
Optimized Deep Learning Architectures with Fast
Matrix Operation Kernels on Parallel Platform

Ying Zhang
Department of Automation

University of Science and Technology of China

Hefei 230027, China

zhy0927@mail.ustc.edu.cn

Saizheng Zhang
Department of Computer Science

Stony Brook University

Stony Brook, NY 11790

saizheng.zhang@stonybrook.edu

Abstract—In this paper, we introduce an optimized deep learn-
ing architecture with flexible layer structures and fast matrix
operation kernels on parallel computing platform (e.g. NVIDIA’s
GPU). Carefully designed layer-wise strategies are conducted to
integrate different kinds of deep architectures into a uniform
neural training-testing system. Our fast matrix operation kernels
are implemented in deep architecture’s propagation processes.
In our experiment, these kernels save 70% time on average
comparing with the kernels in NVIDIA’s CUBLAS library
(widely used by many other neural network toolkits), and help
our parallel deep architecture beats the neural structures using
CUBLAS kernels in practical problems.

I. INTRODUCTION

Recently, notable research has been devoted in fields of deep

learning (or deep architectures) which automatically learns

features and patterns at multiple levels of abstraction [1, 2,

6]. Proposed methods include restricted boltzmann machine

(RBM) [7, 8], stacked denoising autoencoder (SDAE) [9,

12, 17], deep neural network (DNN) (convolutional network

(CNN)) [11, 14, 15], deep belief nets (DBN) [3, 6] and

combination of these approaches [4, 13, 16, 18]. Deep archi-

tecture allows hierarchical unsupervised feature learning from

higher level statistics formed by the composition of lower level

patterns, and it can be fine-tuned to memory specific object

classes in a more abstractive way. Compared with traditional

learning techniques starting from hand-crafted feature extrac-

tion stage at low levels (e.g. pixel-level in machine visions)

and ending in a classifier [19, 20, 21], deep architectures can

capture more complicated, hierarchically launched statistical

patterns of inputs, hold high level non-linearties, be adaptive

to new areas requiring more complicated model descriptions

and often outperform state-of-the-art achieved by hand-made

features.

Although deep architecture has made successful steps in

size-limited problems (CIFAR and STL10 [22, 23]), it is still

challenging to scale the input to realistic size. One important

reason for this weak scale-adaptability is that the computing

cost of implementing computational tractable algorithms for

training/testing with large size inputs is extremely high. In

recent years, new parallel computing tools and algorithms have

been employed in academic fields. Successful examples can be

seen from NVIDIA’s Graphic Processing Unit (GPU), a pro-

cessing core with highly parallel structures and CUDA (Com-

pute Unified Device Architecture) [28], a parallel computing

architecture for parallel processing on GPUs. With both GPU

and CUDA, researchers can access to the virtual instructions

set and different memories of parallel computational elements,

perform efficient memory management and implement highly

parallel computing strategies.

To construct high-speed deep architecture available for

large size inputs, the key point is to speed up the layer-

wise parameter calculations/updates during propagation pro-

cess (i.e. in MLP training, the most time consuming parts

are forward propagation and backpropagation). It should be

pointed out that propagation process can be modeled in matrix

forms and the matrix operation can be accelerated by well-

designed parallel schemes. There are already some neural

network training systems such as QuickNet [29], while its CPU

based structure has little parallelism. Recently, several parallel

neural network toolkits are released [25, 26]. Most of these

GPU based neural network toolkits use CUBLAS libraries

(NVIDIA’s GPU-accelerated version of the complete standard

BLAS library [34]) for their matrix operations. However, we

argue that comparing with our kernels, the performance of

matrix kernels in CUBLAS is mediocre in specific propagation

process during deep architecture training and testing.

In this paper, our primary concern is to construct an efficient

and flexible general deep learning architecture on parallel

devices. We give a framework of layer-wise parameter holding

to uniformly model layers from different kinds of deep archi-

tectures. We utilize efficient dataset storage strategy to achieve

a fast and flexible data accessing. We create optimized kernel

functions for fast matrix operation. During our well-designed

experiments, our fast matrix kernels significantly outperform

kernels in NVIDIA’s CUBLAS library, and our optimized

deep learning architecture equipped with fast kernels beats the

traditional CPU neural learning structure and structures using

CUBLAS library.

The rest of the paper is organized like this: In Section II we

discuss the general mathematical model of deep architectures.

In Section III we introduce our optimized parallel deep archi-

tecture. In Section IV we give details about the fast matrix

operation kernels. In Section V we show our experimental

results, and finally in Section VI, we draw our conclusion.

2013 IEEE 25th International Conference on Tools with Artificial Intelligence

1082-3409/13 $31.00 © 2013 IEEE

DOI 10.1109/ICTAI.2013.21

71

II. MODEL DESCRIPTION OF DEEP ARCHITECTURES

Deep architecture comes from neural network (or multi-

layer perceptron). Traditional backpropagation neural network

(BP-NN) only has one hidden layer. However, the shallow

BP-NN serves as the basic building block of the denoising

autoencoder (DAE), convolutional neural network(CNN) and

the restricted boltzmann machine (RBM). Furthermore, these

architectures share many structural similarities: 1) They all

consist of several layers of interconnected neurons in similar

structures, see Fig.1 (a). 2) They all adopt a layer-wise building

strategy that layers are hierarchically arranged from lower

feature space to higher pattern space. Thus, for a general deep

network model Mdeep we have

Mdeep = {k,Fdeep,Θdeep} (1)

k is the depth of Mdeep, Fdeep = {f1, ..., fk} is the mapping

function set describing each layer’s architecture, Θdeep =
{θ1, ..., θk} is the hypoparameter set of Fdeep. In the rest of

the section, we discuss the detail relations of the different

architectures mentioned above, and how they are fitted to the

general model.

A multi-layer perceptron (MLP) Mmlp consists of an input

layer Lin (L0), several hidden layers Lhids (Lis) and an output

layer Lout (Lend). Each layer is made up of neurons like Fig.1

(a). Given a Mmlp with the depth of k, any fi in Fmlp is the

same sigmoid function sigm(·), and the parameter set Θmlp

has {Wi,bi, i = 1, ..., k}. Suppose that xi and yi are the

input and output of layer i, the architecture between Li and

Li−1 can be modeled as:

yi = fi(xi,Wi,bi) = sigm(Wixi + bi) (2)

Notice that the output xi = yi−1, and Lend (Lk)’s output

fk ◦ .. ◦ f1Θmlp
(x) becomes the label given by the MLP.

To train Mmlp on a given dataset U and labelset Z , we

estimate Θmlp by minimizing a cost function E measuring

the discrepancy between Mmlp’s outputs fk ◦ ... ◦ f1Θmlp
(U)

and the corresponding labels Z ,

E =
∑

m

|| fk ◦ ... ◦ f1
Θmlp

(um)− zm||2 (3)

here um ∈ U and zm ∈ Z . We use backpropagation for

minimization, where we take partial derivatives of E with

respect to W and b and perform gradient descent [5].

With prior knowledge of MLP, we extend it to denoising

autoencoder (DAE) which is an one-hidden-layer MLP added

with noises in its input layer. As the basic building block

of stacked denoising autoencoder (SDAE), DAE reconstructs

the original clean input from its noisy version. Let x be

the original input and x̃ be the noisy version of x where

x̃ = qnoise(x), a DAE Mdae includes the denoising encoder

fen and decoder fde (fen, fde ∈ Fdae),

y = fen(x̃) = sigm(Wenx̃+ ben) (4)

x̂ = fde(y) = sigm(Wdey + bde) (5)

x̂ is the denoising version, y is the encoded pattern and

{Wen,ben,Wde,bde} becomes the Θdae, see Fig.1 (c).

��� ����	�	
��� ���	������ ��������
���� � ����
�
���

���

����

���	

��� ������� ������ ���
	�	�� ���
���
������ ���
	�	�� ���
���
���

��� �����	���� �
������ ���	�� ��� �
��
���	
��� ����
�� ������	��� ��
�����	���� �
������ ���	��

Fig. 1. Different kinds of deep architectures including multi-layer percep-
tron, stacked denoising autoencoder, restricted boltzmann machine and deep
convolutional network.

SDAE is a hierarchical structure made up of several DAEs

in a stacking manner. If a SDAE consists of n DAEs and the

kth DAE is made up of f
(k)
en , f

(k)
de , this SDAE’s Fsdae can

be divided into the encoding part consisting of f
(1)
en to f

(n)
en

and the decoding part consisting of f
(n)
en to f

(1)
de , see Fig.1

(d). Considering SDAE’s hierarchical characteristics, given an

input x we have:

x̂ = f
(1)
de ◦ ...f

(n)
de ◦ f (n)

en ... ◦ f (1)
en (x) (6)

To train these n DAEs, we adopt the similar strategy of [9].

The restricted boltzmann machine (RBM) is a kind of

bidirectionally connected network consisting of stochastic pro-

cessing units, which can also be interpreted as MLP models

[7]. The RBM has an input layer x and a hidden layer h,

between which the symmetric connections are described by

weights W and biases u, z. A marginal probability of x in

RBM is defined using an energy model,

p(x) =
∑

h

exp(hTWx+ uTx+ zTh)

Z
(7)

Z is the partition function and the conditional probabilities of

p(h|x) and p(x|h) are given as follows:

p(hi = 1|x) = sigm(Wix+ zi) (8)

p(xj = 1|h) = sigm(Wjh+ uj) (9)

here sigm(·) is the sigmoid function. To train a RBM, we

use contrastive divergence to estimate the gradient steps of W

72

(the same to b and z) [8, 10]:

ΔWji = ε · (〈xjhi〉data − 〈xjhi〉recon) (10)

〈xjhi〉data and 〈xjhi〉recon can be easily obtained from (8)

and (9) [10]. Notice that if we arrange several RBMs in

stacking manner, we get a deep belief net (DBN).
The Convolutional Network (CN) can be considered as

2D version of MLP [14]. In each processing level, it has

a filtering layer with several convolutional kernels (a kernel

K is described with its weights WK , bias bK and an

activation function fK , similar to MLP) and a pooling layer

for subsampling layer-wise features. Some researcher also

proposed convolutional RBM (CRBM), which integrated CN’s

convolutional features and RBM’s statistical advantages.
As we can see, these architectures have strong mathematical

relations during their building, training and testing stages.

MLP, SDAE, CN’s convolutional kernels and RBM’s layer

probability model share the same computational structure

where sigm(·) serves as the activation/probability function

and the corresponding weight W{mlp,dae,rbm,cn} and biases

b{mlp,dae,rbm,cn} are in matrix form. More importantly, all

the layer-wise operations can be modeled in matrix form.

Therefore, these layer-wise calculations during training and

testing can be modeled as matrix operations for computational

efficiency.

III. OPTIMIZED PARALLEL DEEP ARCHITECTURES

The mathematical model of deep architecture showed above

is the guideline for designing fast computational algorithms

and flexible layer-wise structures. Notice that the matrix

operations in propagation process of training and testing are

available for employing parallel strategies, since the matrix

operation can be divide into smaller computing units in parallel

[30]. This makes parallel device available to employ its parallel

schemes to achieve fast matrix operation speed. Furthermore,

layer-wise flexibility requirements are also very important for

an uniform layer structure to describe different kind of deep

learning architectures. In this section we first discuss parallel

device’s characteristics (using GPU as an example) that are

critical for high parallel deep network training and testing,

then we introduce our flexible parallel deep architectures.

A. Parallel device (GPU) and Its Relation to Deep Architec-
tures

The design philosophy of GPU is shaped by demands of

performing massive number of floating-point calculations in a

high parallel way. A general GPU is organized into series of

streaming processors (SP) that share instruction cache and can

run thousands of threads per application. GPU programming

offers convenient ways to launch parallel kernels in threads

and to integrate the memory management both in hosts and

devices. At this stage, GPU significantly outperforms CPU

when performing matrix operations due to its parallel hardware

architecture. Considering of the tradeoff between flexibility

and speed, we do not involve the whole propagation process

into one GPU kernel function, which is usually a strategy used

by some other toolkits.

� ��������������� ����� �� ��	!

������

��	

�������� �	�
�	��

��
��������

�	�
�	����

"������ �"�����!

��#�" ��"$�$"�!
������$"�����!

"������
����"��!

"������
����"��!

���"�%
�&�"�����
��"���!

��
���

������!� ���!
��	 �� &�"��

"�!$��

���	� ���$�
����"���"!

Fig. 2. Our optimized parallel deep learning structure. It is devided into host
part for controlling and device part for arranging computing resources.

B. Overview of Our Parallel Deep Learning Architectures

Our parallel deep learning architecture contains both the

host stage H = {Tconfig, T
H
ctl} and the device stage E =

{R, K(φ), D, TE
ctl}. The matirx operations in different deep

architectures can be modeled in an uniform framework under

device’s parallel hardware structure. This framework includes

data holding D and layer operations K (or φ, we show details

in the following subsection). Furthermore, the random value

generator R used for stochastic operations in RBM/CRBM

and parameter initialization are on the device. It is reasonable

to hold training control TH
ctl and basic configuration of layer

architecture Tconfig on host side, simply due to their very

limited time cost. Fast data saving and accessing is necessary

for the reason that the deep network retrieves data through the

whole dataset in every training and testing epoch. Suppose that

we have fkernel ∈ K and a grand ∈ R, given Vi ∈ D, i =
1, ..., n and its configuration ti ∈ Tconfig, i = 1, ..., n a basic

stage of propagation is modeled as follows:

[V′1; ...;V
′
m] =

fkernel(V1, ...,Vn, 〈TH
ctl, T

E
ctl〉prop, t1, ..., tn) (11)

where 〈·, ·〉prop gives the propagation descriptions of V based

on TH
ctl and TE

ctl (e.g. safety checks, processing orders in the

whole propagation). For parameter initialization of Vi, we

have:

Vi = grand(ti, 〈TH
ctl, T

E
ctl〉rand,Vi) (12)

where 〈·, ·〉rand gives the random generating descriptions of V

based on TH
ctl and TE

ctl. The random operations in RBM/CRBM

73

can use the similar strategy, where the Vi includes input layer

x and hidden layer h and small changes appear in 〈·, ·〉rand.

The whole structure is showed in Fig.2.

C. Flexible Layer Structures

In Section II, we proposed a general mathematical model

of deep architecture that Mdeep = {k, Fdeep, Θdeep}. In

our optimized matrix based architecture, we map Mdeep to

a matrix based model Gdeep = {D, φ}:
Mdeep → Gdeep : {k,Θdeep} → D,Fdeep → φprop (13)

where D is the multi-dimensional vector set storing layer-wise

parameters in matrix version, and φ is the set of operations

over D. φ includes all possible operations launched in hosts

and devices. As we mentioned before, deep architectures

SDAE, DBN, CNN and DNN share a uniform layer structure

holding. This uniformity requires specific flexibility such as

compacting high-dimensional vectors into low-dimensional

ones with all their dimensional and structural information

reserved, or accessing low-dimensional sub-matrices of the

high-dimensional vectors. A transform function set T should

be established to satisfy these transform demands without

losing useful information. In general, for a series of transform

functions τi ∈ T and k-dimensional vectors vd ∈ D[d],

v1 = τ1(v0), v0 ∈ D[m],v1 ∈ D[p1]

. . .

vk = τk(vk−1), vk−1 ∈ D[pk−1],vk ∈ D[pk] (14)

There should exists an inverse function τ̂ : D[m] →
D[pk], τ̂ ∈ T satisfying the following restriction:

v0 = τ̂(vk)

= τ̂(τk(...τ1(v0))) (15)

Here, we build a flexible class C and the corresponding

memory operation set φC ⊆ φ to hold all these mathematic

characteristics. Firstly, φC has a field IC with its subfield

IC size holding the size information and IC datalayout hold-

ing the real data layout information in host and device. When

performing transformation and matrix operation, whether this

vector should be treated as a 1D vector or 2D matrix or some

high-dimensional forms is decided by IC datalayout. But

the original information can still be saved safely in IC size.

Secondly, C has a field PC to save all the control knowledge,

such as its host/device labels (labels can be changed during

training process to achieve more flexible implements) and

operation flags which serves as the critical operation control.

Thirdly, C has host and device memory pointers for memory

management. For φC , it includes the following methods:

1) Multi-dimensional memory allocation approaches based

on the vectors IC field.

2) IC modification logics for conveniently changing vector

structure.

3) Memory release methods.

4) Memory copy methods among devices.

5) Compacted methods for vector dimension reduction.

6) Sub-matrix and sub-slide extraction methods for specific

requirements (such as accessing the red channel of an RGB

image, or accessing the feature maps in convolutional net-

works).

D. Dataset Storing and Accessing

The dataset’s accessing speed can be the bottleneck of the

training and testing performance. In our experiment, a poor

data storing strategy could diminish up to 10% of the speed.

At least two data storing approaches are available: we can

store the data in separated device memory pieces for flexible

transformation and accessing, but the time cost could be high.

Or we can store the whole dataset in a continuous memory

block in device for fast accessing speed, but the flexibility

cannot be guaranteed. In our architecture, we achieve a balance

between the speed and flexibility. Although we implement

only one big memory block for data storing and accessing,

but we treat every pattern memory unit (a pattern memory

unit could be 1D array or a 2D sub-block with the padding,

which stores only one pattern) as a virtual object of class C.

That is, although we put the input pattern into a continuous

memory block with low dimension (up to 2 dimension), we can

still access it as a high-dimensional vector through correctly

setting its subfield IC size , and its subfield IC datalayout will

match the real data layout in that pattern memory unit. For

instance, if we have a vector with the size of M × N × K,

which can be considered as a K − dimensional vector, we

will store it in a pattern memory unit whose data layout size

is (M + length of padding) × K × N , but in its subfield

IC size , it will be recorded as a three-dimensional vector

with the width of M, height of N and depth of K. Notice that

all the matrix operations are based on the IC size.

IV. FAST MATRIX OPERATION KERNELS

Optimized matrix operation kernels contribute a lot to the

deep architecture’s propagation speed acceleration. So we

design new matrix operation algorithms on parallel devices

and use GPU as the parallel platform to show our algorithms.

NVIDIA has already released the Basic Linear Algebra Sub-

routines (CUBLAS) library, which is available for researchers

to perform high speed parallel computing on their matrix-

based programs. However, these kernels are in average slower

than our fast matrix operation kernels on specific tasks of

deep learning, and under some circumstances (i.e. a large

difference exists between the number of rows and the number

of columns), the speed difference gap between CUBLASs

functions and ours is big. In the following, we will give a short

review of CUBLASs library and then present our optimized

algorithms for fast matrix operations.

A. CUBLAS Library

The NVIDIA CUDA Basic Linear Algebra Subroutines

(CUBLAS) library is a GPU-accelerated version of the com-

plete standard BLAS library that delivers 6 to 17 times faster

performance than the latest MKL BLAS [34]. To use CUBLAS

74

library, the corresponding GPU memory space should be allo-

cated before required matrices and vectors utilization. After the

memory allocation, we call the sequence of desired CUBLAS

functions, and upload the results from the GPU memory

space back to CPU. The CUBLAS kernels implemented dur-

ing propagation include Sgemv(CUDA) and SgemvT (CUDA),
for vector-matrix multiplication, and Sger(CUDA) for vector-

vector multiplication.

B. Fast Optimized Matrix Kernels

The idea behind our kernels is that we want to maximize the

utilization of the cache memory in each block, see [28] for de-

tails about GPU’s memory holding. We hope to load the input

vector and matrix only once to reduce the time of accessing

GPU’s global memory. We store all the intermediate results in

cache memory which is much faster to access than the global

memory. Each block is only used for one row calculation, and

we use index-exponential-declination strategy to perform the

add operations for calculating the inner productions in the first

warp in that block. We utilize M warps (N ×M threads) in

each block.

Here we use gNewGemvf and gNewGerf to illustrate

our strategy. gNewGemvf is for vector-matrix multiplication,

which is for example responsible for calculating every layers

output and the partial derivative of the objective function

with the respect of layer parameters. Its optimized calculating

algorithm is showed in Algorithm 1. Here we have:

y = A · x (16)

The key point is that in each block we only perform one row

calculating. Inside the block j we set N×M threads and each

thread i calculates the multiplication of x[i] and A[j][i] in

buff [i]. For index i0 that is greater than N×M , we calculate

x[i0] ·A[j][i0] and save the result in buff [i0 mod N ×M].

Algorithm 1 Vector-Matrix Multiplication (in block j)

Ensure: Cache memory of temporal array buff [N ×M] is allocated.
1: 1. buff [i]← 0, where i = 1, ..., N ×M
2: 2. Parallelly do in each thread i:
3: Load x[i] and A[j][i]
4: buff [i]← buff [i] + x[i] ·A[j][i]
5: if i > blocksize(orN ×M) then
6: repeat
7: buff [i mod N ×M]← buff [i mod N ×M] + x[i] ·A[j][i]
8: i← i+N ×M
9: until i > size(A[j])

10: end if
11: 3. Parallelly do in N threads in the first warp of the block:
12: if i > N then
13: repeat
14: buff [i mod N]← buff [i mod N] + buff [i]
15: until i < N
16: end if
17: n← log2N
18: repeat
19: if i ∈ [2n−1, 2n] then
20: buff [i mod 2n−1]← buff [i mod 2n−1] + buff [i]
21: end if
22: n← n− 1
23: until n < 0
24: 4. y[j]← buff [0]

After we finish the multiplication, we add all buff’s elements

together in the first warp in an index-exponential-declining

way, see step 3 of Algorithm 1.

Algorithm 2 Vector-Vector Multiplication (in block j)

1: Parallelly do in each thread i:
2: Load x[i] and y[j] and the jth row of A
3: buff y ← y[j]
4: A[j][i] = A[j][i] + x[i] · buff y;
5: if i > N ×M then
6: repeat
7: A[j][i mod N ×M] = A[j][i mod N ×M] + x[i] · buff y
8: i← i+N ×M
9: until i > size(A[j])

10: end if

gNewGerf is for vector-vector multiplication, which is for

example responsible for calculating the partial derivative of

E with the respect of weights W in propagation process.

Algorithm 2 shows our optimized strategy for gNewGerf, its

parallel strategy is similar to what we used in gNewGemvf,
but without “add” operation like step 3 in Algorithm 1. Here

we have:

A = y · xT (17)

V. EXPERIMENTAL RESULTS

In this section, we conduct three independent experiments to

show the structural and speed improvements gained from our

optimized layer architectures and optimized matrix kernels.

The first experiment compares the pure speed performance

of our matrix kernels with CUBLAS library and CPU based

matrix kernels (adopt strategies from QuickNets). The second

experiment is performed on MINST dataset [27] to evaluate

the comprehensive performance of our new GPU based deep

learning structure and matrix kernels. The third experiment

consider a real problem of face occlusion recognition on

ORL and AR databases [31, 32] using stacked denoising

autoencoder and deep neural network.

A. Pure Kernel Speed Comparison
In the first experiment, we focus on the pure performance

of our kernels without implementing them into deep archi-

tecture’s propagation process. We have three new created

kernels gNewGemvf, gNewGemvf T and gNewGerf employed

for vector-matrix multiplication, vector-matrix multiplication

(transposed version) and vector-vector multiplication. Our

kernels are compared with CUBLASs kernels Sgemv(CUDA),
SgemvT (CUDA) and Sger(CUDA), and the corresponding ker-

nels in CPU. For gNewGemvf and gNewGemvf T , tests are

performed on square matrices scaled from 256 to 4096, and

on rectangular matrices with the size of 128×Nand 256×N ,

where N ranges from 256 (or 512) to 16384. The vector’s

size equals to the number of the columns of the matrix. We

implement 100000 iterations for each kernel, recorded the total

running time and repeat the test to gain an average results. the

time saving is evaluate like follows:

αsaving =
TCUBLAS/CPUs − Tours

TCUBLAS/CPUs
× 100% (18)

75

TABLE I
SPEED COMPARISON OF VECTOR-MATRIX MULTIPLICATION (NORMAL AND TRANSPOSED) (100000 ITERATIONS)

Matrix Size gNewGemvf
(sec)

Sgemv(CUDA)
(sec)

gemv(CPU)
(sec)

Time Saving
αsaving %

gNewGemvfT
(sec)

SgemvT (CUDA)
(sec)

gemvT (CPU)
(sec)

Time Saving
αsaving %

256× 256 0.30± 0.01 1.88± 0.06 10.81± 0.37 +84.0,+97.2 0.29± 0.01 0.30± 0.01 10.78± 0.35 +3.3,+97.3
512× 512 1.22± 0.08 5.97± 0.15 42.83± 0.38 +79.6,+97.2 1.10± 0.03 1.04± 0.05 40.54± 0.44 −5.8,+97.4

1024× 1024 4.36± 0.12 12.17± 0.11 176.54± 1.71 +64.2,+97.5 4.36± 0.11 3.45± 0.08 175.78± 1.65 −26.4,+97.5
2048× 2048 13.27± 0.11 25.55± 0.17 405.01± 2.30 +48.1,+96.7 14.81± 0.18 12.63± 0.13 407.10± 3.09 −17.3,+96.4
4096× 4096 47.86± 0.23 58.52± 0.38 1778.52±4.32 +18.2,+97.3 51.46± 0.30 48.36± 0.29 1790.10±4.39 −6.4,+97.1
128× 256 0.30± 0.03 1.89± 0.28 2.80± 0.28 +84.1,+89.2 0.26± 0.02 0.29± 0.02 3.08± 0.11 +10.3,+91.6
128× 512 0.53± 0.02 4.54± 0.08 6.76± 0.39 +88.3,+92.2 0.54± 0.03 0.64± 0.05 6.70± 0.35 +15.6,+91.9
128× 1024 0.67± 0.04 9.81± 0.14 13.08± 0.24 +93.2,+94.9 0.67± 0.09 1.06± 0.18 13.38± 0.40 +36.8,+95.0
128× 2048 1.22± 0.03 26.17± 0.08 26.22± 0.50 +95.3,+95.3 0.95± 0.08 2.42± 0.21 25.58± 1.32 +60.7,+96.3
128× 4096 2.04± 0.02 26.58± 0.12 54.09± 1.01 +92.3,+96.2 1.54± 0.09 4.60± 0.33 56.80± 1.21 +66.5,+97.3
128× 8192 3.58± 0.05 51.80± 0.20 110.81± 1.30 +93.1,+96.8 2.66± 0.16 8.78± 0.37 111.04± 2.30 +69.7,+97.6
128× 16384 6.52± 0.09 53.30± 0.28 214.30± 2.19 +87.8,+97.0 5.02± 0.20 17.22± 0.31 216.32± 2.70 +70.8,+97.7
256× 512 0.53± 0.02 4.54± 0.08 10.31± 0.28 +88.3,+94.9 0.51± 0.02 0.86± 0.04 29.71± 0.28 +40.7,+94.7
256× 1024 0.67± 0.04 9.81± 0.14 27.16± 0.60 +93.2,+97.6 0.59± 0.02 0.59± 0.01 28.65± 0.33 0.0,+97.9
256× 2048 1.22± 0.03 26.17± 0.08 58.29± 0.83 +95.3,+97.9 1.18± 0.08 1.70± 0.21 57.07± 0.75 +30.5,+97.9
256× 4096 2.04± 0.02 26.58± 0.12 96.20± 1.80 +92.3,+97.9 2.24± 0.07 5.33± 0.29 94.19± 1.37 +58.0,+97.6
256× 8192 3.58± 0.05 51.80± 0.20 200.01± 2.57 +93.1,+98.2 3.39± 0.10 8.98± 0.41 205.88± 3.10 +62.2,+98.4
256× 16384 6.52± 0.09 53.30± 0.28 399.35± 3.89 +87.8,+98.4 6.28± 0.22 18.30± 0.41 409.55± 5.61 +65.7,+98.5

TABLE II
SPEED COMPARISON OF VECTOR-VECTOR MULTIPLICATION (100000 ITERATIONS)

Vector Size gNewGerf (sec) Sger(CUDA) (sec) ger(CPU) (sec) Time Saving αsaving %
256, 256 0.43± 0.03 0.46± 0.04 5.61± 0.11 +6.5,+92.3
512, 512 1.75± 0.05 1.81± 0.08 21.88± 0.37 +3.3,+92.0

1024, 1024 5.70± 0.29 5.91± 0.23 87.71± 2.21 +3.6,+93.5
2048, 2048 21.48± 0.33 22.05± 0.34 159.03± 2.80 +2.6,+86.5
4096, 4096 47.81± 0.97 49.30± 1.14 627.16± 6.11 +3.0,+92.4
128, 256 0.19± 0.01 0.23± 0.01 3.04± 0.08 +17.4,+93.8
128, 512 0.41± 0.03 0.47± 0.02 5.67± 0.23 +12.8,+92.8
128, 1024 0.58± 0.02 0.78± 0.04 10.92± 0.43 +25.6,+94.7
128, 2048 1.62± 0.09 1.85± 0.12 21.73± 0.49 +12.4,+92.5
128, 4096 3.04± 0.18 3.30± 0.21 44.38± 0.91 +7.9,+93.1
128, 8192 6.17± 0.15 6.82± 0.20 84.51± 1.28 +9.5,+92.7
256, 512 0.54± 0.02 0.54± 0.04 11.09± 0.21 0.0,+95.1
256, 1024 1.13± 0.03 1.28± 0.06 21.57± 0.76 +11.7,+94.8
256, 2048 2.67± 0.05 2.98± 0.11 43.71± 1.04 +10.4,+93.9
256, 4096 5.78± 0.20 6.16± 0.31 85.65± 1.82 +6.17,+93.3
256, 8192 10.49± 0.28 11.83± 0.34 157.26± 2.68 +11.3,+93.3

Notice that this running time includes the time for safety

checks performed on CPU side and the time for kernel launch-

ing. The results are showed in TABLE I. we can see that our

gNewGemvf achieves great outperformance in both square ma-

trix operation and rectangular matrix operation compared with

CUBLAS kernels and CPU version. The average time saving

is about +77.7% and +96.2% respectively. gNewGemvf T is

a little bit slower than SgemvT (CUDA) on square matrix-

vector calculation. However, under the condition that the gap

between number of column and the number of row is big,

gNewGemvf T becomes much faster than SgemvT (CUDA). The

average time saving is about +29.7% and +96.7% respec-

tively. For gNewGerf, the result is showed in TABLE II. Tests

are performed on different sizes of vectors scaled from 128
to 8192. From TABLE II we can find that the average time

saving gained from gNewGerf compared with Sger(CUDA)
and ger(CPU) is +9.0% and +92.9% respectively.

B. Performance Comparison on MNIST Dataset

The second experiment compares the propagation speed

differences between MLPs using our kernels and ones us-

ing CUBLAS/CPU kernels. Test is performed on MNIST

handwritten digit dataset, which consists of 60000 grey scale

images of handwritten numbers from 0 to 9 with the pixel

size of 28 × 28 = 784. Single hidden layer neural networks

with the structure of {784, N, 10} are evaluated, where N
ranges from 10 to 1280. The whole training time includes the

running time of CPU codes, this is for a better evaluation of

the integrated performance of the hosts and devices. We divide

the experiment into two phases. First we evaluate the time

cost of the entire training epoch that includes both forward

propagation and backpropagation with global learning rate

and without momentum scheme for a better evaluation of the

matrix operation speed. The result is showed in the left of Fig.

3. It is clear that MLP equipped with our kernels achieve an

average +200% faster speed than ones using CUBLAS/CPU

kernels. Second we consider only the forward propagation

76

�

���

���

���

���

�� �� ��� 	�� ��� ���� �
��
��� �� �� ��� 	�� ��� ���� �
��
���

�� ������

�����������

�����������

������ �	
����� ���� ����� ���

��
��
��
��
��

���
��
���

��
��

�
��
�

�
�� ����
 	������ �����������

Fig. 3. We compare our kernels with kernels in CUBLAS/CPU on MNIST
dataset. Experiments are performed on both the whole training process and
forward propagation process.

process, which purely consists of our kernels. The result is

showed in the right side of Fig. 3. In this case, our kernels

gain at least 300 + % outperformance in most N .

C. Comprehensive Evaluation on ORL/AR face databases

The third experiment considers a practical problem of

occluded face recognition using deep learning. The recognition

architecture consists of a SDAE for occluded regions restora-

tion (we treat the occluded regions as noises, similar strategy

is showed in [33]) and a DNN (pretrained using RBMs) for

recognition. Real-size images (ranging in hundreds pixels) are

first go through the SDAE trained using clean face images

to recover themselves. Then recovered images are sent to the

DNN for final recognition. Experiment is performed on ORL

and AR face databases.

1) ORL Face Database: The ORL face database consists of

400 grayscale face images of 40 people with the size of 92×
112 pixels. These faces are in very limited facial expression

changes. Compare with AR face database, its image size is

smaller and the amount of images is also relatively small.

There is no occluded face in the original dataset, we manually

add mask noise on it, like [9].

2) AR Face Database: The AR face database contains

more than 4000 face images corresponding to 126 individuals

with different facial expressions, illumination conditions and

occlusions (sunglasses and scarves). There are 26 pictures

taken in two different sessions for each individual, and 14

of them are clean faces. We use the cropped version of AR

database which contains only the face areas with the size of

120× 165.

Notice that with image resizing, the image sizes of these

two databases are much closer to reality than image sizes of

traditional MLP training datasets. We separately evaluate the

performance of deep architectures using our/CUBLAS/CPU

kernels in restoration stage (SDAE) and recognition stage

(DNN). In each stage, both the time of training process and

the time of testing process are considered. The SDAE has the

structure of {N, p1N, p2N, p3N,L}, N is the number of input

units, here it equals to 92×110 or 120×165. piN, i = 1, 2, 3

� ��� � ��� � ��� � ��� � ��� �

	
��
�����

	
��
�� �

��
�����

��
�� �

�����! �����

�����	�����

"#� �����!

$�"�� ��� �������"� $�� ��

Fig. 4. We test our optimized architecture equipped with our fast matrix
kernels on real face recognition problems, this result is on ORL database.
The recognition process is divided into restoration part using SDAE and
recognition part using DDN. Three kinds of kernels are compared.

���

%���

���

%��%

� ��� ��� �� ��! ��" ��� ���

���	

%���

���	

%��%

���

%���

���

%��%

������������
�����������
�&� �������

���
��������� %���%��� ��� ���

Fig. 5. The result on AR database. As we can see, the iterations per sec
is less than ORL database, this is due to its larger amount of training data
(4000+ images comparing with 400 images in ORL database).

are the sizes of hidden layers, here we set pi ≈ 0.8 for

i = 1, 2, 3 to gain a reasonable recognition rate (around 90%
with the ∼ 30% occlusion level) comparing with state-of-

the-art methods. DNN simulates the same layer structure of

SDAE and uses SDAE’s layer-wise parameters for weights

initialization. During propagation process of SDAE/DNN’s

training and testing, all the available matrix operations are

replaced by our/CUBLAS/CPU kernels. Our optimized deep

structure is used together with our fast kernels only. Results

are showed in Fig. 4 and Fig. 5. As we can see, our optimized

deep architectures equipped with our fast kernels continue to

achieve notable outperformance comparing with deep archi-

tectures with CUBLAS/CPU kernels. The average speed up is

around 100% on both ORL and AR databases comparing with

architectures using CUBLAS kernels.

VI. CONCLUSION

In this paper, we presented an optimized deep learning

architecture with flexible data/layer structures and fast parallel

matrix operation kernels. The experimental results denote that

our kernels achieve significant speed outperformance com-

pared with CUBLAS/CPU kernels. In real problem solving

77

such as digit and face recognition, our optimized architecture

equipped with own-created kernels gains better comprehen-

sive performance than learning schemes using CUBLAS or

CPU kernels. This suggests that parallel device’s better speed

adaptability on specific tasks could be achieved with carefully

designed kernel strategies.

REFERENCES

[1] Y. Bengio, “Learning Deep Architectures for AI”, Foundations and Trends
in Machine Learning, vol.2(1), pp. 1-127 2009.

[2] D. Erhan, Y. Bengio, A. Courville, P.A. Manzagol, P. Vincent, and S.
Bengio, “Why does unsupervised pre-training help deep learning?”, The
Journal of Machine Learning Research, vol. 11, pp. 625-660, 2010.

[3] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks”, in NIPS, 2007.

[4] Y.-L. Boureau, F. R. Bach, Y. LeCun, and J. Ponce,“Learning mid-level
features for recognition”, in CVPR, 2010.

[5] Y. LeCun, L. Bottou, G. Orr, and K. Muller, “Efficient BackProp”, Neural
Networks: Tricks of the Trade, vol. 1524, pp. 9-50, 1998.

[6] G.E. Hinton, and R.R. Salakhutdinov, “Reducing the Dimensionality of
Data with Neural Networks”, Science, vol. 313, pp. 504-507, 2006.

[7] D.H. Ackley, G.E. Hinton, and T.J. Sejnoeski, “A Learning Algorithm for
Boltzmann Machines”, Cognitive Science, vol. 9, pp. 147-169, 1985.

[8] G.E. Hinton, “A Practical Guide to Training Restricted Boltzmann Ma-
chines”, Neural Networks: Tricks of the Trade, vol. 7700, pp. 599-619.

[9] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol, “Stacked
Denoising Autoencoders: Learning Useful Representations in a Deep
Network with a Local Denoising Criterion”, Journal of Machine Learning
Research, vol. 11, pp. 3371-3408, 2010.

[10] G.E. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for
deep belief nets”, Neural Computation, vol. 18(7), pp. 1527-1554, 2006.

[11] G.B. Huang, H. Lee, and E. Learned-Miller, “Learning Hierarchical
Representations for Face Verification with Convolutional Deep Belief
Networks”, in CVPR, 2012.

[12] P. Vincent, “A connection between score matching and denoising au-
toencoders.” Neural computation, vol.23.7, pp. 1661-1674, 2011.

[13] P. Luo, X.G. Wang, and X.O. Tang, “Hierarchical Face Parsing via Deep
Learning”, in CVPR, 2012.

[14] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, ”Convolutional
deep belief networks for scalable unsupervised learning of hierarchical
representations”, in ICML, 2009.

[15] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Unsupervised learning
of hierarchical representations with convolutional deep belief networks”,
Communications of the ACM, vol. 54(10), pp. 95-103, 2011.

[16] Q. V. Le, M. Ranzato, R. Monga, K. Chen, M. Devin, G. S. Corrado,
J. Dean, and A. Y. Ng, “Building high-level features using large scale
unsupervised learning”, in ICML, 2012.

[17] P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol, “Extracting and
composing robust features with denoising autoencoders”, in ICML, 2008.

[18] D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber,
“Deep big simple neural nets for handwritten digit recognition”, Neural
Computation, vol. 22(12), pp. 3207-3220, 2010.

[19] J. Yang, K. Yu, Y. Gong, and T. S. Huang, “Linear spatial pyramid
matching using sparse coding for image classification”, in CVPR, 2009.

[20] D. G. Lowe, “Distinctive image features from scale-invariant keypoints”,
IJCV, vol. 60(2), pp. 91-110, 2004.

[21] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust Face
Recognition via Sparse Representation”, TPAMI, vol. 31(2), pp. 210–227,
2008.

[22] Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny
Images”, Technical Report, 2009.

[23] A. Coates, H. Lee, and A. Y. Ng, “An Analysis of Single Layer Networks
in Unsupervised Feature Learning”, AISTATS, 2011.

[24] G. E. Hinton, “Training products of experts by minimizing contrastive
divergence”, Neural Computation, vol. 14(8), pp. 1711-1800, 2002.

[25] D. Strigl, K. Kofler and S. Podlipnig, “Performance and Scalability
of GPU-based Convolutional Neural Networks”, in Euromicro Interna-
tional Conference on Parallel, Distributed and Network-based Processing
(PDP)”, 2010.

[26] X. Sierra-Canto, F. Madera-Ramirez and V. Uc-Cetina, “Parallel Train-
ing of a Backpropagation Neural Network Using CUDA”, International
Conference on Machine Learning and Applications (ICMLA), 2010.

[27] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning
applied to document recognition”, Proceedings of the IEEE, vol. 86(11),
pp. 2278–2324, 1998.

[28] http://www.nvidia.com/object/cuda home new.html.
[29] http://www1.icsi.berkeley.edu/Speech/qn.html.
[30] J. Gunnels, C. Lin, G. Morrow, and R. van de Geijn, “A flexible class

of parallel matrix multiplication algorithms”, the 1st Merged Interna-
tional Parallel Processing Symposium and Symposium on Parallel and
Distributed Processing, pp. 110-116, 1998.

[31] F. Samaria and A. Harter, “Parameterisation of a stochastic model
for human face identification”, 2nd IEEE Workshop on Applications of
Computer Vision, 1994.

[32] A. Martinez, R. Benavente, “The AR face database”, CVC Tech. Report
24, 1998.

[33] J.Y. Xie, L.L. Xu, and E.H. Chen,“Image Denoising and Inpainting with
Deep Neural Networks”, in NIPS, 2012.

[34] https://developer.nvidia.com/cublas.

78

