
High Performance Computing
Taichiro Suzuki

Tokyo Institute of Technology

Dept. of mathematical and computing sciences

Matsuoka Lab.

1

Review Paper

Two-Level Checkpoint/Restart Modeling
for GPGPU

Supada Laosooksathit, Nichamon Naksinehaboon,

Chokchai Leangsuksan
Department of Computer Science, College of Engineering and

Science Louisiana Tech University, Ruston 71272, USA

AICCSA 2011

2

GPGPU

Nowadays, supercomputing applications has

increasingly explored power of GPU and the cluster

of GPUs for non-graphic applications [p276]

→GPGPU

• GPU works as a co-processor of CPU

• Flow of execution of GPU application

1. Memory copy from Host to Device

2. Kernel execution

3. Memory copy from Device to Host

• CUDA
• De facto standard for GPGPU

• /usr/local/cuda on TSUBAME

CPU Mem

GPU
Device
Mem

HOST

DEVICE

DATA

DATA

3

Checkpoint/Restart for GPGPU

• BLCR[Paul, et al 2006]
• Checkpoint/restart mechanism for Linux system
• not works for GPU application

• VCCP[Hong, et al 2009]
• Checkpoint/restart mechanism for virtual machines
• may work

• NVCR[Nukada, et al 2011]
• Transparent checkpoint/restart library for CUDA applications
• not works for CUDA 4.0 ~

• CheCL[Takizawa, et al 2011]
• Transparent checkpoint/restart library for OpenCL applications
• API proxy may be able to apply to CUDA

4

Two-level
Checkpoint/Restart
for GPU application

GPUCPU

kernel execution

host malloc

continues kernel execution

Checkpoint overhead

failure occurance

Restart overhead
transfers back checkpointed data

device malloc

restarts kernel execution

transfers checkpoint data

dumps all checkpoint data

reads checkpointed data

5

CUDA Stream

• For overlap communication and computation

1 stream(default)

3 streams

Memcpy(H to D) Memcpy(D to H)Kernel

H to D1 D to H1Kernel1

H to D2 Kernel2

H to D3

D to H2

D to H3Kernel3

/usr/local/cuda/samples/0_Simple/simpleStreams
6

GPUCPU

kernel execution

host malloc

continues kernel execution

Checkpoint overhead

failure occurance

Restart overhead

transfers back checkpointed data

device malloc

restarts kernel execution

dumps all checkpoint data

reads checkpointed data

transfers checkpoint data

Streamed Two-level
Checkpoint/Restart
for GPU application

7

Experiment

• NVIDIA GeForce GTX 295
• compute capatibility 1.3

• maximum number of blocks in a grid is 65535

• maximum number of threads in block is 512

• Array addition C = A + B
• Array size 2 ~ 2

• Compare non-streamed, 4-streamed and 8-streamed

10 24

8

1. Execute kernel_1() with L iterations
2. Synchronize all threads to prepare for memory copy
3. Allocate host memory for data checkpointing, i.e. array A, B, and C.
4. Do device-to-host memory copy of array A, B, and C.
5. Execute kernel_2() with M iterations
6. Failure occurrence (Free all device memory)
7. Reallocate device memory for array A, B, and C.
8. Do host-to-device memory of array A, B, and C.
9. Re-execute kernel_2() with M iterations.
10. Execute kernel_3() with N iterations.
11. Do device-to-host memory copy of the result array C

Experiment-1

• Pseudo code

… Checkpoint overhead

… Restart overhead

… Wasted time

9

Checkpoint overheads

10

Restart overheads

11

Wasted times

12

Experiment-2

• Consider mean-time-to-failures(MTTFs)

1. Checkpoint/restart overheads compared to wasted time

2. Wasted time compared to completion time

Size of array 2 and 2

MTTFs 12 hours to 7 days

Checkpoint interval 30 and 120 mins

20 24

Checkpoint/Restart overhead

Chcekpoint interval

Wasted time

MTTF

13

Recomputing overhead

Checkpoint overhead/wasted time

Array size 2

14

20 Array size 224

Checkpoint interval; 30mins Checkpoint interval; 30mins

MTTFs; 12 hours MTTFs; 12 hours

Restart overhead/wasted time

15

Array size 220 Array size 224

Checkpoint interval; 30mins

Checkpoint interval; 30mins

MTTFs; 12 hours MTTFs; 12 hours

Wasted time/completion time

16

Array size 220 Array size 224

Checkpoint interval; 30mins Checkpoint interval; 30mins

MTTFs; 12 hours MTTFs; 12 hours

Conclusion

• GPGPU
• GPUs for non-graphic applications

• De facto standard; CUDA

• Checkpoint/restart modeling for GPGPU
• Two-level

• Streamed

• Streamed Checkpoint/Restart model has advantage
over non-streamed model when data size is enough
big

17

Discussion

• How to implement the streamed model?
• especially for an application with overlapped kernel?

• The results of experiments are affected by a
characteristic of application.

18

