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Fault detection in large scale system

* HPC systems grow large and complex
— Increase of the number of components
— Smaller chip size

e Soft error rate will grow

— Corrupt the computations, produce incorrect
output

— Hardware-based fault detection isn’t enough
— => Algorithm-Based Fault Tolerance




Algorithm-based fault tolerance

* Software or algorithmic approaches
— Detect the soft errors with low overhead

* Check sum for matrix vector multiplication
(MVM)
— c (A x)=(cA)x:cischeck vector
e Cc= (1 1)
— Low overhead for dense problems
* Check: O(N”2) + O(k * N) < Dense MVM : O(k * N~2)

— High overhead for sparse problems
* Check: O(N) + O(k * N) <& Sparse MVM : O(k * N)




Contribution

* Reduce the check overhead by using sampling
technique

— Exploiting features of sparse matrix and algorithm

— Approximate Random, Approximate Clustering

— Identity Conditioning, Null Conditioning
 Compared to traditional dense check,

overhead is reduced up to

— 50% in sparse matrix vector multiplication

— 20% in iterative linear solvers



Properties of sparse algorithm

e Sparse applications have
— Inherent structure

* Diagonal, banded diagonal, block diagonal
— Significant reuse
* |[terative methods : CG, IR




Algorithmic fault detection
Approximate Technique

* Exploiting inherent structure
e Approximate Random (AR)
1" (Ax) = ((c" A)x)s
— ¢, ={0,1}, s : scaling factor related to x

— Useful for low variance of column sum



Algorithmic fault detection
Approximate Technique

* Approximate Clustering (AC)
— For matrices with more variable column sums
— Clustering on the set of column sum

=> Randomly sampling the clusters
— Trade off

* Additional setup overhead

* Improving accuracy



Algorithmic fault detection
Conditioning

e Sparse algorithms include reuse of MVM
— Need to set the low overhead check sum
* |dentify Conditioning (IC)
(c’Ax=1"x= Ex
— Solving min |Atx — 1|
* Computing cost is equivalent to multiple MVMs
Low cost

— Joint IC to AR and AC : ICAR and ICAC

* Using IC for precondition and AR during the runtime




Algorithmic fault detection
Conditioning

* Null Conditioning (NC)
(c"A)x=0x=0
— Finding a vector ¢ by computing its smallest
singular value using SVD

e Ac=ouandA*u=o0c(o:singular value)
— Smaller singular value provides high accuracy

— Joint NC to AR and AC : NCAR and NCAC
* Using NC for precondition and AR during the runtime



Parameter space

* Fault injection
— Into the arithmetic operation and check operation
— Various fault models
— Fault rates : 0, 1e-6, 1e-5, 1le-4, 1le-3, 1le-2, le-1
e Sample rate (AR, AC)
—0.001, 0.01, 0.05,0.1,0.2,0.3, ...,1.0



Metrics

* F-Score
— Used to summarize an algorithm’s effectiveness

— F-Score =2 *TP /(2 * TP + FP + FN)

TP : True positives, detect the fault
* FP : False positives, detector signals when no fault

* FN : False negatives, not detect the fault

* Choose the best technique
— Oracle : so that F-Score is best

— Decision Tree ] ‘
* More practical




Results and Analysis



Experiment condition

* Datasets
— University of Florida Sparse Matrix Collection

* Benchmarks
— Matrix vector multiplication (MVM)

— Iterative linear solver
e Conjugate Gradient (CG)
* |terative Refinement (IR)



Evaluation
MVM

Compare each detection technique

— AR, AC and IC show same accuracy as traditional
dense check

— NC achieved F-Score above 0.9 for less than 10%

* Smallest singular value is

large
* Eigenvectors have many .
Zeros i,
— Faults is masked 2
0 |

Fig. 7. Number of problems meeting F-Score target. F-Score target=0.9,
Fault Rate=1e — 3, FaultModel=1



Evaluation
MVM

Compare each detection technique
— Overhead of AR was 50% lower
— AC was useful for lower variance pattern matrix

— NC was useful for what contain small singular
values
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Fig. 6. Runtime overhead of each technique. F-Score target=0.9, Fault

Rate=1e — 3, FaultModel=1



Evaluation
MVM (Less frequent fault rate)

* Dense check becomes worse
— Faults are likely to occur in the check operations

* Approximate checks work well
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Fig. 9. Number of problems meeting F-Score target. F-Score target=0.9, Fig. 8.  Runtime overhead of each technique. F-Score target=0.9, Fault
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Parformance Overhead(%)

Evaluation
MVM

* Across different F-Score targets, fault models
— Overhead is not sensitive to these parameters

Varying Fscore (faultRate=1e-3, faultModel=1) Varying FaultModel (faultRate=1e-3, fscore>0.9)
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Evaluation
MVM

e Across different fault rates
— Detection is most difficult in the middle fault rate
— Tree algorithm is resilient

Varying faultRate (fscore>0.9, faultModel=1) Varying faultRate (fscore>0.9, faultModel=1)
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Evaluation
Linear solvers

e Evaluation of iterative method

— CGand IR
* Overhead includes set up
.l . _ Time _sparse— Time dense
— Conditioning Overhead = Time dense

* Problems used with preconditioning solvers
achieved significant benefits (> 2x)

— 5 problems for CG, 1 problem for IR



Evaluation
Linear solvers

e Sparse check reduce the overhead
— 17% less time in MVM for CG on average
— 9% less time in total for CG
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Evaluation
Linear solvers with preconditioning

e Sparse checks with small overhead on average
— CG-pre:-5% "~ -10%
— IR-pre : - 30% ~ - 40%

MV in cg-pre Total cg-pre MV in ir-pre Total ir-pre
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Conclusion

e Sparse check technique reduce the overhead
of fault detection from traditional dense check
exploiting the properties of sparse algorithms
— Approximate check : AR, AC
— Conditioning : IC, NC
— Up to 2x over in MVM

— Effective for the iterative solver



Discussion

* Apply sparse check technique to
— Unstructured sparse matrix
— Dense matrix

* Result of CG-per and IR-pre are not enough
— Few dataset

* Not enough information about
— Datasets
— Experiment environment



