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Abstract— High performance and relatively low cost of GPU-

based platforms provide an attractive alternative for general 

purpose high performance computing (HPC). However, the 

emerging HPC applications have usually stricter output cor-

rectness requirements than typical GPU applications (i.e., 3D 

graphics). This paper first analyzes the error resiliency of 

GPGPU platforms using a fault injection tool we have devel-

oped for commodity GPU devices. On average, 16-33% of in-

jected faults cause silent data corruption (SDC) errors in the 

HPC programs executing on GPU. This SDC ratio is signifi-

cantly higher than that measured in CPU programs (<2.3%). 

In order to tolerate SDC errors, customized error detectors are 

strategically placed in the source code of target GPU programs 

so as to minimize performance impact and error propagation 

and maximize recoverability. The presented HAUBERK tech-

nique is deployed in seven HPC benchmark programs and 

evaluated using a fault injection. The results show a high aver-

age error detection coverage (~87%) with a small performance 

overhead (~15%). 
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I. INTRODUCTION 

Graphics processing units (GPUs) are surfacing as a 
compelling platform for processing general-purpose HPC 
programs. HPC programs typically process large volumes of 
data using many collaborating computation tasks (e.g., sci-
ence simulation or medical data processing). Modern GPU 
devices are effective at processing these large volumes of 
data because of their use of multiple cores, wide memory 
bandwidth, large-size register files, and many arithmetic 
units. This rich hardware resource lessens structural hazards, 
and the throughput-driven design of GPU core architecture 
addresses both data and control hazards (i.e., main hurdles at 
exploiting instruction-level parallelisms in CPU designs) [1]. 
Furthermore, GPU hardware resources are directly exposed 
to the programmer by the programming model (e.g., [2][3]). 

HPC programs have strong output correctness require-
ments. This is in contrast to graphics programs where errors 
in computing colors of a few pixels may go unnoticed. Many 
HPC programs have quantifiable correctness requirements 
for their outputs. For example, in an HPC program compu-
ting a correlation function [4], more than 1% of value errors 
in any of the program output elements (e.g., a floating point 
number) compared with that of a golden run is treated as a 
silent data corruption (SDC) error. In this paper, an SDC is 
defined as an undetected data error in program output that 
violates correctness requirement of the program. SDC errors 
are serious problem in many HPC programs because of their 

long execution times and resulting high likelihood of experi-
encing hardware faults. 

GPU devices targeting graphics applications usually do 
not need strong fault-tolerance techniques, e.g., these devices 
do not have any error correcting codes for memory protec-
tion [26]. As a result, a relatively high hardware fault rate 
was observed in such devices. For example, evaluation of 
commodity GPU devices found at least one permanent fault 
in 1.8% devices [5] and transient memory fault in 66% of 
evaluated GPUs [6]. Note that these transient errors are due 
to soft errors and/or software bugs in GPU device drivers. 
Recent versions of GPUs for HPC applications support 
memory fault tolerance techniques (e.g., CRC [8] in GDDR5 
or SEC-DED ECC [7]). This is an important step building 
dependable GPU platforms for HPC domain. 

Regardless of added memory error protection, HPC pro-
grams are still vulnerable to certain types of GPU hardware 
faults. For example, it is hard to detect faults in a GPU core 
(e.g., ALU, FPU, or register file) due to the irregularity and 
high operational speed of GPU core logic, i.e., constitutes a 
large portion of the silicon area in the GPU chip [7]. Fur-
thermore, the high-density of transistors on the die increases 
the likelihood of multi-bit errors [9], and the integration of 
cores and memories contributes to an increase in hardware 
fault rate especially for intermittent fault [10]. 

Designing a technique to tolerate faults in GPU cores is 
challenging especially for HPC GPU programs because of 
their strong performance and cost requirements. The success 
of HPC applications on GPU platforms depends on the 
achieved computation efficiency in terms of performance 
versus cost or performance versus energy consumption, i.e., 
including the overhead for fault tolerance. From this perspec-
tive, the HPC GPU program opens a new design space dif-
ferent from traditional fault tolerance (e.g., for mission criti-
cal systems). Software-implemented error detection can pro-
vide lightweight cost-effective solution for this design space. 

In this context, software-implemented full duplication 
(i.e., well-known techniques) can be an effective approach to 
detect SDC errors in GPU platforms. However, duplication 
usually doubles the program execution time. A naïve full 
duplication simply executes the same GPU kernel twice and 
compares the results from the two executions. Note that a 
GPU program consists of CPU- and GPU-side codes, and a 
GPU kernel is a part of the GPU-side code with an entry 
function callable from the CPU-side code. Considering the 
fact GPU kernels form a majority of total program execution 
time, the doubled execution time of GPU kernels can easily 
break the performance requirement of HPC GPU programs. 



Optimizing naïve full duplication has achieved a limited 
success in GPU programs. Two optimization techniques 
have been studied by exploiting underutilized data- and 
thread-level parallelisms. The reported performance over-
head is more than 84% [11]. This overhead is much higher as 
compared with similar techniques employed for CPU pro-
grams (e.g., [16] reports average overhead of 41%). This is 
because GPU programs are typically already heavily opti-
mized and consume most of useable parallelism and compu-
ting resources in GPU. 

This paper presents HAUBERK, a software technique to 
derive lightweight error detection and recovery customized 
for target GPU programs. The derived error detectors are 
strategically placed and customized by considering their per-
formance and error propagation characteristics. The main 
contributions of this paper can be summarized as follows: 

 A mutation-based, software-implemented fault injector 
(SWIFI) for evaluation of commodity GPU devices. 

 Characterization of sensitivity of GPGPU applications to 
SDC errors. Our fault injection experiments show that 
single event upsets (SEU) (emulated by injection of sin-
gle-bit errors) can seriously harm reliability and data in-
tegrity of GPU kernels. For example, 18-45% of data 
faults cause SDC errors in evaluated GPU programs. 

 Design and evaluation of two types of error detectors: (i) 
duplication and checksums to protect non-loop GPU 
kernel codes and (ii) accumulation-based value range 
checking to protect loop portions of GPU kernels. Our 
profiling results indicate that loops form a majority of 
GPU kernel execution time (>98% in 5 out of 7 bench-
mark programs). 

 Design of a guardian program which reexecutes GPU 
program in order to tolerate errors and to identify false 
alarms.  

 Evaluation of the HAUBERK approach on seven HPC 
GPU programs. The evaluation results show that the av-
erage performance overhead is 15.3% (83% reduction as 
compared with an optimized full duplication) and the 
average error detection coverage is 86.8% for injected 
faults.  

II. MEASUREMENT 

This section evaluates the error sensitivity of HPC and 
graphics programs executing on GPU and performance char-
acteristics of the used HPC GPU programs. The parboil 
benchmark suite [4] is used as the source of HPC programs 
(six are floating-point programs and one is an integer pro-
gram). Two applications (ray-trace and ocean-flow simula-
tion) from a GPU SDK [2] are used as 3D graphics programs.  

A. Error Sensitivity 

Figure 1 shows the error sensitivity of HPC GPU pro-
grams, graphics GPU programs, and CPU programs. The 
GPU program state is classified into three data types – point-
er, integer, and FP (float) data – based on the type of data 
where faults are injected. We inject a single-bit error into 
each variable in benchmark program by using the fault injec-
tion tool described in Section VII. 

Observation 1: An SEU (or single-bit error) in the 
pointer, integer, and FP data leads to an SDC error with 
18%, 45%, and 39% average probability, respectively. 

The fault injection results indicate that a large portion of 
injected faults lead to an SDC error in the HPC GPU pro-
grams. This shows the importance of detecting SDC errors in 
GPGPU. 

In the HPC GPU programs, the SDC error ratio (18-45%) 
is higher than that observed in CPU programs (<2.3% ac-
cording to [14]). On the other hand, the failure (application 
crash/hang) ratio in the HPC GPU programs is lower than 
that in CPU programs (see Figure 1). The observed differ-
ences have two causes. (a) The lack of fine-grained error 
protection in GPUs. Unlike to modern CPUs, GPUs do not 
have a page-granularity memory access permission checking 
that can detect many errors (e.g., corruption of a memory 
address). This is because of shared memory model, hardware 
cost, and simplicity of runtime software in GPU. (b) The 
massive use of FP data in HPC programs. In the benchmark 
HPC programs, FP data occupy 3-6 orders of magnitudes 
larger memory space than the pointer and integer data taken 
together (see Figure 2). Moreover, corrupted FP values are 
seldom detected by basic hardware protection mechanisms, 
e.g., divide-by-zero in FP value does not lead to an exception 
but returns an infinite value. 

Observation 2: A fault in an FP variable rarely leads to 
a GPU program failure, while faults (e.g., 16-33%) in point-
er or integer variables are likely to cause program failures. 

In our measurements, we did not observe a GPU kernel 
failure due to corrupted FP value

1
. Pointer and integer data 

are highly fault sensitive. This is true not only in HPC and 
graphics GPU programs but also in CPU programs [13]. This 
is because many pointer and integer variables are used as a 
control data (e.g., to decide program control flow or to com-
pute memory address). Thus, if such variables are corrupted, 
it can make a large drastic change in the program execution 
flow, i.e., likely to be detected by basic hardware protections. 

We did not notice any SDC errors caused by a single-bit 
error in 3D graphics programs. In graphics program, SDC 
error is defined as a user-noticeable corruption in video out-
put data. This is because graphics program has a high frame 
rate (e.g., 30fps) and a transient fault typically makes a small 

                                                           
1 While perhaps rare such scenario is still possible. For example, if 

there is a data-flow from an FP variable to an integer or a pointer 

variable (e.g., FP data is used to calculate memory address), a cor-

rupted FP value can propagate to a control data and cause a failure. 

 
Figure 1. Comparison of average error sensitivity of HPC GPU 
program, graphics GPU programs, and CPU programs. 
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change in just one frame. Figure 3(a) shows a video frame of 
the ocean-flow program that is corrupted by a single-bit fault 
in its input data stream (a spike in the image is due to the 
injected fault). 

Observation 3: 3D graphics programs can experience 
SDC errors when exposed to a longer duration fault in GPU. 

The impact of an intermittent fault having a long duration 
time can be significant even in 3D graphics programs. In the 
ocean-flow program, corruptions of 10,000 values form a 
prominent stripe pattern in the rendered frame image (see 
Figure 3(b)). These injected 10,000 errors emulate an inter-
mittent fault lasting 80μs on an FPU of a 250MHz GPU with 
1 instruction per cycle and 50% of execution instructions 
using the FPU. Note that the injected errors can also reflect 
impact of an intermittent fault in a memory module or bus. 
Adding a detection for SDC errors in 3D graphics programs 
would allow eliminate the corrupted frames and provide bet-
ter QoS.  

B. Performance  

This section characterizes the execution times of loop 
and non-loop portions of GPU kernels (see Figure 4). This 
data is obtained by measuring the execution time of GPU 
kernel with and without loops. 

Observation 4: Loops (for, while, and do-while) form a 
large portion (>98% in 5 out of 7 programs and 87% on 
average) of the total execution time spent on GPU. 

Note that many GPU kernels are implementation of loops 
in original CPU codes. These loops executing on GPU typi-
cally have many iterations (e.g., proportional to the input 
data size) and consequently form relatively larger portions of 
total execution time. In contrast, non-loop codes are execut-
ing in parallel by exploiting thread-level parallelism. 

The profiling data suggests that a special care is re-
quired when placing error detectors inside loop body. A 
small increase in the execution time of a loop can largely 

increase the total execution time (in accordance with 
Amdahl’s law). For example, adding just 5 instructions in-
side a loop body can degrade the performance of a GPU-side 
code by 22% if the loop has 20 instructions and the loop 
forms 90% of the total GPU kernel execution time. For GPU 
programmers, loops are one of the main optimization targets 
and thus often have a small number of instructions. 

III. RELATED WORK 

This section classifies and analyzes existing error detec-
tion techniques potentially applicable in the context of this 
study (see Figure 5). The design goal is to find a high cover-
age detector without compromising performance. 

(i) Naïve full duplication. This basic technique has high 
SDC error detection ratio (close to 100%) but almost doubles 
the execution time. Duplication uses either temporal or spa-
tial redundancy. Spatial redundancy is achieved by duplicat-
ing GPU hardware. The technique can quickly detect errors; 
however, synchronizing original hardware and its replica 
brings ~50% of extra performance overhead together with 
doubled hardware cost [15]. Software technique can easily 
create temporal redundancy. R-Naïve [11] executes same 
GPU kernel twice by using two different copies of memory 
data. R-Naïve has a good SDC error detection ratio (~100%) 
but it also almost doubles the GPU execution time and CPU 
memory space used to keep input and output data. We found 
that real GPU failure examples where these existing full du-
plication approaches cannot detect and tolerate (Section IX). 

(ii) Optimized full duplication. This approach utilizes idle 
hardware resources for processing extra computation brought 
by the duplication. SWIFT [16] extends and applies an in-
struction duplication technique (EDDI [17]) to a VLIW-type 
CPU processor by duplicating backward computation slices 
for address and data values of all memory write operations. 
These duplicated instructions are reordered by compiler (or 
hardware scheduler) before execution to exploit the instruc-

 
Figure 4. Percent of execution time on loops in HPC GPU programs. 
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Figure 3. Impact of faults in a 3D graphics program on GPU. 

 
Figure 2. Data type vs. Memory size. 
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tion-level parallelism in VLIW (or superscalar) processors. 
On an Itanium CPU, SWIFT shows ~100% data error detec-
tion ratio with ~41% performance overhead, on average. 

The study reported in [11] employs optimized full dupli-
cation and shows that the approach is not highly effective for 
GPU programs in the way it is for CPU programs. After op-
timizations by exploiting data- or thread-level parallelism in 
GPU, >84% of performance overhead is shown in widely-
used GPU programs. This is because GPU programs are 
heavily optimized such that original program already uses 
most of the usable hardware resources in GPU, while the 
duplicated computation seeks same types of hardware re-
sources or parallelism as the original one. 

(iii) Selective protection. This approach selectively pro-
tects parts of the program state in order to reduce the amount 
of extra computation to detect errors. Error detectors are stra-
tegically placed in highly error sensitive state. This is moti-
vated by fault injection results, which indicate that many 
faults in lower-layers of the system are masked and do not 
manifest in applications [12][13][14]. 

(a) Fault injection. Fault injection can be used to find er-
ror sensitive program state [18]. This is most effective if the 
size of the program state (e.g., code and data) is small. Oth-
erwise, it can take a long time to analyze the error sensitivity 
of a large-size program. The large volume of GPU program 
state (e.g., several gigabytes memory data and several 100 or 
1,000 threads) can make the fault injection approach imprac-
tical if fine-grained (e.g., a data word) sensitivity analysis is 
needed. 

(b) Static complier analysis. Compiler-based heuristic al-
gorithms can quickly select protection target state even in 
large-size programs by using static source code analysis. For 
example, an early technique [19] analyzes the number of 
possible uses of each program variable and selects a certain 
number of variables from one with the largest possible uses. 
This technique detects 41% of SDC errors with 33% perfor-
mance overhead when applied to CPU programs. Another 
technique [20] excludes program states from the protection if 
errors in the state can quickly lead to the program crash. 

 (c) Dynamic program analysis. This derives and selects 
likely program invariants by profiling and monitors selected 
invariants at runtime. For example, if a variable always con-
tains a value between min and max during profiling, this 
generates an error detector to check whether the value of this 

variable is in the identified boundaries [21]. Because profil-
ing uses a limited number of input data, the derived detectors 
may lead to false positives and that can be addressed by an 
on-line diagnosis [22]. 

 (iv) Algorithm-level techniques. Error detection tech-
niques designed and optimized for a particular type of algo-
rithm or program are usually highly efficient in terms of er-
ror detection coverage and performance overhead. For ex-
ample, a technique [23] customized for matrix multiplication 
algorithms detected ~99% of SDC errors with only a small 
amount of overhead. A software technique [24] customized 
for GPU global memory errors can detect memory errors 
with a negligible overhead in compute-intensive applications. 

IV. GPU HAUBERK 

HAUBERK generates customized error detection and re-
covery routines for GPU programs by leveraging common 
performance and reliability characteristics of GPU programs.  

A. Design Principles  

The key principles used to design error detector deriva-
tion algorithms in HAUBERK are:  

Principle 1: HAUBERK customizes error detectors by us-
ing profiling information of common HPC GPU programs in 
order to minimize the impact on performance. 

HAUBERK uses two types of error detectors for loop and 
non-loop portions of codes in GPU program. This is motived 
by the aforementioned loop execution time measurement 
data. Considering the small contribution of non-loop codes to 
the overall execution time, strong error detection techniques 
are designed for non-loop codes. On the other hand, error 
detection techniques for loop codes are designed and opti-
mized to minimize the performance impact (e.g., by adding 
only two addition instructions inside a loop). 

Principle 2: HAUBERK selectively protects the program 
state where errors in other states are likely to propagate. 

The HAUBERK loop error detector selectively protects 
program states where computation of the state directly or 
indirectly uses many other variables. This means errors in 
these variables are likely to propagate to protected states and 
thus are likely to be detected by strategically placed error 
detectors. The detection accuracy is improved by customiz-
ing loop error detectors for common patterns in FP value 
distributions. 

Principle 3: HAUBERK places error detectors by consid-
ering the recoverability of errors (i.e., urgency in error de-
tection to enable and support safe error recovery). 

HAUBERK defers placements of error detectors as long as 
possible by taking advantage of inherent hardware-enforced 
error isolation between GPU and CPU (i.e., provided by pri-
vate memory and explicit communications of GPU and CPU 
states, see Figure 6). Many errors occurring in GPU-side 
programs are detected by basic hardware protection before 
propagating and harming the availability of CPU-side control 
software (e.g., OS). For example, GPU runtime can detect all 
GPU kernel crashes by default. Thus, we focus on detecting 
SDC errors in the output of GPU kernels because this is a 
practically feasible error propagation path from GPU kernel 
state to CPU-side program state. Then, in order to further 
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reduce the performance overhead, we defer the placement of 
error detectors in GPU kernel code as long as possible that 
avoids or reduces coverage overlap between the basic hard-
ware-enforced detectors and HAUBERK-generated detectors. 

Like any other error detector checking intermediate pro-
gram state, error detectors in HAUBERK can suffer of false 
alarms (i.e., an error in intermediate program state does not 
propagate to final program output nor makes an observable 
change in the output). In order to enable a diagnosis of false 
alarms, we defer reporting detection of suspicious behavior 
until the end of a GPU kernel execution. If the kernel com-
pletes without a failure, its output data is reported to the CPU 
code together with the error detection result. Any reported 
error triggers a recovery process in the CPU codes that can 
identify false alarms by reexecuting the GPU kernel and 
comparing the returned outputs. 

B. Framework 

Figure 7 depicts a compile flow of the HAUBERK frame-
work. This framework uses the source code of a target GPU 
program (in CUDA C++) as an input and places hooks in the 
source code by using a source-to-source translator (an exten-
sion of CETUS [27]). This instrumented source code is com-
piled by using a GPU compiler (CUDA CC) with a proper 
HAUBERK library. This source code mutation makes 
HAUBERK easily applicable to other types of programs (e.g., 
OpenCL). Note that this mutation can also be efficiently 
done by the programmer (e.g., testing or releasing engineer) 
even if he does not have a good understanding of the seman-
tic of target program as long as he is familiar with the syntax 
of the programming language used and HAUBERK instrumen-
tation rules. 

A HAUBERK library is a user-level C library. This library 
defines a collection of variables and functions for codes add-
ed by the HAUBERK translator. Four types of libraries exist: 
profiler, FT (fault tolerance), FI (fault injector), and FI&FT. 
We generate a program binary file using each of these librar-
ies (see Figure 7). Specifically, the original program binary 
is used to measure baseline performance. A program binary 
with the HAUBERK profiler profiles value ranges of variables 
protected by loop error detectors, derives all fault injection 
targets, and gets the output of the golden run. A program 
binary with HAUBERK FT is used to evaluate the performance 
overhead of placed HAUBERK error detection and recovery 
routines. A program binary with HAUBERK FI is used to ana-
lyze error detection coverage and error sensitivity of baseline 

program. Finally, a program with HAUBERK FI&FT is used to 
evaluate the error detection coverage of placed HAUBERK 
fault tolerance routines. We use a GUI-based controller pro-
gram to automate this evaluation process when many exper-
iments are needed (e.g., for fault injection). 

 Places where HAUBERK translator adds or mutates source 
codes are summarized in Table I. It shows the exact changes 
made by the HAUBERK translator depending on the type of 
used library. More specific descriptions on these transfor-
mations are provided in Section V, VI, and VII. 

V. ERROR DETECTION  

This section describes the error detector derivation algo-
rithms for non-loop and loop codes of GPU kernel. Note that 
a GPU kernel can have one or more loops with non-loop 
codes before, after, and between these loops. Many variables 
defined in non-loop codes are control data (e.g., pointers, 
constant input data, and data for control-flow conditions), 
while many variables manipulated inside loops are streamed 
input and output data. 

A. For Non-Loop Code 

The definitions of all virtual variables defined in non-
loop codes are duplicated in source code. In this paper, virtu-
al variable means a subset of the live range of program state 
where the subset has one definition and multiple uses. 

A naïve variable-granularity duplication can duplicate the 
definition of virtual variable and check the original and du-
plicated variables after the last use (or the immediate post-
dominator of last uses) as exemplified in Figure 8(b). This 
can largely increase the register pressure (e.g., by two times) 
because the duplicated variable has the same live range as 
the original variable. Note that in the GPU, if physical regis-
ters allocated to each thread are insufficient, register spill 
operations occur, which slows down the performance due to 
memory accesses (e.g., to an on-chip cache or an off-chip 
DRAM). 

HAUBERK duplicates the definition of the virtual variable 
and immediately checks the original and duplicated variables 
(see Figure 8(c)). This check is done to detect errors that may 
occur during the computation (e.g., in ALU or FPU). To de-
tect errors occurring after this computation (e.g., errors in 
register file), we update the checksum variable by XORing 
the original variable value to it. This checksum update is 
done right before the comparison operation to prevent losing 
errors that occurred between the comparison and the check-
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sum update (see Figure 8(c)). The checksum variable is up-
dated (i.e., XOR) once again using the original variable after 
its last use or the immediate post-dominator of last uses (e.g., 
after the loop in Figure 8(c)). The checksum variable is 4 
bytes. If a variable size is not 4 bytes, it is aligned by four-
bytes for XOR operations. This checksum variable is shared 
for all duplicated virtual variables in same kernel (i.e., even 
in nested functions). This variable still shall be zero at the 
kernel exit because it is XORed twice with each and every 
duplicated virtual variable value. 

This checksum-based duplication avoids a large increase 
in the register pressure. Only one checksum variable is added 
per kernel because one checksum variable is used for multi-
ple virtual variables. The duplicated variables are alive only 
for two statements (i.e., one for its definition and the other 
for checking). The increase in the live range of the original 
variable in the presented technique (e.g., from last uses to the 
immediate post-dominator if there are multiple last uses) is 
same as that of the naïve duplication technique. Register 
pressure control in this duplication and checksum technique 
efficiently leverages a common characteristic in GPU archi-
tecture that memory operations are more expensive than 
computation operations. 

The derivation algorithm of non-loop error detectors has 
five steps:  

(i) Update checksum. After the definition of each virtual 
variable in non-loop codes, the algorithm inserts a statement 
to update the checksum by using the defined virtual variable 
value. (ii) Duplicate computation. This step duplicates the 
definition statement of the target virtual variable. Another 
variable (i.e., temporally allocated in a register) is used to 
keep the duplicated computation result. (iii) Check computa-
tion result. This step inserts an if-statement to compare the 
original and duplicated virtual variable values. The live 
range of this duplicated variable ends here. Although this if-
statement is a point of control-flow divergence, because all 
threads in a same warp (i.e., unit of thread scheduling in 
GPU) make the same control-flow decision if there is no 

fault, this does not introduce a large performance or schedul-
ing overhead. (iv) Update checksum. This step inserts an 
XOR statement to update the checksum variable again by 
using the original virtual variable. The inserted location de-
pends on the number of uses of the original virtual variable. 
For example, if the variable is used but not updated inside a 
loop, this algorithm inserts an XOR statement after the loop. 
If the variable is updated inside a loop, this XOR statement is 
inserted right before the loop (i.e., introducing an uncovered 
window). Note that variables updated inside loops are pro-
tected by error detectors for loops described in Section V.B. 
(v) Validate checksum. This step inserts an if-statement as the 
last statement of the GPU kernel to check whether the check-
sum is zero. A statement is added to set an SDC error bit at 
runtime if the checksum is non-zero. 

The described algorithm repeats the steps from (i) to (iv) 
for all virtual variables defined outside of the loops. In the 
case of function parameters, the checksum is updated only 
(i.e., without duplication) at the entry and exit of the kernel 
function if the parameter is not modified inside the kernel. 
This can detect corruptions in parameters. If a parameter is 
updated inside the function, its second checksum update is 
done before the update statement, and the updated parameter 
is treated as another virtual variable (i.e., protected separate-

TABLE I. DESCRIPTIONS OF INSTRUMENTATIONS USED FOR HAUBERK. 

Location                   Lib. FI (Section VII) Profiler (Section V.B) FT (Section V.A., V.B., VI) 

[CPU] Top of the main file Includes a header file for HAUBERK libraries 

[CPU] Entry of main() 
Initializes the control block 

The control block is for the location, 
time, and type of fault injection target 

The control block is for profiled value 
ranges and execution counts 

The control block is for value ranges, 
detection results, and outliers 

[CPU] Exit of main() Stores fault activation result to a file Stores profiling results to a file Stores updated value ranges to a file 

[CPU] Before launching 
GPU kernel 

Copies the control block from CPU to GPU 

- 
Notifies this to guardian process and 
calls a checkpoint library (option) 

[CPU] After GPU kernel 
launch 

Waits until the kernel completion and copies the control block back from GPU to CPU 

- Calls an error recovery function 
[CPU] GPU kernel function Adds a pointer variable for the control block as a function parameter in GPU kernel function prototype and its caller(s) 

[GPU] After definition of 
virtual variable in GPU 
non-loop 

Calls a library function with an identifier, pointer, type, and used hardware com-
ponents of variable defined in previous statement 

Updates a checksum variable, dupli-
cates the definition, and checks origi-
nal and duplicated variables 

To inject a fault into a defined variable 
at a designated time of execution 

To count execution count per variable 
 

[GPU] After def. of virtual 
variable in GPU loop 

Same as “After definition of virtual 
variable in GPU non-loop” field 

Adds two addition statements for each protected target virtual variable (one for 
target variable and the other for counter) and merges the counters if possible 

[GPU] Before loop in GPU 
kernel 

- 
Defines accumulator and counter variables for each protected loop variable 

- Updates the checksum var. if needed 
[GPU] After loop in GPU 
kernel 

- 
Profiles value ranges of accumulated 
variables divided by their counter 

Checks accumulated variable value 
ranges and updates the checksum var. 

[GPU] Exit of GPU kernel - - Checks the checksum variable  
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Figure 8. Duplication techniques for non-loop codes where statements 
marked as gray symbols or italic texts are added for error detection. 

 



ly). The same derivation rule applies to memory load expres-
sions and statements.  

The delivery of potential error detection report from GPU 
to CPU is done by using an object in memory (namely, con-
trol block). CPU-side program allocates a control block in its 
memory, copies the allocated object to GPU memory, and 
delivers the pointer of copied object as a parameter of GPU 
kernel. Placed error detectors (i.e., added if-statement) use 
this passed control block and marks detection results. If the 
GPU kernel completes normally, the CPU-side code copies 
this control block back to CPU memory and tosses it to the 
error recovery engine described in Section VI. This control 
block also delivers other information between CPU and GPU 
(e.g., to configure loop error detectors) as described in Sec-
tion V.B. 

B. For Loop Code 

We present value-accumulation-based range checking for 
loop codes. Derivation of this error detector has four steps: 

(i) Select target variable for protection. Among all virtu-
al variables defined inside a target loop, we first select self-
accumulating virtual variables. This is because these varia-
bles do not need any extra code added inside the loop for 
protection. We then exclude virtual variables that have for-
ward dataflow dependency to these selected variables from 
the dataflow graph of all virtual variables inside the loop. 

Among the reminder of virtual variables, we select a vir-
tual variable with the largest cumulative backward dataflow 
dependency. As shown in Figure 9, a cumulative backward 
dataflow dependency means the number of virtual variables 
defined inside a loop and unprotected by non-loop error de-
tectors that can directly or indirectly be used to compute the 
target virtual variable. Thus, a larger cumulative backward 
dataflow dependency means a higher chance of propagation 
of errors in other system states to the target virtual variable. 
If a technique is available that can detect even small corrup-
tion in the target variable, this can cover errors in the pro-
gram state by only checking a few variables. 

Figure 9 exemplifies a data-flow graph of a loop in a 
GPU kernel that is computing a coulombic potential function. 
A circle means a binary or unary operator, and both box and 
ellipse mean either a virtual variable or a temporary variable 
where the name of temporary variable starts with T. A tem-
porary variable is used for virtual variable defined by using 
multiple binary or unary operations, and each operation has 
an intermediate program state in register or memory. In this 
example, two output variables (i.e., either live after the loop 
or written to memory) exist that are marked as black boxes. 
The cumulative backward dataflow dependency of energyx1 
and energyx2 are 12 and 13, respectively, including the 
memory load data but not the constant (i.e., 1.0 in the figure). 
Here, we exclude five virtual variables that are not modified 
inside the loop and are protected by non-loop error detectors 
(i.e., black ellipses in the figure). Thus, we first select ener-
gyx2 for protection.  

Users can specify the maximum number of virtual varia-
bles (Maxvar) that can be protected by these loop error detec-
tors. Note that Maxvar counts self-accumulating variables. If 
Maxvar is higher than one, this selection is repeated Maxvar 

times. Before repeating this selection process, we remove the 
previously selected virtual variable(s) and other virtual vari-
able(s) having forward data dependency to the previously 
selected ones from the dataflow graph. This is to select and 
protect another virtual variable that can cover the largest 
number of previously unprotected (either directly or indirect-
ly) virtual variables. Note that this repetition eventually ter-
minates because there is only a finite number of virtual vari-
ables in any loop. 

(ii) Generate value accumulator code. The placed error 
detector accumulates the data value of each protected virtual 
variable in every loop iteration. This step is skipped if a pro-
tected variable is a self-accumulator. For each protected vir-
tual variable, another variable is defined with the initial value 
of zero (e.g., float accumulator = 0.0;) right before the loop. 
Using this accumulator variable, an accumulation statement 
is added right after the definition of the protected virtual var-
iable (e.g., accumulator += energyx2; if the protected varia-
ble name is energyx2) inside the loop.  

 (iii) Generate accumulation counter code. An addition 
statement is added to count the number of accumulation op-
erations for each accumulator variable. The HAUBERK trans-
lator defines an integer variable right before the loop (e.g., 
int iterator = 0;) and adds an integer addition statement (e.g., 
iterator++;) inside the loop right after the placed accumula-
tor(s). Even when many accumulator variables are used, the-
se variables often have an identical control-flow path (e.g., 
common case is accumulation count is same as the loop iter-
ation count). In this case, these variables can share one ac-
cumulation counter. If the accumulation count is expected to 
be same as the loop iteration count, we maintain this custom 
accumulation counter because this is also used to detect 
some loop control-flow errors (i.e., errors in loop iterator, 
termination condition, or iterator manipulation operation). 

(iv) Generate error checking code. An error checking 
routine is added right after the loop code. This added routine 
calls a function defined in the HAUBERK FT library (i.e., Hau-

berkCheckRange(…)) by using the averaged accumulator value 
(e.g., accumulator/iterator) and the pointer to control block. 
The called function checks whether the current accumulation 
value is within the profiled value ranges (i.e., specified in the 
control block). If the value is outside of ranges, this function 
calculates new ranges (i.e., assuming it is a false positive) 
and stores this to control block together with setting an SDC 
error bit. The updated ranges are used by the recovery engine 
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Figure 9. Dataflow graph of a loop in a coulombic potential GPU kernel. 

 



as a part of its on-line learning process. In the FT library, the 
function called at the entry of main() loads the profiled value 
range from a file and configures the control block for loop 
error detectors. Another function called at the exit of main() 
stores the updated value ranges to the same file if false alarm 
is detected. 

The detection code for an example in Figure 9 is as fol-
lows where bold texts are added for HAUBERK protection. It 
also has an added code after the loop to check the loop itera-
tion count (i.e., HauberkCheckEqual(…)). Often, we can 
calculate the loop iteration count (e.g., loop iteration count is 
MAX for a loop, i.e., for(int i=0; i<MAX; i++) { … }). This 
loop iteration count is treated and checked as an invariant of 
the program. Even if the calculation of the loop iteration 
count is complex (e.g., using two conditions), we find that it 
is still feasible in many cases to drive a statement that can 
dynamically calculate the iteration count. For example, for a 
loop for(int x=0, y=0; x<A && y<B; x++, y++) { … }, the 
loop iteration count is same as the minimum of A and B. 
Also if a condition variable can be changed inside the loop, 
the iteration count is computed and stored in a variable be-
fore the loop. 

float  accumulator = 0;  int  iterator = 0; 
for (atomid=0; atomid < numatoms; atomid++) { 
    … 
    accumulator += energyx2; 
    iterator++; 
} 
HauberkCheckRange(controlblock, 0, accumulator / iterator); 
HauberkCheckEqual(controlblock, 0, iterator, numatoms); 

If a hardware fault makes a large change in the averaged 
accumulated value, this is likely to be detected by this value 
range checking. On the other hand, if an error makes only a 
small change in the value of protected variable, this will not 
be detected by the checking as far as the corrupted value is 
within the checked value ranges. Note that this can also be a 
case that the error also did not significantly impact the pro-
gram output so to cause an SDC error. 

The use of value range checking in GPU programs is mo-
tivated by our measurement data. A strong correlation is ob-
served in values stored in or computed for a same program 
variable in many HPC GPU programs. This strong correla-
tion is observed in both integer and FP data (see Figure 10). 
Figure 10 shows the value distribution of integer and FP var-
iables in an HPC GPU program (MRI-Q). Each graph line 
represents the value distribution of a single variable, and x-
axis means integer (or FP) numbers that can be encoded by 
32-bit integer (or FP) variable where 1.0E+N means 1

N
 and 

1.0E-N means 1
-N

. Integer values computed by the same code 
fragments are likely to be in adjacent two units of power of 

10s. Most of these graph lines have a sharp peak higher than 
>0.5. This means that >50% of values computed for the same 
variable are likely to be in a single unit of power of 10s. Sim-
ilar characteristics are observed in other HPC GPU programs. 

Note that variables in the same program have relatively 
similar correlation points in both FP and integer data. This is 
because these variables have direct or indirect data flows to 
each other and thus their values are correlated. 

An important finding is that many FP variables have 
three correlation points. Two correlation points are in nega-
tive and positive numbers with a similar magnitude, and the 
other point is in close to zero. Values in each correlation 
point are strongly correlated to each other (e.g., most of cor-
relation values have same order of magnitude). Considering 
the wide value space that an FP variable can encode (e.g., 
approximately 2

-126
 ~ 2

128 
for single-precision positive FP 

numbers), a typical FP program uses a small fraction of the 
available FP value space, making this value range checking 
effective in FP data. 

Based on this finding, the value range profiling algorithm 
is specifically designed to detect up to three correlation 
points. We set two default threshold points (e.g., at -10

-5
 and 

10
-5

) and treat any value observed between these points as a 
value correlated to the correlation point at zero. Other values 
outside of these threshold points are correlated to the correla-
tion point in positive or negative numbers. We sum up the 
sizes of value spaces of all value ranges identified by this 
profiling. We then change the two threshold points (i.e., by 
multiplying either 10 or 0.1 to examine its neighbors) and 
repeat the same profiling. This process is repeated if the cal-
culated total value space is smaller than that measured in the 
previous run. 

 If a potential SDC error is detected, this error detector 
does not terminate the GPU kernel. This instead defers error 
reporting until the kernel completion. If the kernel causes a 
failure, it validates that this detection is not a false alarm. 

VI. ERROR RECOVERY 

This section describes retry-based error recovery in 
HAUBERK, which can diagnose and tolerate errors in GPU. 

(i) Guardian Program. A guardian program is used as a 
parent process of program instrumented by using the 
HAUBERK framework (Figure 6). This is because a failure in 
the GPU kernel can make its host-side CPU program crash 
depending on the failure type (i.e., as a result of conservative 
fail-stop policy for crucial failures). When the GPU program 
terminates, this event is communicated to its parent guardian 
process by the OS kernel. For example, the SIGCHLD signal 

  
Figure 10. Value range distributions of integer (a) and FP (b) variables in the MRI-Q program executing on a GPU device. 
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(a) Value Ranges of Integer Variables in MRI-Q 
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(b) Value Ranges of Floating-Point (FP) Variables in MRI-Q 



is sent in Linux OS. After checking the return value of its 
child process, the guardian process marks this failure infor-
mation in a file and restarts the GPU program. If the failure 
is repeated twice in the same GPU kernel using the same 
input data (see Figure 11), the guardian process runs a pro-
gram to diagnose intermittent or permanent faults in GPU 
device. 

Optionally, instrumented GPU program can use a check-
point library [25] in order to reduce the recovery time. A 
checkpoint can be made before launching a GPU kernel, and 
the guardian process can restore the latest checkpoint upon 
detection of a GPU program failure. 

The guardian also offers a preemptive detection of GPU 
kernel hang (or execution delay). For example, if the execu-
tion time of a GPU kernel is not only T (i.e., 10) times longer 
than its previous execution time but also a certain time inter-
val (e.g., 1 minute), the guardian process assumes this as a 
hang or time delay error and preemptively sends a kill signal 
to its child process. HAUBERK FT library functions called 
before and after launching GPU kernel control a timer to 
report the measured execution time of a GPU kernel to its 
guardian process using an inter-process communication 
primitive. Our experiment data in Section IX identifies many 
cases where this preemptive detection is useful. 

(ii) Diagnosis of False Alarms. HAUBERK loop error de-
tectors may result in both false positives and negatives. (a) A 
false positive occurs when a new input data produces a value 
for accumulator variable that is not in the profiled value 
ranges. This is because used value ranges are derived by 
profiling that only uses a limited number of input samples. 
Using many representative samples in profiling can reduce 
the likelihood of false positives but it cannot guarantee com-
plete removal of false positives in many real world applica-
tions. (b) A false negative occurs when the averaged accu-
mulated value is within the profiled value ranges after the 
program experiences a fault, while the program output is 
largely corrupted and violates its correctness requirement. 

False SDC detection alarms are identified by reexecution. 
When loop error detector reports a potential SDC error, the 
recovery assumes this is a false positive and reexexcutes the 
GPU kernel for diagnosis (see Figure 11). 

(a) False alarm. If the reexecution also raises an SDC 
alarm and its output is identical to the original output, these 

two are likely to be false alarms (i.e., false positive). Here, 
identical means each value in the output of one execution is 
same as the corresponding value of the output of the other 
execution if the output of GPU program is always determin-
istic. If a nondeterministic GPU program is used, output val-
ues showing a certain degree of difference (i.e., more than 
twice of the output correctness requirement – a conservative 
approach is used because the golden run output is not availa-
ble) are still treated as identical. Up on a detection of a false 
positive, we store the updated value ranges to a file (i.e., a 
part of on-line learning process). 

(b) SDC error due to transient or short intermittent fault. 
If the reexecution terminates normally and does not raise an 
SDC alarm, we assume the alarm raised in the first execution 
is due to transient or intermittent fault (i.e., removed before 
the second execution). In this case, the reexecution result is 
taken. 

(c) SDC error due to long intermittent or permanent fault. 
If the reexecution also raises an SDC alarm but its output is 
not identical to the original execution output, we execute a 
GPU program that is specifically designed to produce multi-
ple sets of output data by examining various parts of GPU 
hardware. The functionality of this program is similar to 
built-in self-test (BIST). If this program detects a hardware 
fault, the current GPU device is disabled and another device 
in the node or cluster is used for reexecuting the current GPU 
program. A daemon process is periodically running this pro-
gram on disabled GPU devices with a time delay (Tbackoff). 
Here, Tbackoff is doubled after every execution of this program. 
If the error was due to an intermittent fault, this configura-
tion reduces the utilization of GPU device, and once the fault 
is removed, this program can re-enable the GPU device. 

(iii) Configuring Loop Error Detector. This false alarm 
diagnosis can calculate the false positive ratio. If the current 
false positive ratio of a HAUBERK loop error detector is higher 
than a threshold (e.g., 10%), the recovery engine increases 
the parameter alpha (e.g., by multiplying 10) for the error 
detector. If the false positive ratio is smaller than another 
threshold (e.g., 5%), it reduces the alpha (e.g., divides by 10) 
as far as alpha is larger than or equal to 1. Specifically, the 
maximum value of each value range is multiplied by alpha, 
and the minimum value of each value range is divided by 
alpha if these maximum and minimum values are positive 
numbers. The use of loose value ranges can reduce false pos-
itives but at the same time can increase false negatives. This 
tradeoff between false positives (i.e., performance overhead 
due to reexecution) and false negatives (i.e., detection accu-
racy) is analyzed in Section IX. 

VII. DEPENDABILITY EVALUATION FRAMEWORK 

This section presents a SWIFI framework for commodity 
GPU devices. In order to optimize and evaluate the dependa-
bility of programs instrumented with protection mechanisms 
derived by HAUBERK, a dependability benchmarking tool is 
required. However, there is no published fault injection tool 
for real GPU hardware [26]. Thus, we built a SWIFI toolset 
to emulate single- and multi-bit transient faults in GPU pro-
cessor and memory. The fault injection framework does not 
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Figure 11. Error diagnosis and tolerance algorithm. 

 



require any modification in GPU hardware and hence is ap-
plicable to commodity GPUs. 

A source code mutation (i.e., embedding error injection 
code) technique is used to efficiently control fault injection 
target (i.e., a state of a thread running on one of several 100 
GPU cores). Although our implementation is done for 
CUDA C++, the framework can be easily ported to other 
parallel programming languages (e.g., OpenCL). 

For each GPU kernel statement that can change a pro-
gram state, the HAUBERK source-to-source translator derives 
the symbol name and data type of a variable or program state 
that could be changed by the previous statement. A function 
call statement is added after each program statement

2
 to call 

a fault injector library function (see Figure 12). The argu-
ments of the added function call include: the variable identi-
fier, pointer to the derived variable, identifier of the data type 
corresponding to the target variable, and hardware compo-
nents used by the preceding statement. The hardware com-
ponents used are statically derived by analyzing the opera-
tion types, e.g., ALU and FPU for integer and FP expres-
sions, respectively. The HAUBERK provided fault injection (FI) 
library changes the value stored in the derived variable as 
specified by the fault type. If the derived variable is for a 
FPU register, this register value is copied to an ALU register. 
This is because the fault injection uses, for example, a logical 
XOR operation that is only supported by ALU. The changed 
value in the ALU register is then copied back to the original 
FPU register. 

The emulated hardware faults can be classified by using 
two metrics: fault location and type. 

(i) Fault location. Hardware faults can occur in any tran-
sistor (or component) in GPU. A fault is either masked (e.g., 
when the faulty transistor is not in use) [12] or it propagates 
to a software-visible architecture state. A fault propagated to 
an architecture state is a failure in the microarchitecture layer 

                                                           
2 Although not common, adding many call statements in the source 

code of GPU kernel can cause a GPU runtime error if used GPU 

device does not have sufficient hardware resources. In this case, 

fault injection target is selected at compile-time. Specifically, the 

variable identifier of a fault injection target is given as input of the 

HAUBERK translator that adds only one call statement in GPU ker-

nel source code where the added call statement has the given vari-

able identifier as its parameter. This, however, increases the total 

fault injection experiment time because the target program shall be 

instrumented and compiled again for each fault injection target. 

and can be treated as a fault in the architecture or software 
layer. The SWIFI toolset emulates faults in this architecture-
layer and evaluates their impacts on the reliability and cor-
rectness (i.e., data integrity) of the application software. 

By using the location of the fault in the software-visible 
architecture state, hardware faults are classified into several 
types: (a) faults in the core ALU, (b) faults in the core FPU, 
(c) faults in an SM (streaming multiprocessor in NVIDIA 
GPU [7]) register, and (d) faults in SM scheduler. These 
faults are emulated as errors in the architecture state, i.e., 
program variables or control-flow decision. For example, a 
fault in ALU is emulated by changing the computation result 
stored in a program variable of an operation that uses ALU. 
We assume memory data transfers between GPU core and its 
cache and memory are reliably done because memory data 
and data paths to on-chip and off-chip memory are protected 
in the latest versions of GPU devices [7]. 

(ii) Fault type. Fault can corrupt one or more transistors, 
and an error in a single transistor can propagate and corrupt 
multiple bits in its architecture state. We model both single- 
and multi-bit errors in the architecture state. For example, we 
emulate multi-bit errors in GPU register file. Although the 
latest GPUs support a SEC-DED ECC for register file, multi-
bit errors can occur in register file and propagate to program 
states without being detected by a SEC-DED ECC. In prac-
tice, supporting stronger ECC has hardware cost issue. For 
example, while a SEC-DED ECC causes ~22% extra space 
overhead when the protection unit is 32bits (e.g., register), a 
DEC-TED ECC (i.e., correcting double-bit errors) introduces  
~41% space overhead if the protection unit is the same. 

VIII. EXPERIMENTAL METHODOLOGY 

We use a GPU cluster where each node has an NVIDIA 
Tesla S1070 (4 GT200 GPU and 4GB memory per GPU) for 
the experiments. The benchmark programs (descriptions are 
in [4]) used for the measurements reported in Section II are 
used to evaluate application dependability. 

In order to assess the performance overhead, we measure 
the time spent on GPU kernels, memory copies, and CPU-
side codes. GPUs operate in synchronous mode when con-
ducting this measurement. In practice, the measurement fo-
cuses on the GPU kernel execution time because the time 
spent on executing the CPU code and memory copy opera-
tions is similar regardless of used error detection technique. 
Note that even if the memory copy traffic is doubled, this 
does not increase the DMA time largely as long as the data 
size is not excessively large as compared with the memory 
copy bandwidth between CPU and GPU memory (e.g., 
4GB/s in PCI-E v2.0 with 8 lanes). 

For the dependability evaluation, we emulate hardware 
faults (in various parts of hardware components) that propa-
gate and corrupt single or multiple bits in an architectural 
state (register or memory). 20-50 virtual variables are select-
ed in each benchmark program and faults are injected into 
each of the selected virtual variables. Fifty different error 
masks (randomly generated) are used for each variable in 
order to emulate single and multi-bit errors. In total, about 
10,000 faults are injected into seven benchmark programs. 
Specifically, we perform 10,000 different fault injection ex-
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Figure 12. A GPU kernel with HAUBERK fault injection codes. 

 



periments per application where each experiment runs a pro-
gram and injects only one fault (either single- or multi-bit). 
Thus, in our experiments, error detection coverage p means 
that a fault in the used GPU programs can be either detected 
or masked with the probability of p if the characteristic of the 
fault is same as that of the used 10,000 faults. 

The observed fault injection outcomes are classified into 
five types: (i) failure, a GPU kernel crash detected by the 
GPU runtime environment or a GPU kernel hang detected by 
the guardian process, (ii) masked, the output of a GPU kernel 
satisfies its correctness requirement regardless of the injected 
fault, (iii) detected & masked, the injected fault is masked 
but error detectors raise an SDC alarm, (iv) detected, the 
output of GPU kernel does not satisfy the correctness speci-
fications and an alarm is raised by error detectors, and (v) 
undetected, if the output does not satisfy the correctness 
specifications but is not detected by error detectors. 

IX. EXPERIMENTAL RESULTS 

This section evaluates the performance and coverage of 
HAUBERK in comparison with (i) Baseline, without any cus-
tom error detection, (ii) R-Naïve, full duplication based on 
reexecuting a GPU kernel twice, (iii) R-Scatter, an optimized 
full duplication exploiting data-level parallelism [11], (iv) 
HAUBERK-NL, HAUBERK only for non-loop codes, and (v) 
HAUBERK-L, HAUBERK only for loop codes. 

A. Performance Overhead 

Figure 13 shows the performance overhead of GPU ker-
nels of seven HPC GPU programs (i.e., normalized to the 
baseline performance) when a same data set is used for train-
ing and testing. The average overhead of HAUBERK is 15.3%.  

HAUBERK shows a significant performance overhead re-
duction as compared with R-Naïve and R-Scatter. The aver-
age overheads of R-Naïve and R-Scatter are 100% and 89%, 
respectively. This shows that the evaluation data reported in 
[11] holds even in more complex GPU programs. R-Scatter 
has a larger overhead in GPU than similar techniques for 
CPU program because its duplicated computation seeks same 
types of hardware resources or parallelism as the original 
computation, which is already heavily optimized in terms of 
used resources and parallelism. Note that statement duplica-
tion used in R-Scatter does not always double the perfor-
mance overhead because the duplicated statements can be 
processed by using previously unused resources. 

R-Naïve and R-Scatter have larger memory overheads 
than HAUBERK, which has only a small memory overhead 
(i.e., typically <10KB in both CPU and GPU memory spac-
es). R-Naïve doubles the CPU memory space to keep output 
data of the first and second executions of GPU kernel. R-
Scatter doubles used GPU memory space and resources (e.g., 
global/shared memory and partly registers). This means R-
Scatter is not directly applicable to programs that use more 
than half of one of these resources. For example, TPACF 
uses more than half of the GPU shared memory (e.g., 16KB 
total in the used GPU). Thus, we could not compile this pro-
gram using the R-Scatter error detectors. 

The average performance overhead of HAUBERK on the 
used benchmark is 15.3%. A large variation is observed in 

the performance overhead of HAUBERK on a particular pro-
gram (RPES) where a large portion of GPU codes is sequen-
tial (i.e., non-loop). Excluding the performance overhead for 
RPES

3
, the average overhead of HAUBERK is 8.9% where the 

minimum and maximum are 1.9% and 14.3%, respectively. 
The performance overhead of HAUBERK is similar but not 

a straight sum of performance overheads of HAUBERK-NL 
and HAUBERK-L. This is because of common performance 
overheads (e.g., to deliver the control block between CPU 
and GPU and to manipulate the control block by placed error 
detectors). 

The overhead of HAUBERK-NL depends on the portion of 
execution time spent on loops. For example, the overhead of 
HAUBERK-NL is exceptionally high in RPES because non-
loop codes in this program form 75% of total execution time. 
In some benchmarks (i.e., MRI-Q and MRI-FHD), the over-
head of HAUBERK-NL is larger than the contribution of non-
loop codes to the total execution time because the duplica-
tion increases the register pressure (i.e., consequently in-
creasing memory spill operations) and can interfere with the 
memory coalescing patterns in original program. 

The overhead of HAUBERK-L has a relatively small varia-
tion because the same number (i.e., Maxvar = 1) of variables 
is protected in each loop. The smallest overhead is observed 
when the protected variable is in integer type (i.e., PNS) 
thanks to the fast integer arithmetic speed. Note also that the 
overhead of HAUBERK-L is relatively small if the program 
(i.e., CP) has a self-accumulating variable (i.e., FP variable) 
in its loops. The fact that CP has larger overhead than PNS 
implies that value-range checker for FP data placed outside 
of a loop is an expensive operation in terms of performance 
overhead because FP variable has up to three value ranges to 
check. 

B. Error Detection Coverage 

Figure 14 shows the error detection coverage of 
HAUBERK for the benchmark programs and number of error 
bits when the same input data set is used for training and test 
runs. On average, 13.2% of injected faults can escape 
HAUBERK error detectors and lead to SDC errors. In other 

                                                           
3 We find that RPES is removed in the recent release of the Parboil 

benchmark suite because this type of program is not widely used as 

GPU program (i.e., inefficient due to the large portion of sequen-

tial code). 

 
Figure 13. Performance overhead. 
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words the average detection coverage is 86.8%. If a system 
experiences two faults during its execution, the coverage of 
HAUBERK would be (  (       ) )        , assum-
ing the two faults are independent. In the case of single-bit 
errors, on average, 35.6% of the errors are masked, 11.0% 
lead to a GPU program failure, and 21.4% are detected by 
the introduced error detectors. Out of the remaining 32%, 
22.2% are detected but did not violate the application cor-
rectness, and 9.8% lead to SDC errors by bypassing the em-
bedded error detectors.  

The detected & masked error type is an error that changes 
an intermediate program state but does not make a large cor-
ruption in the output significant enough so as to violate the 
correctness requirements. Both the detected and detected & 
masked errors need a reexecution of the GPU kernel to diag-
nose false alarm because the golden output is not available in 
practice. This reexecution has relatively small impact on the 
average execution time of the GPU kernel because this fault 
can only happen if the GPU faces a hardware fault. In prac-
tice, the hardware fault rate is often low enough and the error 
recovery time is not long enough to impact performance. 

The ratio of detected & masked type directly depends on 
the degree of strictness of output correctness requirement of 
application. For example, this ratio is low in SAD (i.e., an 
integer program) because it does not allow value errors in the 
output. This ratio is relatively high in PNS and RPES, where 
correctness requirements are relatively loose: Max{0.01, 
1%|GRi|} and 2%|GRi|+10

-9
, respectively. Here, |GRi| is i-th 

element of the golden output. Note that MRI-Q has stricter 
requirement than these two: Max{10

-4
Max{|GR|}, 0.2%|GRi|} 

where |GR| means all elements in the golden output. 
Multi-bit errors typically increase the percentage of pro-

gram failures and decrease the percentage of masked errors 
(see Figure 14). This is because when many bits are corrupt-
ed, this is likely to make a large value change in both FP and 
integer data as far as the number of corrupted bits is less than 
half of available bits. In Figure 15, regardless of an original 
value range, if the number of corrupted bits increases, the 
portion for >1E+15 (i.e., value errors more than 10

15
) gradu-

ally increases. This data is obtained by injecting faults into 

33 million randomly-generated FP value samples. The same 
characteristic is observed in integer values. 

Note that multi-bit errors do not always bring higher er-
ror detection coverage than single-bit errors when HAUBERK-
generated error detectors are used. Some programs (e.g., CP) 
have lower coverage when many more bits are flipped. This 
is because multi-bit errors generally have higher non-benign 
error ratio (i.e., smaller masked error ratio), while many of 
these non-benign errors in these programs evade the provid-
ed loop error detectors. For example, if a corrupted variable 
is used as a divisor operand that computes another variable 
protected by a loop detector, a multi-bit error in the divisor 
operand variable can eventually reduce the protected variable 
value, i.e., less likely to be detected by the loop detector. 

We find multiple cases where the GPU kernel hangs or 
faces a long execution time delay (i.e., a part of failure type 
in Figure 14). These failures are undetected by either R-
Naïve or R-Scatter. An example case is when a loop iterator 
is corrupted (e.g., to a large negative number and the loop 
terminates if the iterator is bigger than a positive number) 
and the corrupted iterator does not cause a crash. Another 
example is specific to the TPACF implementation that uses a 
loop and performs a memory write operation until the write 
is successfully done and not overwritten by another thread 
(i.e., checked by reading the data back). If the address of 
memory write is corrupted to specific address ranges, the 
loop does not terminate because the corrupted address never 
returns the write requested value. Failures in these two cases 
are detected by the guardian process in HAUBERK. 

C. False Positive 

We evaluate the false positives of HAUBERK loop error 
detectors by using different training and test data sets. Four 
benchmark programs are selected for this evaluation based 
on the availability of multiple data sets and their representa-
tiveness with respect to other programs. Out of 52 datasets 
prepared for each program, 50 are randomly selected and 
used for training and the remaining two are used for evaluat-
ing the derived detectors. This process is repeated 10 times 
to calculate average false positive ratio (see Figure 16).  

 
Figure 14. Error detection coverage of HAUBERK. 
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Figure 15. Changes in the magnitude of values after experiencing a fault 

depending on the orginal value range (of FP data) and error bit count. 

 

0

10

20

30

40

50

60

70

80

90

100

1 3 6 1015 1 3 6 1015 1 3 6 1015 1 3 6 10 15 1 3 6 1015

1E-38~1E-15 1E-15~1E-3 1E-3~1E+3 1E+3~1E+15 1E+15~1E+45

Im
p

ac
t 

o
f 

Er
ro

rs
 o

n
 V

al
u

e 
(%

) 

Original Value Range / Number of Error Bits 

>1E+15 1E+9~1E+15 1E+6~1E+9 1E+3~1E+6 1E-3~1E+3

1E-6~1E-3 1E-9~1E-6 1E-15~1E-9 <1E-15



We find that the false positive ratio largely varies de-
pending on the program. For example, the measured false 
positive ratio of PNS becomes close to zero after executing 
seven training sets but that of MRI-FHD remains 30% even 
after running 50 training sets. This is because in the case of 
PNS, the program input represents parameters of a fixed 
simulation model and thus accurate detectors can be relative-
ly easy to derive. In the case of MRI-FHD, the inputs are 
vectors and the output computation involves multiplication 
of the different vectors; thus, range-based detectors are not 
that precise. 

In order to address detector imprecision, we investigate 
dynamic recalibration of the bounds (i.e., min and max val-
ues defining the bounds) used in the range detectors. The 
approach (described in Section VI(iii)) multiplies the bounds 
by alpha, a multiplication factor derived based on the moni-
tored current false positive ratio. 

(a) If alpha = 1. Even when alpha is 1, the false positive 
ratio quickly converges to a ratio less than 10% in the three 
out of the four evaluated benchmark programs (see Figure 
16(left)). These three programs do not need to use the alpha 
larger than 1 (i.e., used 50 training input sets are sufficient). 
The detection ratio reported in Figure 14 corresponds to the 
alpha equal to 1. 

(b) If alpha > 1. In the case of MRI-FHD, the false posi-
tive ratio does not quickly converge to below 10% if alpha is 
1 (Figure 16(left)). Using a larger alpha value is needed even 
after processing more than 50 training input sets. Figure 16 
(right) shows the false positive ratio of MRI-FHD where the 
four curves are derived for alpha values of 1, 2, 10, and 100. 
When a large multiplication factor (i.e., alpha) is used, the 
false positive ratio decreases quickly after a small number of 
training sets. For example, for the MRI-FHD application 
applying alpha = 100, the false positive ratio becomes zero 
after executing 7 training sets. This shows that the adaptive 
technique to control value ranges used in the detector can 
efficiently manage the false positive ratios and consequently 
reduce the performance overhead.  

We also analyze the impact of the selected alpha value 
on the detection coverage. The error detection coverage of 
MRI-FHD is 95%, 95%, 82.8%, and 81.6%, when the alpha 

is 1, 1000, 10000, and 100000, respectively. The value of 
alpha only affects the detection coverage of HAUBERK loop 
error detector. None or a small reduction (<0.5% decrease) in 
the error detection coverage is observed for MRI-FHD appli-
cation when applying a multiplication factor (alpha) smaller 
than 1,000. This implies that the use of a large multiplication 
factor in the early stage of testing or training does not largely 
harm the error detection coverage because a fault in an FP or 
integer value often alters the data by orders of magnitude 
(e.g., >10

6
 times, see Figure 15). A large increase (12.2%) in 

the undetected SDC ratio is observed when the alpha is set to 
10,000. This threshold alpha value is not fixed but depends 
on multiple factors, including the iteration count of protected 
loop and the application output correctness requirement. 

D. HAUBERK Instrumentation Time 

We evaluate the instrumentation time of HAUBERK error 
detectors. On average, adding the HAUBERK instrumentation 
takes 81 seconds where the minimum and the maximum are 
36 and 112 seconds, respectively, with the Parboil suite. The 
used machine has two 2.4GHz CPUs and 2GB DRAM and 
executes a Linux OS. This instrumentation time includes the 
C preprocessing time, parsing time, analysis time, and trans-
formation time but excludes the time spent on C code beauti-
fier. 

The exact time spent on processing the HAUBERK trans-
formers (i.e., placing error detectors in the intermediate rep-
resentation) is 0.7 second, on average. The sizes of total pro-
gram source code and GPU kernel code of each of the used 
benchmark programs are 579 and 266 lines, respectively, on 
average, before C preprocessing. If a source-to-source trans-
lator is already used for other purposes (e.g., performance), 
the HAUBERK transformers only add a short delay (e.g., <0.7s, 
on average, per GPU kernel) to the total compilation time. 
The HAUBERK instrumentation can make small impact even if 
a target program is big and contains many GPU kernels. 

The HAUBERK instrumentation is needed only after per-
formance optimization and before testing. When developing 
an HPC program, most of the development time is spent on 
optimizing the program performance. After this optimization, 
developer typically runs an integrated stress testing. Because 
the HAUBERK instrumentation is for runtime fault tolerance, 
this instrumentation is added just before this final testing. 

X. CONCLUSION 

This paper analyzed reliability problems in GPGPU plat-
forms, focusing particularly on the design of efficient low-
cost detection and recovery mechanisms for handling SDC 
(silent data corruption) errors. In order to tolerate SDC errors, 
customized error detection techniques are strategically 
placed in the source code of target GPU program so as to 
minimize performance impact and error propagation, and 
maximize recoverability. The presented HAUBERK technique 
is evaluated using a mutation-based fault injection tool (de-
veloped as part of this study) for automated reliability testing 
of commodity GPU devices. HAUBERK offers a high error 
detection coverage (~87%) with a small performance over-
head (~15%). 

  
Figure 16. False positive ratio vs. Training count. 
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