
1

Tokyo Institute of Technology 2014 second term class

High Performance Computing
Resume (Jan. 5, 2015)

 Masahiro Yano
Department of Biological Information, Tokyo Institute of Technology

Kurokawa Nakashima Yamada Lab.

2

Today's paper

Title:
HAUBERK: Lightweight Silent Data Corruption Error Detector for GPGPU

Author(s):
Keun Soo Yim
Center for Reliable & High Performance Comput., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA
Cuong Pham ; Saleheen, M. ; Kalbarczyk, Z. ; Iyer, R.

Published in: Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE International
Date of Conference: 16-20 May 2011
Page(s): 287 - 300
ISSN: 1530-2075
E-ISBN: 978-0-7695-4385-7
Print ISBN: 978-1-61284-372-8
INSPEC Accession Number: 12220887
Conference Location: Anchorage, AK
DOI: 10.1109/IPDPS.2011.36
Publisher: IEEE

(This data was quoted from
 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6012845)

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6012845

3

・Graphics processing units (GPUs) are surfacing as a compelling
　 platform for processing general-purpose HPC programs.

・ HPC programs have strong output correctness requirements.

・GPU devices targeting graphics applications usually do not need
　 strong fault-tolerance techniques.

・ Regardless of added memory error protection, HPC programs are
　 still vulnerable to certain types of GPU hardware (e.g., ALU, FPU,
　 or register file) due to the irregularity and high operational speed of
　GPU core login, i.e., constitutes a large portion of the silicon area in
　 the GPU chip.

・ Designing a technique to tolerate faults in GPU cores is challenging
　 espacially for HPC GPU programs because of their strong
　 performance and cost requirements.

Introduction (1)

4

・ In this context, software-implemented full duplication (i.e., well-known
　 techniques) can be an effective approach to detect SDC errors in
　GPU platforms.

・Optimizing naïve full duplication has achieved a limited success in
　GPU programs.

・ This paper presents HAUBERK, a software technique to derive
　 lightweight error detection and recovery customized for target GPU
　 programs.

Introduction (2)

※silent data corruption

5

Measurement – A. Error sensitivity

・ This section evaluates the error sensitivity of HPC and graphics
　 programs executing on GPU and performance characteristics of the
　 used HPC GPU programs.

・ Figure 1 shows the error sensitivity of HPC GPU programs, graphics
　GPU programs, and CPU programs.

・We inject a single-bit error into each variable in benchmark program
　 by using the fault injection tool described in Section VII.

6

Measurement – A. Error sensitivity
・Observation 1: An SEU (or single-bit error) in the pointer, integer, and
　 FP data leads to an SDC error with 18%, 45%, and 39% average
　 probability, respectively.

7

Measurement – A. Error sensitivity
・ In the benchmark HPC programs, FP data occupy 3-6 orders of
　magnitudes larger memory space than the pointer and integer data
　 taken together (see Figure 2).

8

Measurement – A. Error sensitivity
・Observation 2: A fault in an FP variable rarely leads to a GPU
　 program failure, while faults (e.g., 16-33%) in pointer or integer
　 variables are likely to cause program failures.

・ Figure 3(a) shows a video frame of the ocean-flow program that is
　 corrupted by a single-bit fault in its input data stream (a spike in the
　 image is due to the injected fault).

9

Measurement – A. Error sensitivity
・Observation 3: 3D graphics programs can experience SDC errors
　when exposed to a longer duration fault in GPU.

・ The impact of an intermittent fault having a long duration time can be
　 significant even in 3D graphics programs.

・ In the ocean-flow program, corruptions of 10,000 values form a
　 prominent stripe pattern in the rended frame image (see Figure 3(b)).

10

Measurement – B. Performance
・ This section characterizes the execution times of loop and non-loop
　 portions of GPU kernels (see Figure 4).

11

・Observation 4: Loops (for, while, and do-while) form a large portion
　 (> 98% in 5 out of 7 programs and 87% on average) of the total
　 execution time spent on GPU.

Measurement – B. Performance

12

Related work (image)

・ This section classifies and analyzes existing error detection
　 techniques potentially applicable in the context of this study
　 (see Figure 5).

13

Related work
・ The Design goal is to find a high-coverage ditector without
　 compromising performance.
(i) Naïve full duplication
　 - high SDC error detection ratio, almost doubles the execution time
(ii)Optimized full duplication
　 - utilize idle hardware resource, not highly effective for GPU program
(iii)Selective protection
　 - selectively protects parts of the program state
 (a) Fault injection
　　 - most effective if the size of program is small
 (b) Static compiler analysis
　　 - can quickly select protection target state
 (C)Dynamic program analysis
　　 - derives and selects likely program invariants by profiling

 　　 and monitors selected invariants at runtime
(iv)Algorithm-level techniques
　 - Error detection techniques designed and optimized for a particular

 　 type of algorithm or program are usually highly efficient

14

GPU HAUBERK – A. Design principles

Principle 1:
HAUBERK customizes error detectors by using profiling information of
common HPC GPU programs in order to minimize the impact on
performance.

Principle 2:
HAUBERK selectively protects the program state where errors in
other states are likely to propagate.

Principle 3:
HAUBERK places error detectors by considering the recoverability of
errors.

15

HAUBERK defers placements of error detectors as long as possible by
taling advantage of inherent hardware-enforces error isolation
between GPU and CPU.

GPU HAUBERK – A. Design principles

16

GPU HAUBERK – B. Framework
Figure 7 depicts a compile flow of the HAUBERK framework.

17

・ Places where HAUBERK translator adds or mutates source codes
　 are summarized in Table I.

GPU HAUBERK – B. Framework

18

Error detection – A. For non-loop code
・ HAUBERK duplicates the definition of virtual variable and immedia-
　 tely checks the original and duplicated variables (see Figure 8(c)).

19

Error detection – B. For loop code
・We present value-accumulation-based range checking for loop
　 codes. Derivation of this error detector has four steps.

(i)Select target variable for protection
　Among all virtual variables defined inside a target loop, we first
　 select self-accumulating virtual variables.

(ii)Generate value accumulator code
　 The placed error detector accumulates the data value of each
　 protected virtual variable in every loop iteration.

(iii)Generate accumulation counter code
　An addition statement is added to count the number of
　 accumulation operations for each accumulator variable.

(iv)Generate error checking code
　An error checking routine is added right after the loop code.

20

Error detection – B. For loop code
・ Figure 9 exemplifies a data-flow graph of a loop in a GPU kernel
　 that is computing a coulombic potential function.

21

Error detection – B. For loop code

・ A strong correlation is observed in values stored in or computed
　 for a same program variable in many HPC GPU programs.

・ Figure 10 shows the value distribution of integer and FP variables
　 in an HPC GPU program (MRI-Q).

22

Error recovery
・ This section describes retry-based error recovery in HAUBERK,
　which can diagnose and tolerate errors in GPU.
(i)Guadian Program
　 - A gurdian program is used as a parent process of program

 　 instrumented by using the HAUBERK framework (see Figure 6).

(ii)Diagnosis of False Alarms
　 - HAUBERK loop error detectors may result in both false negatives.

　 (a)False alarm
　　 - If the reexecution also raises an SDC alerm and its output is identical to the original

 　　 output, these two are likely to be false alarms (i.e., false positive).

　 (b)SDC error due to transient or short intermittent fault
　　 - If the reexecution terminates normally and does not raise an SDC alarm, we assume the

 　　 alarm raised in the first execution is due to transient or intermittent faule (i.e., removed
 　　 before the second execution).

　 (c)SDC error due to long intermittent or parmanent fault
　　 - If the reexecution also raises an SDC alarm but its output is not identical to the original

 　　 execution output, we execute a GPU program that is specifically designed to produce
 　　 multiple sets of output data by examining variout parts of GPU hardware.

(iii)Configuring Loop Error Detector
　 - This false alarm diagnosis can calculate the false positive ratio.

23

Error recovery
・ If the failure is repeated twice in the same GPU kernel using the
　 same input data (see Figure 11), the guadian process runs a
　 program to diagnose intermittent or parmanent faults in GPU
　 device.

24

Dependability evaluation framework

25

Experimental results

26

Experimental results

27

Experimental results

28

Experimental results

29

Conclusion

・ This paper analyzed reliability problems in GPGPU platforms,
　 focusing particularly on the design of efficient low-cost detection
　 and recovery mechanisms for handling SDC (silent data corruption)
　 errors.

・ In order to tolerate SDC errors, customized error detection
　 techniques are strategically placed in the source code of target
　GPU program so as to minimize performance impact and error
　 propagation, and maximize recoverability.

・ HAUBERK offers a high error detection coverage (~87%) with a
　 small performance overhead (~15%).

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20
	ページ 21
	ページ 22
	ページ 23
	ページ 24
	ページ 25
	ページ 26
	ページ 27
	ページ 28
	ページ 29

