High Performance Computing

Yusuke Nagasaka
Tokyo Institute of Technology
Dept. of mathematical and computing sciences
Matsuoka Lab.

Review Paper

e Algorithmic Approaches to Low Overhead Fault
Detection for Sparse Linear Algebra [DSN2012]

— Joseph Sloan
e University of lllinois

— Rakesh Kumar
* University of lllinois
— Greg Bronevetsky

e Lawrence Livermore National Laboratory

Sloan, Joseph, Rakesh Kumar, and Greg Bronevetsky. "Algorithmic approaches to low
overhead fault detection for sparse linear algebra." Dependable Systems and Networks
(DSN), 2012 42nd Annual IEEE/IFIP International Conference on. IEEE, 2012.

Fault detection in large scale system

* HPC systems grow large and complex
— Increase of the number of components
— Smaller chip size

e Soft error rate will grow

— Corrupt the computations, produce incorrect
output

— Hardware-based fault detection isn’t enough
— => Algorithm-Based Fault Tolerance

Algorithm-based fault tolerance

* Software or algorithmic approaches
— Detect the soft errors with low overhead

* Check sum for matrix vector multiplication
(MVM)
— c (A x)=(cA)x:cischeck vector
e Cc= (1 1)
— Low overhead for dense problems
* Check: O(N”2) + O(k * N) < Dense MVM : O(k * N~2)

— High overhead for sparse problems
* Check: O(N) + O(k * N) <& Sparse MVM : O(k * N)

Contribution

* Reduce the check overhead by using sampling
technique

— Exploiting features of sparse matrix and algorithm

— Approximate Random, Approximate Clustering

— Identity Conditioning, Null Conditioning
 Compared to traditional dense check,

overhead is reduced up to

— 50% in sparse matrix vector multiplication

— 20% in iterative linear solvers

Properties of sparse algorithm

e Sparse applications have
— Inherent structure

* Diagonal, banded diagonal, block diagonal
— Significant reuse
* |[terative methods : CG, IR

Algorithmic fault detection
Approximate Technique

* Exploiting inherent structure
e Approximate Random (AR)
1" (Ax) = ((c" A)x)s
— ¢, ={0,1}, s : scaling factor related to x

— Useful for low variance of column sum

Algorithmic fault detection
Approximate Technique

* Approximate Clustering (AC)
— For matrices with more variable column sums
— Clustering on the set of column sum

=> Randomly sampling the clusters
— Trade off

* Additional setup overhead

* Improving accuracy

Algorithmic fault detection
Conditioning

e Sparse algorithms include reuse of MVM
— Need to set the low overhead check sum
* |dentify Conditioning (IC)
(c’Ax=1"x= Ex
— Solving min |Atx — 1|
* Computing cost is equivalent to multiple MVMs
Low cost

— Joint IC to AR and AC : ICAR and ICAC

* Using IC for precondition and AR during the runtime

Algorithmic fault detection
Conditioning

* Null Conditioning (NC)
(c"A)x=0x=0
— Finding a vector ¢ by computing its smallest
singular value using SVD

e Ac=ouandA*u=o0c(o:singular value)
— Smaller singular value provides high accuracy

— Joint NC to AR and AC : NCAR and NCAC
* Using NC for precondition and AR during the runtime

Parameter space

* Fault injection
— Into the arithmetic operation and check operation
— Various fault models
— Fault rates : 0, 1e-6, 1e-5, 1le-4, 1le-3, 1le-2, le-1
e Sample rate (AR, AC)
—0.001, 0.01, 0.05,0.1,0.2,0.3, ...,1.0

Metrics

* F-Score
— Used to summarize an algorithm’s effectiveness

— F-Score =2 *TP /(2 * TP + FP + FN)

TP : True positives, detect the fault
* FP : False positives, detector signals when no fault

* FN : False negatives, not detect the fault

* Choose the best technique
— Oracle : so that F-Score is best

— Decision Tree] ‘
* More practical

Results and Analysis

Experiment condition

* Datasets
— University of Florida Sparse Matrix Collection

* Benchmarks
— Matrix vector multiplication (MVM)

— Iterative linear solver
e Conjugate Gradient (CG)
* |terative Refinement (IR)

Evaluation
MVM

Compare each detection technique

— AR, AC and IC show same accuracy as traditional
dense check

— NC achieved F-Score above 0.9 for less than 10%

* Smallest singular value is

large
* Eigenvectors have many .
Zeros i,
— Faults is masked 2
0 |

Fig. 7. Number of problems meeting F-Score target. F-Score target=0.9,
Fault Rate=1e — 3, FaultModel=1

Evaluation
MVM

Compare each detection technique
— Overhead of AR was 50% lower
— AC was useful for lower variance pattern matrix

— NC was useful for what contain small singular
values

60
9
k
[
-E . .
$ H]
O 40 : A H 4
[] .
2 . s L H
: A S
8 .
|
.
Derllse Oldlcle D-Tree A’R A‘C I(‘) NC NCAC NCIAR IC;\C ICAR
Detection Techniques
Fig. 6. Runtime overhead of each technique. F-Score target=0.9, Fault

Rate=1e — 3, FaultModel=1

Evaluation
MVM (Less frequent fault rate)

* Dense check becomes worse
— Faults are likely to occur in the check operations

* Approximate checks work well

100+
80
- :
& 60 B
o
'.E__ . . .
8
E H H H H
g 40- !
§ H . H .
z :
I
” % # = # ~5H
0 . : JS—
eeeeeeeeeeee —‘Il'ree AIR
Detection Techniques
Fig. 9. Number of problems meeting F-Score target. F-Score target=0.9, Fig. 8. Runtime overhead of each technique. F-Score target=0.9, Fault

Fault Rate=1e-6, FaultModel=1 Rate=1e-6, FaultModel=1

Parformance Overhead(%)

Evaluation
MVM

* Across different F-Score targets, fault models
— Overhead is not sensitive to these parameters

Varying Fscore (faultRate=1e-3, faultModel=1) Varying FaultModel (faultRate=1e-3, fscore>0.9)

= a0-

5
2
Fsoore Targets g
- 3
o> 05 4
Q

o 0.75 @ 25
Q
-0 B
2
$
.

20

T T
acle D= Tree AL Den > CAR

AR AC c NC
Detection Techmnques

m

ault Models

HETeY

etng Targey(%)

of Matrices me
~N 2y

| | | | |
Dense Oracle D-Tree AL NC NCAC NCAR ICAC ICAR

Evaluation
MVM

e Across different fault rates
— Detection is most difficult in the middle fault rate
— Tree algorithm is resilient

Varying faultRate (fscore>0.9, faultModel=1) Varying faultRate (fscore>0.9, faultModel=1)

uuuuuuuuuuuuuuuu

le-05

2+
Pearformance Overhead(%)
vy - N N
'~ w o 15

AR Ic
Detection Techniques

Evaluation
Linear solvers

e Evaluation of iterative method

— CGand IR
* Overhead includes set up
.l . _ Time _sparse— Time dense
— Conditioning Overhead = Time dense

* Problems used with preconditioning solvers
achieved significant benefits (> 2x)

— 5 problems for CG, 1 problem for IR

Evaluation
Linear solvers

e Sparse check reduce the overhead
— 17% less time in MVM for CG on average
— 9% less time in total for CG

MV in cg Total cg MVin ir Total ir
40 |
£
20— ‘ =
@
'?EE\%‘
: TP HE EEEET :
g
_20— - é
E-40 | . |
o 40 [
o
EZO g
g 3
(o) e e i
e ——— — EB === = -
€ 20- g
@
8 =
%—40- L L !
a 40- g‘
20 =3
0 3
== =
g
-20 &
b
40 e B B e e B e B e N e s B e e e S —
]
2 ox 293 (64 2 8 o 2 o
I<OE B <OZ T IO T QX
87 ooofgL &8 pxop,,000%<g Y 0,,000%% BT xo,,000%<g
Oh <IVLZ2220C0 0h <ILZ2200 ch Z2FLS22C60 cb x2L=22060

Detection Techniques

Evaluation
Linear solvers with preconditioning

e Sparse checks with small overhead on average
— CG-pre:-5% "~ -10%
— IR-pre : - 30% ~ - 40%

MV in cg-pre Total cg-pre MV in ir-pre Total ir-pre
40
g
20 =
g
£l
0 o = — — 4
- =
- =, - 9
=20 — = = —— — —g
— L | — -— o=
2 -40-
o 40
4] — —
2 g
5 20 r >
: * [H [:
O o I I — -
) - o =
o ——— —8
& -20—
£ = T =T g
2 -40- e
®
8 40 | N
- =
20 1 =
— b
— 2
0 - W %
_ﬂ— = - _——1_r — —_— — — =
——
20 — = ?
- —— — _§
40 - —_—— —_— ——
[e e e e e I) 1
23 o) o e g o o
s 2 zgox - 32 ggox o 020 IO O o
ST ro OS <<<< xo 06644 £T xo 056’((T xo ‘56‘((
Co <1fz2zzz292C 0o <xLz=zz2zL0 Co <xL=2=zz2CL Co <xL=zzz=z0LP°
Detection Techniques

Conclusion

e Sparse check technique reduce the overhead
of fault detection from traditional dense check
exploiting the properties of sparse algorithms
— Approximate check : AR, AC
— Conditioning : IC, NC
— Up to 2x over in MVM

— Effective for the iterative solver

Discussion

* Apply sparse check technique to
— Unstructured sparse matrix
— Dense matrix

* Result of CG-per and IR-pre are not enough
— Few dataset

* Not enough information about
— Datasets
— Experiment environment

