations did not have the ability to

change the execution speeds of the replicas. We implemented

replication as a MPI profiling library for OpenMPI that allows

us to execute unmodified MPI applications using the replica-

tion techniques discussed in this paper. To determine optimal

execution speeds for shadow computing, an estimate of the

total amount of work is needed. Most production job queue

systems require applications to estimate their execution time

before submitting a job and we use that estimate to determine

the execution speeds.

To measure the power consumption of each of these tech-

niques we use a computing cluster that is equipped with

component-level power measurement instrumentation. This

cluster contains 104 nodes, each with a AMD Llano Fusion,

which is a 4-core AMD K10 x86 paired with a 400-core

Radeon HD 6550D. Additional details on the power measure-

ment and validation of the system can be found in [11].

To evaluate the different methods of fault tolerance we

selected three different MPI applications. The first one is a pro-

duction application called LAMMPS [14] which is a molecular

dynamics code. The two others are mini-applications from

Sandia’s mantevo suite [16]: HPCCG (a conjugate gradient

solver) and miniFE (an implicit finite element method). These

applications are important as they represent a range of com-

putational techniques, are frequently run at very large scales

on leadership class systems, and represent key simulation

workloads for the U. S. Department of Energy.

A. Experimental Results

The purpose of these small-scale experiments are to demon-

strate that the power-aware replication techniques can provide

measurable energy savings for actual HPC applications. In

Figure 7 the average total energy consumption of multiple

application runs are shown for each replication technique,

normalized to the energy consumed by traditional replication.

This shows that power-aware replication techniques reduce

overall energy but also demonstrates that the amount of

savings is application dependent, as previous studies have

found [10]. HPCCG and miniFe show the maximum energy

savings. This is because they are simple applications that are

processor bound. Looking at LAMMPS, which is a production

application, one can see that the energy savings follows the
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same trend but the amount of energy saved is less than for the

mini-applications. While it is hard to predict exactly what the

energy savings will be, it is clear that our proposed techniques

have the potential to save energy.
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Fig. 8. Component level energy usage for LAMMPS

To confirm our assumptions about overhead power we

looked at the component level energy usage over runs of real

applications. In Figure 8 we show the percentage of energy

consumption by component for multiple runs of the LAMMPS

application. The first chart is the energy consumed when

running LAMMPS at the lowest possible execution speed. In

this case, the CPU consumes 40% of the overall energy. The

second chart shows the energy consumption when running at

full power in which the CPU consumes 71% of the overall

energy. From this the estimated amount of overhead power

is 67%, we observed a similar pattern for other applications,

concluding that overhead power in our system is 60-67%.

VII. CONCLUSIONS AND FUTURE WORK

In this work we show under what circumstances replication

is the most energy and time efficient fault tolerance mechanism

available. Furthermore, we show the benefit of power-aware

modifications to replication. Replication can be made 40%

more time and energy efficient using a simple protocol termed

shadow replication. This savings makes replication a viable

fault tolerance solution through the majority of the exascale-

class design space. Additionally, we demonstrate at small

scale that the proposed modifications actually produce energy

savings for actual HPC workloads. Most importantly, this work

demonstrates the need to consider power as a first order design

constraint in fault tolerance methods for exascale systems.

While these results are promising, there are several avenues

of future work being pursued. First, due to the reduced speed

of the replicas one concern is the growth of the message

queues between replica and their leaders, which occupy mem-

ory on the replica nodes. The rate of this queue growth depends

highly upon an application message rate. While we are still

investigating possible solutions, the most promising draws an

analogy between these queues and the message logs used in

uncoordinated checkpointing techniques. The idea, therefore,

is to use an applications send-determinism property [7] to

reduce the size of message logs while avoiding cascading

rollbacks. Lastly, we are continuing to explore other power-

aware modifications to replication and ways to efficiently pair

replication with checkpointing.
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