
DaDianNao: A Machine-Learning Supercomputer

Yunji Chen1, Tao Luo1,3, Shaoli Liu1, Shijin Zhang1, Liqiang He2,4, Jia Wang1, Ling Li1,

Tianshi Chen1, Zhiwei Xu1, Ninghui Sun1, Olivier Temam2

1 SKL of Computer Architecture, ICT, CAS, China
2 Inria, Scalay, France

3 University of CAS, China
4 Inner Mongolia University, China

Abstract—Many companies are deploying services, either
for consumers or industry, which are largely based on
machine-learning algorithms for sophisticated processing of
large amounts of data. The state-of-the-art and most popular
such machine-learning algorithms are Convolutional and Deep
Neural Networks (CNNs and DNNs), which are known to be
both computationally and memory intensive. A number of
neural network accelerators have been recently proposed which
can offer high computational capacity/area ratio, but which
remain hampered by memory accesses.
However, unlike the memory wall faced by processors on

general-purpose workloads, the CNNs and DNNs memory
footprint, while large, is not beyond the capability of the on-
chip storage of a multi-chip system. This property, combined
with the CNN/DNN algorithmic characteristics, can lead to high
internal bandwidth and low external communications, which
can in turn enable high-degree parallelism at a reasonable
area cost. In this article, we introduce a custom multi-chip
machine-learning architecture along those lines. We show that,
on a subset of the largest known neural network layers, it
is possible to achieve a speedup of 450.65x over a GPU, and
reduce the energy by 150.31x on average for a 64-chip system.
We implement the node down to the place and route at 28nm,
containing a combination of custom storage and computational
units, with industry-grade interconnects.

I. INTRODUCTION

Machine-Learning algorithms have become ubiquitous in

a very broad range of applications and cloud services;

examples include speech recognition, e.g., Siri or Google

Now, click-through prediction for placing ads [27], face

identification in Apple iPhoto or Google Picasa, robotics

[20], pharmaceutical research [9] and so on. It is probably

not exaggerated to say that machine-learning applications are

in the process of displacing scientific computing as the major

driver for high-performance computing. Early symptoms

of this transformation are Intel calling for a refocus on

Recognition, Mining and Synthesis applications in 2005

[14] (which later led to the PARSEC benchmark suite

[3]), with Recognition and Mining largely corresponding

to machine-learning tasks, or IBM developing the Watson

supercomputer, illustrated with the Jeopardy game in 2011

[19].

Remarkably enough, at the same time this profound

shift in applications is occurring, two simultaneous, albeit

apparently unrelated, transformations are occurring in the

machine-learning and in the hardware domains. Our com-

munity is well aware of the trend towards heterogeneous

computing where architecture specialization is seen as a

promising path to achieve high performance at low energy

[21], provided we can find ways to reconcile architecture

specialization and flexibility. At the same time, the machine-

learning domain has profoundly evolved since 2006, where a

category of algorithms, called Deep Learning (Convolutional

and Deep Neural Networks), has emerged as state-of-the-art

across a broad range of applications [33], [28], [32], [34]. In

other words, at the time where architects need to find a good

tradeoff between flexibility and efficiency, it turns out that

just one category of algorithms can be used to implement a

broad range of applications. In other words, there is a fairly

unique opportunity to design highly specialized, and thus

highly efficient, hardware which will benefit many of these

emerging high-performance applications.

A few research groups have started to take advantage of

this special context to design accelerators meant to be inte-

grated into heterogeneous multi-cores. Temam [47] proposed

a neural network accelerator for multi-layer perceptrons,

though it is not a deep learning neural network, Esmaeilzade-

h et al. [16] propose to use a hardware neural network

called NPU for approximating any program function, though

not specifically for machine-learning applications, Chen et

al. [5] proposed an accelerator for Deep Learning (CNNs

and DNNs). However, all these accelerators have significant

neural network size limitations: either small neural networks
of a few tens of neurons can be executed, or the neurons

and synapses (i.e., weights of connections between neurons)

intermediate values have to be stored in main memory. These

two limitations are severe, respectively from a machine-

learning or a hardware perspective.

From a machine-learning perspective, there is a significant

trend towards increasingly large neural networks. The recent

work of Krizhevsky et al. [32] achieved state-of-the-art

accuracy on the ImageNet database [13] with “only” 60

2014 47th Annual IEEE/ACM International Symposium on Microarchitecture

1072-4451/14 $31.00 © 2014 IEEE

DOI 10.1109/MICRO.2014.58

609

2014 47th Annual IEEE/ACM International Symposium on Microarchitecture

1072-4451/14 $31.00 © 2014 IEEE

DOI 10.1109/MICRO.2014.58

609

million parameters. There are recent examples of a 1-billion

parameter neural network [34], and some of the same authors

even investigated a 10-billion neural network the following

year [8]. However, these networks are for now considered

extreme experiments in unsupervised learning (the first one

on 16,000 CPUs, the second one on 64 GPUs), and they are

outperformed by smaller but more classic neural networks

such as the one by Krizhevsky et al. [32]. Still, while the

neural network size progression is unlikely to be monotonic,

there is a definite trend towards larger neural networks.

Moreover, increasingly large inputs (e.g., HD instead of SD

images) will further inflate the neural networks sizes. From

a hardware perspective, the aforementioned accelerators are

limited because if most synaptic weights have to reside

in main memory, and if neurons intermediate values have

to be frequently written back and read from memory, the

memory accesses become the performance bottleneck, just

like in processors, partly voiding the benefit of using custom

architectures. Chen et al. [5] acknowledge this issue by

observing that their neural network accelerator loses at

least an order of magnitude in performance due to memory

accesses.

However, while 1 billion parameters or more may come

across as a large number from a machine-learning perspec-

tive, it is important to realize that, in fact, it is not from a

hardware perspective: if each parameter requires 64 bits, that

only corresponds to 8 GB (and there are clear indications

that fewer bits are sufficient). While 8 GB is still too large for

a single chip, it is possible to imagine a dedicated machine-

learning computer composed of multiple chips, each chip

containing specialized logic together with enough RAM that

the sum of the RAM of all chips can contain the whole neural
network, requiring no main memory. By tightly intercon-
necting these different chips through a dedicated mesh, one

could implement the largest existing DNNs, achieve high

performance at a fraction of the energy and area of the

many CPUs or GPUs used so far. Due to its low energy

and area costs, such a machine, a kind of compact machine-

learning supercomputer, could help spread the use of high-

accuracy machine-learning applications, or conversely to use

even larger DNNs/CNNs by simply scaling up RAM storage

at each node and/or the number of nodes.

In this article, we present such an architecture, composed

of interconnected nodes, each containing computational log-

ic, eDRAM, and the router fabric; the node is implemented

down to the place and route at 28nm, and we evaluate an

architecture with up to 64 nodes. On a sample of the largest

existing neural network layers, we show that it is possible

to achieve a speedup of 450.65x over a GPU and to reduce

energy by 150.31x on average.

In Section II, we introduce CNNs and DNNs, in Section

III, we evaluate such NNs on GPU, in Section IV we

compare GPU and a recently proposed accelerator for CNNs

and DNNs, in Section V, we introduce the machine-learning

supercomputer, we present the methodology in Section VI,

the experimental results in Section VII and the related work

in Section VIII.

II. STATE-OF-THE-ART MACHINE-LEARNING

TECHNIQUES

The state-of-the-art and most popular machine-learning

algorithms are Convolutional Neural Networks (CNNs) [35]

and Deep Neural Networks (DNNs) [9]. Beyond early d-

ifferences in training, the two types of networks are also

distinguished by their implementation of convolutional lay-

ers detailed thereafter. CNNs are particularly efficient for

image applications and any application which can benefit

from the implicit translation invariance properties of their

convolutional layers. DNNs are more complex neural net-

works but they have an even broader application span such

as speech recognition [9], web search [27], etc.

A. Main Layer Types

A CNN or a DNN is a sequence of multiple instances

of four types of layers: pooling layers (POOL), convolu-

tional layers (CONV), classifier layers (CLASS), and local

response normalization layers (LRN), see Figure 1. Usually,

groups of convolutional, local response normalization and

pooling layers alternate, while classifier layers are found

at the end of the sequence, i.e., at the top of the neural

network hierarchy. We present a simple hierarchy in Figure

1; we illustrate the intuitive task performed at the top, and

we provide the formal computations performed by the layer

at the bottom.

Convolutional layers (CONV). Intuitively, a convolutional
layer implements a set of filters to identify characteristic

elements of the input data, e.g., an image, see Figure 1.

For visual data, a filter is defined by Kx ×Ky coefficients

forming a kernel; these kernel coefficients are learned and
form the layer synaptic weights. Each convolutional layer

slides Nof such filters through the whole input layer (by

steps of sx and sy), resulting in as many (Nof) output feature

maps.

The concrete formula for calculating an output neuron

a(x, y)fo at position (x, y) of output feature map fo is

out(x, y)fo =

Nif∑
fi=0

Kx∑
kx=0

Ky∑
ky=0

wfi,fo(kx, ky)∗in(x+kx, y+ky)
fi

where in(x, y)f (resp. out()) represents the input (resp.
output) neuron activity at position (x, y) in feature map f ,
and wfi,fo(kx, ky) is the synaptic weight at kernel position
(kx, ky) in input feature map fi for filter (output feature
map) fo. Since the input layer itself may contain multiple
feature maps (Nif input feature maps), the kernel is usually

three-dimensional, i.e., Kx ×Ky ×Nif .

In DNNs, the kernels usually have different synaptic values

for each output neuron (at each (x, y) position), while

610610

Convolution

Ni No

ClassifierLocal Response
Normalization

Pooling
Nif

K
K

Nof Nof

Tree

Figure 1: The four layer types found in CNNs and DNNs.

in CNNs, the kernels are shared across all neurons of

the same output feature map. Convolutional layers with

private (non-shared) kernels have drastically more synaptic
weights (i.e., parameters) than the ones with shared kernels

(K ×K ×Nif ×Nof ×Nx×Ny vs. K ×K ×Nif ×Nof ,

where Nx and Ny are the input layer dimensions).

Pooling layers (POOL). A pooling layer computes the

max or average over a number of neighbor points, e.g.,

out(x, y)f = max
0≤kx≤Kx,0≤ky≤Ky

in(x+ kx, y + ky)
f

Its effect is to reduce the input layer dimensionality,

which allows coarse-grain (larger scale) features to emerge,

see Figure 1, and be later identified by filters in the next

convolutional layers. Unlike a convolutional or a classifier

layer, a pooling layer has no learned parameter (no synaptic

weight).

Local response normalization layers (LRN). Local re-
sponse normalization implements competition between neu-

rons at the same location, but in different (neighbor) feature

maps. Krizhevsky et al. [32] postulate that their effect is

similar to the lateral inhibition found in biological neurons.

The computations are as follows

out(x, y)f = in(x, y)f/

⎛
⎝c+ α

min(Nf−1,f+k/2)∑
g=max(0,f−k/2)

(a(x, y)g)2

⎞
⎠

β

where k determines the number of adjacent feature maps
considered, and c, α and β are constants.

Classifier layers (CLASS). The result of the sequence of
CONV, POOL and LRN layers is then fed to one or multiple

classifier layers. This layer is typically fully connected to

its Ni inputs (and it has No outputs), see Figure 1, and

each connection carries a learned synaptic weight. While the

number of inputs may be much lower than for other layers

(due to the dimensionality reduction of pooling layers), they

can account for a large share of all synaptic weights in the

neural network due to their full connectivity. Multi-Layer

perceptrons are frequently used as classifier layers, though

other types of classifiers are used as well (e.g., multinomial

logistic regression). The goal of these layers is naturally to

correlate the different features extracted from the filtering,

normalization and pooling steps and the output categories.

out(j) = t

(
Ni∑
i=0

wij ∗ in(i)
)

where t() is a transfer function, e.g., 1
1+e−x , tanh(x),

max(0, x) for ReLU [32], etc.

B. Benchmarks
Throughout this article, we use as benchmarks a sample

of 10 of the largest known layers of each type, described

in Table I, as well as a full neural network (CNN), win-

ner of the ImageNet 2012 competition [32]. The full NN

benchmark contains the following 12 layers (the format

is Nx, Ny,Kx,Ky, Ni or Nif , No or Nof as in the ta-

ble): CONV (224,224,11,11,3,96), LRN (55,55,-,-,96,96), POOL

(55,55,3,3,96,96), CONV (27,27,5,5,96,256), LRN (27,27,-,-

,256,256), POOL (27,27,3,3,256,256), CONV (13,13,3,3,256,384),

CONV (13,13,3,3,384,384), CONV (13,13,3,3,384,256), CLASS

(-,-,-,-,9216,4096), CLASS (-,-,-,-,4096,4096), CLASS (-,-,-,-

,4096,1000). For all convolutional layers, the sliding window

strides sx, sy are 1, except for the first convolutional layer
of the full NN, where they are 4. For all pooling layers,

their sliding window strides equal to their kernel dimension,

i.e. sx = Kx, sy = Ky . Note also that for LRN layers,

k = 5. Finally, since we consider both inference and training
for each layer, see Section II-C, we have also considered

the most popular pre-training method, i.e., the method used
to initialize the synaptic weights, which is often time-

consuming. This method is based on Restricted Boltzmann

Machines (RBM) [45], and we applied it to CLASS1 and

CLASS2 layers, leading to the RBM1 (2560×2560) and
RBM2 (4096×4096) benchmarks.
C. Inference vs. Training
A frequent and important misconception about neural

networks is that on-line learning (a.k.a. training or backward

611611

Layer Nx Ny Kx Ky Ni

orNif

No

orNof

Synapses Description

CLASS1 - - - - 2560 2560 12.5MB Object recognition and
speech recognition tasks
(DNN) [11].

CLASS2 - - - - 4096 4096 32MB Multi-Object recognition
in natural images (DNN),
winner 2012 ImageNet
competition [32].

CONV1 256 256 11 11 256 384 22.69MB
POOL2 256 256 2 2 256 256 -
LRN1 55 55 - - 96 96 -
LRN2 27 27 - - 256 256 -

CONV2 500 375 9 9 32 48 0.24MB Street scene parsing
(CNN) (e.g., identifying
building, vehicle, etc) [18].

POOL1 492 367 2 2 12 12 -

CONV3* 200 200 18 18 8 8 1.29GB Face Detection in
YouTube videos (DNN),
(Google) [34].

CONV4* 200 200 20 20 3 18 1.32GB YouTube video object
recognition, largest NN to
date [8].

Table I: Some of the largest known CNN or DNN layers (CONVx*
indicates convolutional layers with private kernels).

phase) is necessary for many applications. On the contrary,

for many industrial applications off-line learning is sufficient,
where the neural network is first trained on a set of data, and

then only used in inference (a.k.a. testing or feed-forward

phase) mode by the end user. Note that even machine-

learning researchers acknowledge this choice, as one of

the few examples of hardware designs coming from that

community is dedicated to inference [18]. While we put

more emphasis in design and experiments on the much

broader market of users of machine-learning algorithms,
we have also designed the architecture to support the most

common learning algorithms in order to also serve as an

accelerator for machine-learning researchers and we also
present experiments for that usage.

III. THE GPU OPTION

Currently, the most favored approach for implementing

CNNs and DNNs are GPUs [6] due to the fairly regular na-

ture of these algorithms. We have implemented in CUDA the

different layer types of Table I. We have also implemented a

C++ version in order to obtain a CPU (SIMD) baseline. We

have evaluated these versions on respectively a modern GPU

card (NVIDIA K20M, 5GB GDDR5, 208 GB/s memory

bandwidth, 3.52 TFlops peak, 28nm technology), and a

256-bit SIMD CPU (Intel Xeon E5-4620 Sandy Bridge-EP,

2.2GHz, 1TB memory); we report the speedups of GPU over

CPU (for inference) in Figure 2. The GPU can provide a

speedup of 58.82x over a SIMD on average. This is in line

with state-of-the-art results, for instance reported by Ciresan

et al. [7], where speedups of 10x for the smallest layers

to 60x for the largest layers are reported for an NVIDIA

GTX480/GTX580 over an Intel Core-i7 920 on CNNs.

One can also observe that the GPU is particularly efficient

on LRN layers because of the presence of a dedicated

0.1

1

10

100

CPU/GPU Accelerator/GPU

Figure 2: Speedup of GPU over CPU (SIMD) and DianNao
accelerator [5].

exponential instruction, a computation which accounts for

most the LRN execution time on SIMD.

While these speedups are high, GPUs have a number of

limitations. First, their (area) cost is high because of both

the number of hardware operators and the need to remain
reasonably general-purpose (memory hierarchy, all PEs are

connected to some elements of the memory hierarchy, etc).

Second, the total execution time remains large (up to 18.03

seconds for the largest layer CLASS1); this may not be

compatible with the milliseconds response time required by

web services or other industrial applications. Third, the GPU

energy efficiency is moderate, with an average power of over

74.93W for the NVIDIA K20M GPU. That figure is actually

optimistic because the NVIDIA K20M only contains 1.5MB

of on-chip RAM, forcing frequent high-energy accesses to

the off-chip GDDR5 memory leading to a thermal design

power of 225W for the entire GPU board [43].

IV. THE ACCELERATOR OPTION

Recently, Chen et al. [5] have proposed the DianNao

accelerator for the fast and low-energy execution of the

inference of large CNNs and DNNs in a small form fac-

tor (3mm2 at 65nm, 0.98GHz). We reproduce the block

diagram of DianNao in Figure 3. The architecture contains

buffers for caching input/output neurons and synapses, and

a Neural Functional Unit (NFU) which is largely a pipelined

version of the typical computations required to evaluate

a neuron output: the multiplication of synaptic values by

input neurons values in the first stage, additions of all these

products in the second stage (adder trees), and application

of a transfer function in the third stage (realized through

linear interpolation). Depending on the layer type (classifier,

convolution, pooling), different computational operators are

invoked in each stage.

In order to compare their architecture against GPU, we

reimplement a cycle-level bit-level version of DianNao, and

we use the memory latency parameters mentioned in their

article. For the sake of comparison, we use at least some (4)

of the same layers (CONV2, CONV4*, POOL1 and POOL2

respectively correspond to their CONV1, CONV5*, POOL1,

POOL3; the layer numbers are different but the notations are

612612

SB

NBout

NFU

NFU-1 NFU-2 NFU-3

NBin

CP
Instructions

Figure 3: Block diagram of the DianNao accelerator [5].

the same), but we introduced even larger classifier layers

(CLASS1 and CLASS2); CONV1 and CONV3* are large

convolutional layers with respectively shared and private ker-

nels, more closely matching the ones used in the references

cited in Table I. Since DianNao did not yet support LRN

layers [5], we omit them from this comparison. In Figure 2,

we report the speedup of our GPU implementation (NVIDIA

K20M) over DianNao. We can observe that DianNao can

achieve about 47.91% of the GPU performance on average,

in 0.53% of the area (the K20M is 561 mm2 at 28nm),

which is a testimony to the potential efficiency of custom

architectures.

However, the main limitation, acknowledged by the au-

thors, is the memory bandwidth requirements of two impor-

tant layer types: convolutional layers with private kernels

(used in DNNs) and classifier layers used in both CNNs and

DNNs. For these types of layers, the total number of required

synapses can be massive, in the millions of parameters, or

even tens or hundreds thereof. For an NFU processing 16

inputs of 16 output neurons (i.e., 256 synapses) per cycle,

at 0.98GHz a peak bandwidth of 467.30 GB/s would be

necessary. As a reference, the NVIDIA K20M GPU has

320-bit memory interfaces at 2.6 GHz which can operate

on every half-clock, for a total of 208 GB/s. Chen et al. [5]

also report that off-chip memory accesses increase the total

energy cost by a factor of approximately 10x.

In the next section, we propose a custom node and multi-

chip architecture to overcome this limitation.

V. A MACHINE-LEARNING SUPERCOMPUTER

We call the proposed architecture a “supercomputer” be-

cause its goal is to achieve high sustained machine-learning

performance, significantly beyond single-GPU performance,

and because this capability is achieved using a multi-chip

system. Still, each node is significantly cheaper than a typ-

ical GPU while exhibiting a comparable or higher compute

density (number of operations per second divided by the

area).

We design the architecture around the central property,

specific to DNNs and CNNs, that the total memory footprint

of their parameters, while large (up to tens of GB), can be

fully mapped to on-chip storage in a multi-chip system with

a reasonable number of chips.

A. Overview

As explained in Section IV, the fundamental issue is

the memory storage (for reuse) or bandwidth requirements

(for fetching) of the synapses of two types of layers:

convolutional layers with private kernels (the most frequent

case in DNNs), and classifier layers (which are usually fully

connected, and thus have lots of synapses). We tackle this

issue by adopting the following design principles: (1) we

create an architecture where synapses are always stored

close to the neurons which will use them, minimizing data

movement, saving both time and energy; the architecture is

fully distributed, there is no main memory; (2) we create

an asymmetric architecture where each node footprint is

massively biased towards storage rather than computations;

(3) we transfer neurons values rather than synapses values

because the former are orders of magnitude fewer than the

latter in the aforementioned layers, requiring comparatively

little external (across chips) bandwidth; (4) we enable high

internal bandwidth by breaking down the local storage into

many tiles.

The general architecture is a set of nodes, one per chip,

all identical, arranged in a classic mesh topology. Each node

contains significant storage, especially for synapses, and

neural computational units (the classic pipeline of multiplier-

s, adder trees and non-linear transfer functions implemented

via linear interpolation), which we also call NFU for the sake

of consistency with prior art, though our NFU is significantly

more complex than the one proposed by Chen et al. [5]

because its pipelined can be reconfigured for each layer and

inference/training, see Section V-B3.

In the next subsections, we detail each component and we

explain the rationale for the design choices.

Driving example. We use the classifier layer as a driving
example because it is both challenging due to its large

number of synapses, but also structurally simple, and thus

adequate as a driving example; note that for the sake of

completeness, we explain in Section V-B3 how all layers are

implemented on the architecture. As explained in Section II,

in a classifier layer, the No outputs are typically connected to

all the Ni inputs, with one synaptic weight per connection.

In terms of locality, it means that each input is reused No

times, and that the synaptic weights are not reused within

one classifier layer execution.

B. Node

In this section, we present the architecture node and

explain the rationale for its design.

1) Synapses Close to Neurons: One of the fundamental
design characteristic of the proposed architecture is to locate

the storage for synapses close to neurons and to make it

massive. This design choice is motivated by the decision to

613613

move only neurons and to keep synapses in a fixed storage

location. This serves two purposes.

First, the architecture is targeted for both inference and

training. In inference, the neurons of the previous layer

are the inputs of the computation; in training, the neurons

are forward-propagated (so neurons of the previous layer

are the inputs) and then backward-propagated (so neurons

of the next layer are now the inputs). As a result, de-

pending on how data (neurons and synapses) are allocated

to nodes, they need to be moved between the forward

and backward phases. Since there are many more synapses

than neurons (e.g., O(N2) vs. O(N) for classifier layers,
K ×K × Nif × Nof × Nx × Ny vs. Nif × Nx × Ny for

convolutional layers with private kernels, see Section II), it

is only logical to move neuron outputs instead of synapses.

Second, having all synapses (most of the computation input-

s) next to computational operators provides low-energy/low-

latency data (synapses) transfers and high internal band-

width.

As shown in Table I, layer sizes can range from less than

1MB to about 1GB, most of them ranging in the tens of MB.

While SRAMs are appropriate for caching purposes, they

are not dense enough for such large-scale storage. However,

eDRAMs are known to have a higher storage density. For

instance, a 10MB SRAM memory requires 20.73mm2 at

28nm [36], while an eDRAM memory of the same size and

at the same technology node requires 7.27mm2 [50], i.e., a

2.85x higher storage density.

Moreover, providing sufficient eDRAM capacity to hold

all synapses on the combined eDRAM of all chips will

save on off-chip DRAM accesses, which are particularly

costly energy-wise. For instance, a read access to a 256-

bit wide eDRAM array at 28nm consumes 0.0192nJ (50μA,
0.9V, 606 MHz) [25], while a 256-bit read access to a

Micron DDR3 DRAM consumes 6.18nJ at 28nm [40], i.e.,

an energy ratio of 321x. The ratio is largely due to the

memory controller, the DDR3 physical-level interface, on-

chip bus access, page activation, etc.

If the NFU is no longer limited by the memory bandwidth,

it is possible to scale up its size in order to process more

output neurons (No) and more inputs per output neuron

(Ni) simultaneously, and thus, to improve the overall node

throughput. For instance, to scale up by 16x the number of

operations performed every cycle compared to the acceler-

ator mentioned in Section IV, we need to have Ni = 64
(instead of 16) and No = 64 (instead of 16). In order to
achieve maximal throughput, we must fetch Ni × No 16-

bit values from the eDRAM to the NFU every cycle, i.e.,

64× 64× 16 = 65536 bits in this case.
However eDRAM has three well-known drawbacks: high-

er latency than SRAM, destructive reads and periodic refresh

[38], as in traditional DRAMs. In order to compensate for

the eDRAM drawbacks and still feed the NFU every cycle,

we split the eDRAM into four banks (65536-bit wide in the

HT2.0 (North Link)

HT2.0 (South Link)

NFU

eDRAM0 eDRAM1

eDRAM2 eDRAM3Wires

Wires Wires

Wires

3.27 mm

0.88 mm

HT2.0 (W
est Link)

HT2.0 (East Link)

Figure 4: Simplified floorplan with a single central NFU showing
wire congestion.

tile tile

tile tile

tile tile

tile tile

tile tile

tile tile

tile tile

tile tile

eDRAM
router

HT2.0 (South Link)
HT2.0 (W

est Link)

HT2.0 (East Link)

HT2.0 (North Link)
SB

eDRAM
Bank1

SB
eDRAM
Bank3

SB
eDRAM
Bank0

SB
eDRAM
Bank2

16
input

neurons

16
output

neurons

Data
to SB

NFU

Figure 5: Tile-based organization of a node (left) and tile archi-
tecture (right). A node contains 16 tiles, two central eDRAM banks
and fat tree interconnect; a tile has an NFU, four eDRAM banks
and input/output interfaces to/from the central eDRAM banks.

above example), and we interleave the synapses rows among

the four banks.

We placed and routed this design at 28nm (ST technology,

LP), and we obtained the floorplan of Figure 4. The NFU

footprint is very small at 0.78mm2 (0.88mm×0.88mm), but
the process imposes an average spacing of 0.2μm between

wires, and provides only 4 horizontal metal layers. As a

result, the 65536 wires connecting the NFU to the eDRAM

require a width of 65536×0.2
4 = 3.2768mm, see Figure 4.

Consequently, wires occupy 4× 3.2768× 3.2768− 0.88×
0.88 = 42.18mm2, which is almost equal to the combined

area of all eDRAM banks, all NFUs and the I/O.

2) High Internal Bandwidth: In order to avoid this con-
gestion, we adopt a tile-based design, as shown in Figure 5.

The output neurons are spread out in the different tiles, so

that each NFU can simultaneously process 16 input neurons

input
neurons

synapses

partial
sum

s/gradients

Stage1

Multiply Add Transfer
function

�
�

�
�

Stage2 Stage3

output
neurons

updated
Synapses

NBin NBout

Figure 6: The different (parallel) operators of an NFU: multipliers,
adders, max, transfer function.

614614

Transfer

M
ultiply

Add

Transfer

Classifier (FP) /
Convolution (FP)

Stage1 Stage2 Stage3

N
Bin

N
Bout

Tile eDram

Derivative

M
ultiply

Add

Classifier (BP) /
Convolution (BP)

N
Bin

N
Bout

Tile eDram

Transfer

M
ultiply

Add

LRN(FP&BP)

N
Bin

N
Bout

Transfer

M
ultiply

Transfer

Pooling(FP)

N
Bin

N
BoutDerivative

M
ultiply

Pooling(BP)

N
Bin

N
Bout

M
ultiply

Add

Weights update for
Classifier & Convolution

N
Bin

Tile eDram

Tile eDram

Stage1 Stage2 Stage3

Stage1 Stage2 Stage3Stage1 Stage2 Stage3 Stage1 Stage2 Stage3

Stage1 Stage2 Stage3

Figure 7: Different pipeline configurations for CONV, LRN, POOL
and CLASS layers.

of 16 output neurons (256 parallel operations), see Figure

6. As a result, the NFU in each tile is significantly smaller,

and only 16× 16× 16 = 4096 bits must be extracted each
cycle from the eDRAM. We keep the 4-bank (4096-bit wide

banks) organization to compensate for the aforementioned

eDRAM weaknesses, and we obtain the tile design of Figure

5. We placed and routed one such tile, and obtained an

area of 1.89 mm2, so that 16 such tiles account for 30.16

mm2, i.e., a 28.5% area reduction over the previous design,

because the routing network now only accounts for 8.97%

of the overall area.

All the tiles are connected through a fat tree which serves

to broadcast the input neurons values to each tile, and to

collect the output neurons values from each tile. At the

center of the chip, there are two special eDRAM banks,

one for input neurons, the other for output neurons. It is

important to understand that, even with a large number of

tiles and chips, the total number of hardware output neurons
of all NFUs, can still be small compared to the actual number

of neurons found in large layers. As a result, for each set

of input neurons broadcasted to all tiles, multiple different

output neurons are being computed on the same hardware

neuron. The intermediate values of these neurons are saved

back locally in the tile eDRAM. When the computation of

an output neuron is finished (all input neurons have been

factored in), the value is sent through the fat tree to the

center of the chip to the corresponding (output neurons)

central eDRAM bank.

3) Configurability (Layers, Inference vs. Training): We
can adapt the tile, and the NFU pipeline in particular,

to the different layers and the execution mode (inference

or training). The NFU is decomposed into a number of

hardware blocks: adder block (which can be configured

either as a 256-input, 16-output adder tree, or 256 parallel

adders), multiplier block (256 parallel multipliers), max

block (16 parallel max operations), and transfer block (t-

wo independent sub-blocks performing 16 piecewise linear

interpolations; the a, b linear interpolation coefficients, i.e.,
y = a × x + b, for each block are stored in two 16-

entry SRAMs and can be configured to implement any

transfer function and its derivative). In Figure 7, we show

the different pipeline configurations for CONV, LRN, POOL

and CLASS layers in the forward and backward phases.

Inference Training Error
Floating-Point Floating-Point 0.82%
Fixed-Point (16 bits) Floating-Point 0.83%
Fixed-Point (32 bits) Floating-Point 0.83%
Fixed-Point (16 bits) Fixed-Point (16 bits) (no convergence)
Fixed-Point (16 bits) Fixed-Point (32 bits) 0.91%

Table II: Impact of fixed-point computations on error.

Each hardware block is designed to allow the aggregation

of 16-bit operators (adders, multipliers, max, and the adder-

s/multipliers used for linear interpolation) into fewer 32-bit

operators (two 16-bit adders into one 32-bit adder, four 16-

bit multipliers into 32-bit multiplier, two 16-bit max into

one 32-bit max); the overhead cost of aggregable operators

is very low [26]. While 16-bit operators are largely sufficient

for the inference usage, they may either reduce the accuracy

and/or increase (or even prevent) the convergence of training.

As an example, consider a CNN trained on MNIST [35]

using various combinations of fixed and floating-point repre-

sentations. There is almost no impact on error if 16-bit fixed-

point is used in inference only, but there is no convergence

if it is used also for training. On the other hand, there is only

a small impact on error if 32-bit fixed-point is used: 0.91%

instead of 0.83%; moreover, in further tests, we note that the

error obtained for 28 bits is 1.72%, so it decreases rapidly

to 0.91% by adding 4 more bits, and further aggregating

operators allows to further decrease the fixed-point error.

By default, we use 32-bit operators in training mode.

Beyond pipeline and block configurations, the tile must be

configured for different data movement cases. For instance,

a classifier layer input can come from the node central

eDRAM (possibly after transfer from another node), or it

can come from the two SRAM storages (16KB) which are

used to buffer input and output neuron values, or even

temporary values (such as neurons partial sums to enable

reuse of input neurons values) as proposed by Chen et al.

[5]. In the backward phase, the NFU must also write to the

tile eDRAM after the weights update step, see Figure 7.

During the gradient computations step, the input and output

gradients use the data paths of input and output neurons in

the forward phase, see Figure 7 again.

C. Interconnect

Because neurons are the only values transferred, and

because these values are heavily reused within each node,

the amount of communications, while significant, is not a

bottleneck except for a few layers and many-node systems,

as later discussed in Section VII. As a result, we did not

develop a custom high-speed interconnect for our purpose,

615615

we turned to commercially available high-performance in-

terfaces, and we used a HyperTransport (HT) 2.0 IP block.

The HT2.0 physical layer interface (PHY) we used for the

28nm process is a long thin strip of 5.635mm × 0.5575mm
(with a protrusion) due to its usual location at the periphery

of the die.

We use a simple 2D mesh topology; that choice may be

later revisited in favor of a more efficient 3D mesh topology

though. Because of the mesh topology of the architecture,

each chip must connect to four neighbors via four HT2.0 IP

blocks (see Figure 9), each with 16x HT links, i.e., 16 pairs

of differential outgoing signals, and 16 pairs of differential

incoming signals, at a frequency of 1.6GHz (we connect

the HT to the central eDRAM through a 128-bit, 4-entry,

asynchronous FIFO). Each HT block provides a bandwidth

of 6.4GB/s in each direction. The HT2.0 latency between

two neighbor nodes is about 80ns.

Router. Next to the central block of the tile, we imple-
ment the router, see Figure 5. We use wormhole routing,

the router has five input/output ports (4 directions and

injection/ejection port). Each input port contains 8 virtual

channels (5 flit slots per VC). A 5x5 crossbar is equipped to

connect all input/output ports. The router has four pipeline

stages: routing computation (RC), VC allocation (VA),

switch allocation (SA) and switch traversal (ST) .

D. Overall Characteristics

Parameters Settings Parameters Settings
Frequency 606MHz tile eDRAM latency ∼3 cycles
of tiles 16 central eDRAM size 4MB
of 16-bit multipliers/tile 256+32 central eDRAM latency ∼10 cycles
of 16-bit adders/tile 256+32 Link bandwidth 6.4x4GB/s
tile eDRAM size/tile 2MB Link latency 80ns

Table III: Architecture characteristics.

The architecture characteristics are summarized in Table

III. We have implemented 16 tiles per node. In each tile, each

of the 4 eDRAM banks contains 1024 rows of 4096 bits. The

total eDRAM capacity in one tile is thus 4×1024×4096 =
2MB. The central eDRAM in each node has a size of 4MB.

The total node eDRAM capacity is thus 16×2+4 = 36MB.
In order to avoid the circuit and time overhead of asyn-

chronous transfers, we decided to clock the NFU at the same

frequency as the eDRAM available in the 28nm technology

we used, i.e., 606MHz. Note that the NFU implemented by

Chen et al. [5] was clocked at 0.98GHz at 65nm, so our

decision is very conservative considering we use a 28nm

technology. We leave the implementation of a faster NFU

and asynchronous communications with eDRAM for future

work. Nonetheless, a node still has a peak performance of

16×(288+288)×606 = 5.58 TeraOps/s for 16-bit operation.
For 32-bit operation, the peak performance of a node is

16 × (144 + 72) × 606 = 2.09 TeraOps/s due to operator
aggregation, see Section V-B3.

CP central eDRAM SB NBin NBout NFU

In
st
N
am
e

R
E
A
D
O
P

W
R
IT
E
O
P

R
E
A
D
A
D
D
R

W
R
IT
E
A
D
D
R

R
E
A
D
S
T
R
ID
E

W
R
IT
E
S
T
R
ID
E

R
E
A
D
IT
E
R

W
R
IT
E
IT
E
R

R
E
A
D
O
P

W
R
IT
E
O
P

A
D
D
R

S
T
R
ID
E

R
E
A
D
O
P

W
R
IT
E
O
P

A
D
D
R

S
T
R
ID
E

R
E
A
D
O
P

W
R
IT
E
O
P

A
D
D
R

S
T
R
ID
E

N
F
U
-1

O
P

N
F
U
-2

O
P

N
F
U
-3

O
P

N
F
U
-2
-I
N

N
F
U
-2
-O
U
T

Table IV: Node instruction format.
CP central eDRAM SB NBin NBout NFU

C
la
ss

L
O
A
D

W
R
IT
E

0

2
5
6

0 4 6
4 4

R
E
A
D

N
U
L
L

0 1

R
E
A
D

N
U
L
L

0 1

N
U
L
L

W
R
IT
E

0 1

M
U
L

A
D
D

N
U
L
L

0 1

C
la
ss

L
O
A
D

W
R
IT
E

6
4

2
5
6

0 4 6
4 4

R
E
A
D

N
U
L
L

2
5
6

1

R
E
A
D

N
U
L
L

0 1

R
E
A
D

W
R
IT
E

0 1

M
U
L

A
D
D

N
U
L
L

1 1

C
la
ss

L
O
A
D

W
R
IT
E

1
2
8

2
5
6

0 4 6
4 4

R
E
A
D

N
U
L
L

5
1
2

1

R
E
A
D

N
U
L
L

0 1

R
E
A
D

W
R
IT
E

0 1

M
U
L

A
D
D

N
U
L
L

1 1

C
la
ss

L
O
A
D

S
T
O
R
E

1
9
2

2
5
6

0 4 6
4 4

R
E
A
D

N
U
L
L

7
6
8

1

R
E
A
D

N
U
L
L

0 1

R
E
A
D

W
R
IT
E

0 1

M
U
L

A
D
D

S
IG
M
O
ID

1 0

Table V: An example of classifier code (Ni = 4096, No =
4096, 4 nodes).

E. Programming, Code Generation and Multi-Node Map-
ping

1) Programming, Control and Code Generation:
This architecture can be viewed as a system ASIC, so

the programming requirements are low, the architecture

essentially has to be configured and the input data is fed

in. The input data (values of the input layer) is initially

partitioned across nodes and stored in a central eDRAM

bank. The neural network configuration is implemented in

the form of a sequence of node instructions, one sequence
per node, produced by a code generator. An example output

of the code generator for the inference phase of the CLASS2

layer is shown in Table V.

In this example, output neurons are partitioned into multi-

ple 256-bit data blocks, where each block contains 256/16 =
16 neurons. Each node is allocated 4096/16/4 = 64 output
data blocks (and it stores a quarter of all input neurons,

i.e., 4096/4 = 1024), and each tile is allocated 64/16 = 4
output data blocks, resulting in 4 instructions per node. An

instruction will load 128 input data blocks from the central

eDRAM to the tiles. In the first three instructions, all the tiles

will get the same input neurons, and read synaptic weights

from their local (tile) eDRAM, then write back the partial

sums (of output neurons) to their local NBout SRAM. In the

last instruction, the NFU in each tile will finalize the sums,

apply the transfer function, and store the output values back

to the central eDRAM.

These node instructions themselves drive the control of

each tile; the control circuit of each node generates tile

instructions and sends them to each tile. The spirit of a node

or tile instruction is to perform the same layer computations

(e.g., multiply-add-transf for classifier layers) on a set of

contiguous input data (input neurons in the forward phase,
output neurons, gradients or synapses in the backward

phase). The fact the data of one instruction is contiguous

allows to characterize it with only three operands: start

address, step and number of iterations.

The control provides two modes of operations: processing

one row at a time or batch learning [48], where multiple

616616

Figure 8: Mapping of (left) a convolutional (or pooling) layer with
4 feature maps; the red section indicates the input neurons used
by node 0; (right) a classifier layer.

rows are processed at the same time, i.e., multiple instances

of the same layer are evaluated simultaneously, albeit for

different input data. This method is commonly used in

machine-learning for a more stable gradient descent, and

it also has the benefit of improving synapses reuse, at the

cost of slower convergence and a larger memory capacity

(since multiple instances of inputs/outputs must be stored).

2) Multi-Node Mapping: At the end of a layer, each node
contains a set of output neurons values, which have been

stored back in the central eDRAM, see Figure 5. These

output neurons form the input neurons of the next layer;

so, implicitly, at the beginning of a layer, the input neurons

are distributed across all nodes, in the form of 3D rectangles

corresponding to all feature maps of a subset of a layer, see

Figure 8. These input neurons will be first distributed to all

node tiles through the (fat tree) internal network, see Figure

5. Simultaneously, the node control starts to send the block

of input neurons to the rest of the nodes through the mesh.

With respect to communications, there are three main

layer cases to consider. First, convolutional and pooling

layers are characterized by local connectivity defined by

the small window (convolutional or pooling kernel) used

to sample the input neurons. Due to the local connectivity,

the amount of inter-node communications is very low (most

communications are intra-node), mostly occurring at the

border of the layer rectangle mapped to each node, see

Figure 8.

For local response normalization layers, since all feature

maps at a given location are always mapped to the same

node, there is no inter-node communication.

Finally, communications can be high for classifier layers

because each output neuron uses all input neurons, see

Figure 8. At the same time, the communication pattern is

simple, equivalent to a broadcast. Since each node performs

roughly the same amount of computations at the same speed,

and since each node must simultaneously broadcast its set of

input neurons to all other nodes, we adopt a computing-and-

forwarding communication scheme [24], which is equivalent

to arranging the nodes communications according to a

regular ring pattern. A node can start processing the newly

arrived block of input neurons as soon as it has finished its

own computations, and has sent the previous block of input

neurons; so the decision is made locally, there is no global

synchronization or barrier.

VI. METHODOLOGY

A. Measurements

Our experiments use the following three tools.

CAD tools. We implemented a Verilog version of the
node, then synthesized it, and did the layout. The area,

energy and critical path delays are obtained after layout

using the ST 28nm Low Power (LP) technology (0.9V). We

used the Synopsys Design Compiler for the synthesis, ICC

Compiler for the layout, and the power consumption was

estimated using Synopsys PrimeTime PX.

Time, eDRAM and inter-node measurements. We use
VCS to simulate the node RTL, an eDRAM model which

includes destructive reads, and periodic refresh of a banked

eDRAM running at 606MHz (the eDRAM energy was

collected using CACTI5.3 [1] after integrating the 1T1C

cell characteristics at 28nm [25]), and inter-node commu-

nications were simulated using the cycle-level Booksim2.0

interconnection network simulator [10] (Orion2.0 [29] for

the network energy model).

GPU. We use the NVIDIA K20M GPU of Section III as

a baseline. The GPU can also report its power usage. We

use CUDA SDK 5.5 to compile the CUDA version of neural

network codes.

B. Baseline

In order to maximize the quality of our baseline, we

extracted the CUDA versions from a tuned open-source ver-

sion, CUDA Convnet [31]. In order to assess the quality of

this baseline, we have compared it against the C++ version

run on the Intel SIMD CPU, see Section III. For the C++

version, we have first compared the SIMD version against a

non-SIMD version (SIMD compilation deactivated), and we

have observed an average speedup of the SIMD version of

4.07x, confirming that the compiler was effectively taking

advantage of the SIMD unit. As mentioned in Section III, the

CUDA/GPU over the C++/CPU (SIMD) speedups reported

in Figure 2 are in line with some of the best reported results

so far, by Ciresan et al. [7] (10x to 60x).

VII. EXPERIMENTAL RESULTS

We first present the main characteristics of the node

layout, then present the performance and energy results of

the multi-chip system.

A. Main Characteristics

The cell-based layout of the chip is shown in Figure 9,

and the area breakdown in Table VI. 44.53% of the chip

area is used by the 16 tiles, 26.02% by the four HT IPs,

11.66% by the central block (including 4MB eDRAM, router

and control logic). The wires between the central block and

the tiles occupy 8.97% of the area. Overall, about a half

(47.55%) of the chip is consumed by memory cells (mostly

617617

Tile0 Tile1

Tile2 Tile3

· ·

· ·

Tile4 Tile5

Tile6 Tile7

-96.3 ·

-96.3 ·

Tile8 Tile9

Tile10 Tile11

· ·

· ·

Tile12 Tile13

Tile14 Tile15

-96.3 ·

-96.3 ·

HT0 PHY
HT0

Controller

HT3
Controller

HT3 PHY

HT2
Controller

H
T2

 P
H

Y

HT1 PHY

HT1
Controller

Central Block

Figure 9: Snapshot of the node layout.

Component/Block Area (μm2) (%) Power (W) (%)
WHOLE CHIP 67,732,900 15.97

Central Block 7,898,081 (11.66%) 1.80 (11.27%)
Tiles 30,161,968 (44.53%) 6.15 (38.53%)
HTs 17,620,440 (26.02%) 8.01 (50.14%)
Wires 6,078,608 (8.97%) 0.01 (0.06%)
Other 5,973,803 (8.82%)

Combinational 3,979,345 (5.88%) 6.06 (37.97%)
Memory 32207390 (47.55%) 6.12 (38.30%)
Registers 3,348,677 (4.94%) 3.07 (19.25%)
Clock network 586323 (0.87%) 0.71 (4.48%)
Filler cell 27,611,165 (40.76%)

Table VI: Node layout characteristics.

eDRAM). The combinational logic and register only account

for 5.88% and 4.94% of the area respectively.

We used Synopsys PrimePower to estimate the power

consumption of the chip. The peak power consumption is

15.97 W (at a pessimistic 100% toggle rate), i.e., roughly 5-

10% of a state-of-the-art GPU card. The architecture block

breakdown shows that the tiles consume more than one third

(38.53%) of the power, and the four HT IPs consume about

one half (50.14%). The component breakdown shows that,

overall, memory cells (tile eDRAMs + central eDRAM)

account for 38.30% of the total power, combinational logic

and registers (mostly NFUs and HT protocol analyzers)

consume 37.97% and 19.25% respectively.

B. Performance

In Figure 10, we compare the performance of our ar-

chitecture against the GPU baseline described in Section

VI. Because of its large memory footprint (numbers of

neurons and synapses), CONV1 needs a 4-node system.

Even though CONV1 is a shared-kernel convolutional layer,

it contains 256 input feature maps, 384 output feature

maps and 11 × 11 kernels, so that the total number of

synapses is 256× 384× 11× 11 = 11, 894, 784, i.e., 22.69
MB (16-bit data). We must also store all layer inputs and

outputs, i.e., respectively 256 × 256 × 256 × 2 = 32MB,
246×246× 384× 2 = 44.32MB (fewer output neurons due
to a border effect since the kernel is 11 × 11). So, overall,
99.01MB must be stored, which exceeds the node capacity

of 36MB. The convolutional layers with private kernels, i.e.,

1

10

100

1000

1chip 4chips 16chips 64chips

Figure 10: Speedup w.r.t. the GPU baseline (inference). Note that
CONV1 and the full NN need a 4-node system, while CONV3* and
CONV4* even need a 36-node system.

CONV3* and CONV4*, need a 36-node system because

their size is respectively 1.29 GB and 1.32 GB. The full

NN contains 59.48M synapses, i.e., 118.96MB (16-bit data),

requiring at least 4 nodes.

On average, the 1-node, 4-node, 16-node and 64-node

architectures are respectively 21.38x, 79.81x, 216.72x, and

450.65x faster than the GPU baseline. 1 The first reason for

the higher performance is the large number of operators:

in each node, there are 9216 operators (mostly multipliers

and adders), compared to the 2496 MACs of the GPU.

The second reason is that the on-chip eDRAM provides the

necessary bandwidth and low-latency access to feed these

many operators.

Nevertheless, the scalability of the different layers varies a

lot. LRN layers scale the best (no inter-node communication)

with a speedup of up to 1340.77x for 64 nodes (LRN2),

CONV and POOL layers scale almost as well because they

only have inter-node communications on border elements,

e.g., CONV1 achieves a speedup of 2595.23x for 64 nodes,

but the actual speedup of LRN and POOL layers is lower

than CONV layers because they are less computationally

intensive. On the other hand, CLASS layers scale less well

because of the high amount of inter-node communication-

s, since each output neuron uses all input neurons from

different nodes, see Section V-E2, e.g., CLASS1 has a

speedup of 72.96x for 64 nodes. This is further illustrated

in the time breakdown of Figure 11. Note that each bar

is normalized to the total execution time, but due to the

overlap of computation and communication, the cumulated

bars can exceed 100%. This communication issue is mostly

due to our relatively simple 2D mesh topology where the

larger the number of nodes, the longer the time required

to send each block of inputs to all nodes. It is likely that

a more sophisticated multi-dimensional torus topology [4]

can largely reduce the total broadcast time as the number

of nodes increases, but we leave this optimization for future

work.

1Considering that the area of K20M GPU is about 550 mm2, and our
node is only 67.7mm2, our design also has a high area-normalized speedup
with respect to GPU (21.38∗550/67.7 = 173.69x for 1-node and 450.65∗
550/(64 ∗ 67.7) = 57.20x for 64-node).

618618

0%

35%

70%

105%

140%

CLASS CONV full�NN Gmean

Communication Computation

0%

20%

40%

60%

80%

100%

CLASS CONV POOL LRN full�NN Gmean

NFU eDRAM Router HT

Figure 11: Time breakdown (left) for 4, 16 and 64 nodes, (right)
breakdown for 1, 4, 16, 64 nodes; CLASS, CONV, POOL, LRN
stand for the geometric means of all layers of the corresponding
type, Gmean for the global geometric mean.

1

10

100

1000
1chip 4chips 16chips 64chips

Figure 12: Speedup w.r.t. the GPU baseline (training).

Finally, we note that the full NN scales similarly to

CLASS layers (63.35x, 116.85x, 164.80x for 4-node, 16-

node, 64-node respectively). While it may suggest that

CLASS layers dominate the full NN execution time, a

breakdown by layer type, see Table VII, shows that it is

not the case, on the contrary, CONV layers largely dominate.

The reason is simply that this full NN contains layers which

are a bit small for a large 64-node machine. For instance,

there are three CONV layers with a dimension of 13x13

(though 256 to 384 feature maps), so, even though all feature

maps are mapped to the same node, we need to attribute

an X × Y area of size 2 × 2 or 3 × 3 at most per node
(13×13

64 = 2.69) which means that either we do not use all
nodes, or inter-node communications are required for every

kernel computation.

CONV LRN POOL CLASS
4-node 96.63% 0.60% 0.47% 2.31%
16-node 96.87% 0.28% 0.22% 2.63%
64-node 92.25% 0.10% 0.08% 7.57%

Table VII: Full NN execution time breakdown per layer type.

Training and initialization. We carry out similar exper-
iments for back propagation, and the weights pre-training

phase (RBM) using 32-bit fixed point operators (while

inference uses 16-bit fixed-point operators), see Section

V-B3. On average, the 1-node, 4-node, 16-node and 64-

node architectures are respectively 12.62x, 43.23x, 126.66x

and 300.04x faster than the GPU baseline; the speedups are

high though lower than for inference essentially because of

operators aggregation. As shown in Figure 12, for CLASS

1

10

100

1000 1chip 4chips 16chips 64chips

Figure 13: Energy reduction w.r.t. the GPU baseline (inference).

1

10

100

1000
1chip 4chips 16chips 64chips

Figure 14: Energy reduction w.r.t. the GPU baseline (training).

layers, the scalability of the training phase is better than

that of the inference phase, mainly thanks to CLASS layers

which have almost double the amount of computations w.r.t.

inference, for the same amount of communications. The

scalability of RBM initializations is fairly similar to that

of CLASS layers in the inference phase.

C. Energy Consumption

As shown in Figure 13, the 1-node, 4-node, 16-node and

64-node architectures can reduce the energy by 330.56x,

323.74x, 276.04x, and 150.31x respectively compared to

the GPU baseline. The minimum energy improvement is

47.66x for CLASS1 with 64 nodes, while the best ener-

gy improvement is 896.58x, achieved with CONV2 on a

single node. For convolutional, pooling, and LRN layers,

we observe that the energy benefit remains relatively stable

as the number of nodes is scaled up, though it degrades

for classifier layers. The latter is expected as the average

communication (and thus overall execution) time increases;

again, a multi-dimensional torus should help reduce this

energy loss.

In the energy breakdown of Figure 11, we can observe

that, for the 1-node architecture, about 83.89% of the energy

is consumed by the NFU. As we scale up the number of

nodes, the trend largely corroborates previous observations:

the ratio of energy spent in HT progressively increases to

29.32% on average for a 64-node system, especially due

to the larger number of communications in classifier layers

(48.11%).

Training and initialization. For training and initializa-
tion, the energy reduction of our architecture with respect to

the GPU baseline on training is also high: 172.39x, 180.42x,

619619

142.59x, and 66.94x for the 1-node, 4-node, 16-node and 64-

node architectures, see Figure 14. The scalability behavior

is similar to that of the inference phase.

VIII. RELATED WORK

Machine-Learning. Convolutional and Deep Neural Net-
works have become popular algorithms in data center based

services: they are used for web search [27], image analysis

[41], speech recognition [9], etc. Such services are computa-

tionally intensive, and considering the energy and operating

costs of data centers, custom architectures could help from

both a performance and energy perspective. But web services

are only the most visible applications. CNNs are being used

for handwritten digits recognition [28] with applications

in banking and post-offices, Dahl et al. [9] have recently

won a pharmaceutical contest using DNN algorithms. More

generally, such algorithms might take a central role in the

so-called big data application domain. While CNNs and

DNNs keep evolving, we note for instance that the first

CNN design [35] still achieves very good results compared

to the latest instantiations on benchmarks such as the MNIST

handwritten digits [35], with a recognition accuracy of 1.7%

(1998) versus 0.23% for the best algorithm by Ciresan et al.

[6] (2012).

So, even though there is an inherent risk in freezing

algorithms in hardware, (1) hardware can rapidly evolve with

machine-learning progress, much like it currently (and rapid-

ly) evolves with technology progress, (2) what machine-

learning researchers rightfully view as significant accuracy

progress from their perspective (e.g., improving accuracy

by 1 or 2% can be very difficult) may not be so significant

from an end-user perspective, so that hardware needs not

implement and follow each and every evolution, (3) end

users are already accustomed to the notion of software

libraries, and they can always choose between a rigid but

very fast “hardware library” and a slow but more flexible

CPU/GPU implementation.

Custom accelerators. Due to the end of Dennard scaling
and the notion of Dark Silicon [42], [15], architecture

customization is increasingly viewed as one of the most

promising paths forward. So far, the emphasis has been

especially on custom accelerators, i.e., custom tiles within

a heterogeneous multi-cores. Accelerators for video com-

pression [21], image convolutions [44], libraries or specific

workloads [49], [17] have been proposed.

Closer to the target algorithms of this paper, a number

of studies have recently advocated the notion of neural

network accelerators, either to approximate any function of a

program [16], for signal-processing tasks [2] or specifically

for machine-learning tasks [22], [23], [47], [5].

Large-Scale custom architectures. There are few ex-

amples of custom architectures targeting large-scale neural

networks. The closest examples are the following. Schemmel

et al. [46] propose a wafer-scale design capable of imple-

menting thousands of neurons and millions of synapses.

Khan et al. [30] propose the SpiNNaker system, which

is a multi-chip supercomputer where each node contains

20+ ARM9 cores linked by an asynchronous network;

the planned target is a million-core machine capable of

modeling a billion neurons. Finally, the IBM Cognitive

Chip [39] is a functional chip capable of implementing 256

neurons and 256K synapses in 4mm2 at 45nm. However,

the common point between these different architectures is

that their goal is the emulation of biological neurons, not
machine-learning tasks, even though some of them have

demonstrated machine-learning capabilities on simple tasks.

Moreover, the neurons they implement are inspired from

biology, i.e., spiking neurons, they do not implement the

CNNs and DNNs which are the focus of our architecture.

Majumdar et al. [37] investigate a parallel architecture for

various machine-learning algorithms, including, but not only,

neural networks; unlike our architecture, they have an off-

chip banked memory, and they introduce memory banks

close to PEs (similar to those found in GPUs) for caching

purposes. Finally, beyond neural networks and machine-

learning tasks, other large-scale custom architectures have

been proposed, such as the recently proposed Anton [12],

for molecular dynamics simulation.

IX. CONCLUSIONS AND FUTURE WORK

In this article, we investigate a custom multi-chip architec-

ture for state-of-the-art machine-learning algorithms (CNNs

and DNNs), motivated by the increasingly central role of

such algorithms in large-scale deployments of sophisticated

services for consumers and industry. On both GPUs and

recently proposed accelerators, such algorithms exhibit good

speedups and area savings respectively, but they remain

largely bandwidth-limited. We show that it is possible to

design a multi-chip architecture which can outperform a

single GPU by up to 450.65x and reduce energy by up to

150.31x using 64 nodes. Each node has an area of 67.73mm2

at 28nm.

We plan to improve this architecture along several direc-

tions: increasing the clock frequency of the NFU, multi-

dimensional torus interconnects to improve the scalability

of large classifier layers, investigating more flexible control

in the form of a simple VLIW core per node and the

associated toolchain. A tape-out of a node chip is planned

soon, followed by a multi-node prototype.

ACKNOWLEDGMENTS

This work is partially supported by the NSF of China

(under Grants 61100163, 61133004, 61222204, 61221062,

61303158, 61432016, 61472396, 61473275), the 863 Pro-

gram of China (under Grant 2012AA012202), the 973

Program of China (under Grant 2011CB302500), the Strate-

gic Priority Research Program of the CAS (under Grant

620620

XDA06010403), the International Collaboration Key Pro-

gram of the CAS (under Grant 171111KYSB20130002),

a Google Faculty Research Award, the Intel Collaborative

Research Institute for Computational Intelligence (ICRI-CI),

the 10,000 talent program, and the 1,000 talent program.

REFERENCES

[1] Cacti 5.3, http://quid.hpl.hp.com:9081/cacti/.

[2] B. Belhadj, A. Joubert, Z. Li, R. Heliot, and O. Temam.
Continuous Real-World Inputs Can Open Up Alternative Ac-
celerator Designs. In International Symposium on Computer
Architecture, 2013.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
benchmark suite: Characterization and architectural implica-
tions. In International Conference on Parallel Architectures
and Compilation Techniques, New York, New York, USA,
2008. ACM Press.

[4] D. Chen, N. Eisley, P. Heidelberger, R. Senger, Y. Sugawara,
S. Kumar, V. Salapura, D. Satterfield, B. Steinmacher-Burow,
and J. Parker. The ibm blue gene/q interconnection fabric. In
IEEE Micro, 2012.

[5] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and
O. Temam. DianNao: A Small-Footprint High-Throughput
Accelerator for Ubiquitous Machine-Learning. In Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, 2014.

[6] D. Cirean, U. Meier, and J. Schmidhuber. Multi-column Deep
Neural Networks for Image Classification. In International
Conference of Pattern Recognition, pages 3642–3649, 2012.

[7] D. Ciresan, U. Meier, and J. Masci. Flexible, high perfor-
mance convolutional neural networks for image classifica-
tion. International Joint Conference on Artificial Intelligence,
pages 1237–1242, 2011.

[8] A. Coates, B. Huval, T. Wang, D. J. Wu, and A. Y. Ng. Deep
learning with cots hpc systems. In International Conference
on Machine Learning, 2013.

[9] G. Dahl, T. Sainath, and G. Hinton. Improving Deep Neu-
ral Networks for LVCSR using Rectified Linear Units and
Dropout. In International Conference on Acoustics, Speech
and Signal Processing, 2013.

[10] W. Dally and B. Towles. Principles and Practices of Inter-
connection Networks. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2003.

[11] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin,
Q. V. Le, M. Z. Mao, M. Ranzato, A. Senior, P. Tucker,
K. Yang, and A. Y. Ng. Large scale distributed deep networks.
In Annual Conference on Neural Information Processing
Systems (NIPS), 2012.

[12] M. M. Deneroff, D. E. Shaw, R. O. Dror, J. S. Kuskin, R. H.
Larson, J. K. Salmon, and C. Young. A specialized asic for
molecular dynamics. In Hot Chips, 2008.

[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. ImageNet: A large-scale hierarchical image database.
In Conference on Computer Vision and Pattern Recognition,
2009.

[14] P. Dubey. Recognition, Mining and Synthesis Moves Comput-
ers to the Era of Tera. Technology@Intel Magazine, 9(2):1–
10, 2005.

[15] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam,
and D. Burger. Dark Silicon and the End of Multicore
Scaling. In Proceedings of the 38th International Symposium
on Computer Architecture (ISCA), June 2011.

[16] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neu-
ral Acceleration for General-Purpose Approximate Programs.
In International Symposium on Microarchitecture, number 3,
pages 1–6, 2012.

[17] K. Fan, M. Kudlur, G. S. Dasika, and S. A. Mahlke. Bridging
the computation gap between programmable processors and
hardwired accelerators. In HPCA, pages 313–322. IEEE
Computer Society, 2009.

[18] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello,
and Y. LeCun. NeuFlow: A runtime reconfigurable dataflow
processor for vision. In CVPR Workshop, pages 109–116.
Ieee, June 2011.

[19] D. A. Ferrucci. Introduction to ”This is Watson”. IBM Journal
of Research and Development, 56:1:1–1:15, 2012.

[20] R. Hadsell, P. Sermanet, J. Ben, A. Erkan, M. Scoffier,
K. Kavukcuoglu, U. Muller, and Y. LeCun. Learning long-
range vision for autonomous off-road driving. Journal of
Field Robotics, 26:120–144, 2009.

[21] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solo-
matnikov, B. C. Lee, S. Richardson, C. Kozyrakis, and
M. Horowitz. Understanding sources of inefficiency in
general-purpose chips. In International Symposium on Com-
puter Architecture, page 37, New York, New York, USA,
2010. ACM Press.

[22] A. Hashmi, H. Berry, O. Temam, and M. Lipasti. Automatic
Abstraction and Fault Tolerance in Cortical Microachitec-
tures. In International Symposium on Computer architecture,
New York, NY, 2011. ACM.

[23] A. Hashmi, A. Nere, J. J. Thomas, and M. Lipasti. A
case for neuromorphic ISAs. In International Conference
on Architectural Support for Programming Languages and
Operating Systems, New York, NY, 2011. ACM.

[24] S.-N. Hong and G. Caire. Compute-and-forward strategies
for cooperative distributed antenna systems. In IEEE Trans-
actions on Information Theory, 2013.

[25] K. Huang, Y. Ting, C. Chang, K. Tu, K. Tzeng, H. Chu,
C. Pai, A. Katoch, W. Kuo, K. Chen, T. Hsieh, C. Tsai,
W. Chiang, H. Lee, A. Achyuthan, C. Chen, H. Chin,
M. Wang, C. Wang, C. Tsai, C. Oconnell, S. Natarajan,
S. Wuu, I. Wang, H. Hwang, and L. Tran. A high-
performance, high-density 28nm edram technology with high-
k/metal-gate. In IEEE International Electron Devices Meeting
(IEDM), 2011.

[26] L. Huang, S. Ma, L. Shen, Z. Wang, and N. Xiao. Low-
cost binary128 floating-point FMA unit design with SIMD
support. IEEE Transactions on Computers, 61:745–751,
2012.

[27] P. Huang, X. He, J. Gao, and L. Deng. Learning deep struc-
tured semantic models for web search using clickthrough data.
In International Conference on Information and Knowledge
Management, 2013.

621621

[28] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What
is the best multi-stage architecture for object recognition?
In Computer Vision, 2009 . . . , pages 2146–2153. Ieee, Sept.
2009.

[29] A. Kahng, B. Li, L.-S. Peh, and K. Samadi. Orion 2.0: A
power-area simulator for interconnection networks. In IEEE
Transactions on Very Large Scale Integration Systems, 2012.

[30] M. M. Khan, D. R. Lester, L. A. Plana, A. Rast, X. Jin,
E. Painkras, and S. B. Furber. SpiNNaker: Mapping neural
networks onto a massively-parallel chip multiprocessor. In
IEEE International Joint Conference on Neural Networks
(IJCNN), pages 2849–2856. Ieee, 2008.

[31] A. Krizhevsky. https://code.google.com/p/cuda-convnet/.

[32] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classifi-
cation with deep convolutional neural networks. In Advances
in Neural Information Processing Systems, pages 1–9, 2012.

[33] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and
Y. Bengio. An empirical evaluation of deep architectures
on problems with many factors of variation. In International
Conference on Machine Learning, pages 473–480, New York,
New York, USA, 2007. ACM Press.

[34] Q. V. Le, M. A. Ranzato, R. Monga, M. Devin, K. Chen, G. S.
Corrado, J. Dean, and A. Y. Ng. Building High-level Features
Using Large Scale Unsupervised Learning. In International
Conference on Machine Learning, June 2012.

[35] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceedings
of the IEEE, 86, 1998.

[36] N. Maeda, S. Komatsu, M. Morimoto, and Y. Shimazaki.
A 0.41μa standby leakage 32kb embedded sram with low-
voltage resume-standby utilizing all digital current compara-
tor in 28nm hkmg cmos. In International Symposium on VLSI
Circuits (VLSIC), 2012.

[37] A. Majumdar, S. Cadambi, M. Becchi, S. T. Chakradhar,
and H. P. Graf. A Massively Parallel, Energy Efficient
Programmable Accelerator for Learning and Classification.
ACM Transactions on Architecture and Code Optimization,
9(1):1–30, Mar. 2012.

[38] R. E. Matick and S. E. Schuster. Logic-based eDRAM:
Origins and rationale for use. IBM Journal of Research and
Development, 49(1):145–165, Jan. 2005.

[39] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar,
and D. Modha. A digital neurosynaptic core using embedded
crossbar memory with 45pJ per spike in 45nm. In IEEE
Custom Integrated Circuits Conference, pages 1–4. IEEE,
Sept. 2011.

[40] Micron. Ddr3 sdram rdimm datasheet,
http://www.micron.com//̃med ia/documents/products/da-
ta%20sheet/modules/parity rdimm/jsf18c1 gx72pdz.pdf.

[41] V. Mnih and G. Hinton. Learning to Label Aerial Images
from Noisy Data. In Proceedings of the 29th International
Conference on Machine Learning (ICML-12), pages 567–574,
2012.

[42] M. Muller. Dark Silicon and the Internet. In EE Times
”Designing with ARM” virtual conference, 2010.

[43] NVIDIA. Tesla K20X GPU Accelerator Board Specification.
Technical Report November, 2012.

[44] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan,
C. Kozyrakis, and M. A. Horowitz. Convolution engine:
balancing efficiency & flexibility in specialized computing.
In International Symposium on Computer Architecture, 2013.

[45] R. Salakhutdinov and G. Hinton. An Efficient Learning Pro-
cedure for Deep Boltzmann Machines. Neural Computation,
2006:1967–2006, 2012.

[46] J. Schemmel, J. Fieres, and K. Meier. Wafer-scale integration
of analog neural networks. In International Joint Conference
on Neural Networks, pages 431–438. Ieee, June 2008.

[47] O. Temam. A Defect-Tolerant Accelerator for Emerging
High-Performance Applications. In International Symposium
on Computer Architecture, Portland, Oregon, 2012.

[48] V. Vanhoucke, A. Senior, and M. Z. Mao. Improving the
speed of neural networks on CPUs. In Deep Learning and
Unsupervised Feature Learning Workshop, NIPS 2011, 2011.

[49] G. Venkatesh, J. Sampson, N. Goulding-hotta, S. K. Venkata,
M. B. Taylor, and S. Swanson. QsCORES : Trading Dark
Silicon for Scalable Energy Efficiency with Quasi-Specific
Cores Categories and Subject Descriptors. In International
Symposium on Microarchitecture, 2011.

[50] G. Wang, D. Anand, N. Butt, A. Cestero, M. Chudzik,
J. Ervin, S. Fang, G. Freeman, H. Ho, B. Khan, B. Kim,
W. Kong, R. Krishnan, S. Krishnan, O. Kwon, J. Liu, K. M-
cStay, E. Nelson, K. Nummy, P. Parries, J. Sim, R. Takalkar,
A. Tessier, R. Todi, R. Malik, S. Stiffler, and S. Iyer. Scaling
deep trench based edram on soi to 32nm and beyond. In
IEEE International Electron Devices Meeting (IEDM), 2009.

622622

