
High Performance
Computing 2015
J I A N G U O

TO K YO I N S T I T U T E O F T E C H N O LO GY

D E P T. O F M AT H E M AT I C A L A N D CO M P U T I N G S C I E N C E S

M AT S U O K A L A B .

Reviewed Paper
Title: FireCaffe: near-linear acceleration of deep

neural network training on compute clusters

Authors: Forrest N. Iandola, Khalid Ashraf, Mattthew W. Moskewicz, Kurt Keutzer

DeepScale and UC Berkeley

[http://arxiv.org/abs/1511.00175]

Abstract
FireCaffe, which successfully scales deep neural network training
across a cluster of GPUs.
• Reduce communication overhead
• while not degrading the accuracy of the DNN models

Three key pillars
• Network hardware that achieves high bandwidth between GPU servers – Infiniband or Cray

interconnects
• Present a communication algorithm named reduction trees, which is more efficient and scalable than

the traditional way
• Optionally increase the batch size to reduce the total quantity of communication during DNN training,

and we identify hyperparameters that allow us to reproduce the small-batch accuracy while training
with large batch sizes.

Outline
1. Introduction and Motivation

2. Accelerating DNN Research and Development

3. Preliminaries, terminology and parallelism strategies

4. Choosing DNN architectures to accelerate

5. Methodology

6. Evaluation and Results

7. Conclusions

My Impression

Introduction and Motivation
A variety of new deep neural network (DNN) architectures such as GoogleNet [1], Network-in-
Network [2], VGG [3] and AlexNet [4] have been developed at a rapid pace for improvements in
accuracy.
What is the bottleneck in developing of new architectures?

All of which operate near the theoretical peak computation per second achievable GPUs in
single node.

“Training time is a key challenge at the root of the development of new DNN architectures.” –
by Jeffrey Dean of Google in his keynote address at the 23rd International Conference on
Information and Knowledge Management. [5]

[1]C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. arXiv:1409.4842, 2014.
[2] M. Lin, Q. Chen, and S. Yan. Network in network. arXiv:1312.4400, 2013.
[3] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, 2014.
[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. In NIPS, 2012.
[5] J. Dean. Keynote: Large scale deep learning. In ACM Conference on Information and Knowledge Management (CIKM), 2014.

Why we need to accelerate DNN Research and
Development
Due to long training times, these companies are facing serious delays in bringing DNN-based
solutions to market.

Faster DNN training would enable this and other reinforcement learning applications to move
toward real-time.

Contributions of this Paper
Presented FireCaffe--Scaling deep neural network training across a cluster of GPUs

DNN training across a cluster of 32 GPUs with speedups of more than 20x compared to a single
GPU.

Scaling up DNN training by the philosophy to balance computation and communication.

A number of hardware and software design choices to lower communication time.

Preliminaries and terminology
Deep neural network is comprised of iterating between two phases:

• Forward phase: a batch of data items (e.g. images) is taken from the training set, and the DNN attempts
to classify them.

• backward phase: which consists of computing gradients with respect to the weights (𝛻𝛻𝑊𝑊) and gradients
with respect to the data (𝛻𝛻𝐷𝐷)

Preliminaries and terminology
Equation1 shows total size (in bytes) of the weights in all convolutional and fully-connected
layers

ch is the number of channels, numFilt is the number of filters, filterH is the filter height, and
filterW is the filter width.

Equation2 presents the size of activations produced by all layers, activationH is the activation
map height, activationW is the activation width, and batch is the batch size

(1)

(2)

floating-point number is 4 bytes

Parallelism strategies
Data parallelism: worker (e.g. GPU) gets a subset of the batch, workers communicate by
exchanging weight gradient updates 𝛻𝛻𝑊𝑊

Model parallelism: worker gets a subset of the model parameters, workers communicate by
exchanging data gradients 𝛻𝛻𝐷𝐷 and exchanging activations D.

Parallelism strategies
Most DNN models are consist primarily of convolution layers.

For convolutional models, data parallelism is typically preferable because it requires less
communication , 𝛻𝛻𝑊𝑊 is much smaller than 𝛻𝛻𝐷𝐷 at typical batch sizes (1024).

Parallelism strategies
Each worker (GPU) gets a subset of each batch (32 x 32 = 1024).

Misprinting 1

Choosing DNN architectures to accelerate
DNN models with more parameters would have higher classification accuracy?

Methodology of data parallel training
No communication among GPU workers in the forward pass.

Distributing the backward pass over a compute cluster, each GPU worker computes a sum of
the weight gradients (∑𝛻𝛻𝑊𝑊) for its subset of the batch.

Summing the weight gradients for a batch across GPUs.

Results are as same as using a single GPU.

Parameter servers or Reduction trees.

Methodology 1: Parameter server
1. Appointing one node as a parameter server.

2. Rest nodes are assigned a subset of the batch to perform
forward pass and backward pass.

3. The parameter server computes the sum of the gradients.

4. The parameter server sends the summed gradients to the
workers, and the workers apply these gradient updates to their
local copies of the model.

Methodology 1: Parameter server
Each GPU worker provides 𝑊𝑊 = 𝛻𝛻𝑊𝑊 bytes weight gradients
(Equation 1)

p GPU workers.

 𝛻𝛻𝑊𝑊 * p bytes of data(the parameter server).

Send and receive data at a rate of BW bytes/s.

(3)

The parameter server’s communication time scales linearly as increasing the number
of GPU workers

Methodology 2: Reduction tree
Allreduce: Reduce followed by an Bcast.

Binomial reduction tree is easy to make the operation scales in the
log of the number of workers p.

Difference between Parameter server and Reduction tree

Height: 1
branching factor: p

Height: log2(p)
branching factor: 2

(4)

Difference between Parameter server and Reduction tree

Misprinting 2?

(3) (4)

Evaluation: Hardware and Data set
ImageNet-1k

• more than 1 million training images
• each image is labeled as containing 1 of 1000 object categories

GoogLeNet and Network-in-Network

A GPU cluster with NVIDIA Kepler-based K20x GPU per server in the OLCF Titan supercomputer

Reduction tree

Data parallelism

Evaluation : Hyperparameter settings
Hyperparameter settings have a big impact on the speed and accuracy produced in DNN
training.
• NiN: Caffe configuration files released by the NiN authors[6]
• GoogLeNet: follow settings with [7][8][9]

Address hyperparameter settings in the following sections.

[6] M. Lin, Q. Chen, and S. Yan. Network in network. arXiv:1312.4400
[7] Z. Wu, Y. Zhang, F. Yu, and J. Xiao. A gpu implementation of googlenet. http://vision.princeton.edu/pvt/GoogLeNet
[8] Guadarrama. BVLC googlenet. https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet
[9] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. JMLR

Evaluation : A single-server baseline
Caffe on a single-server

Speedups

Accuracy

Result1: Midsized deep models

Fixed number of epochs at 47.

Increasing the batch size.

Reduces the number of times we need to communicate weight gradients

Reducing the overall training time

Result2: Ultra deep models

Larger batch sizes lead to less communication

Learning rate is crucial in order to preserve high accuracy

Learning rate (LR): {0.02, 0.04, 0.08, 0.16, and 0.32}

• LR=0.16 and LR=0.32, didn’t ever learn anything beyond random-chance accuracy on the test set.

• LR=0.02 , 66.1% top-1, and LR=0.04 produced 67.2%.

Conclusions
This paper focus on the problem of accelerating DNN training, and our work has culminated in
the FireCaffe distributed DNN training system with three key pillars.
• Network hardware that achieves high bandwidth between GPU servers.
• Selecting a communication algorithm (reduction trees)
• Optionally increase the batch size and identify hyperparameters

After eveluations, this paper found the approximately balance of communication at the 32-GPU
scale.
• to achieve a near-linear speedup for a number of leading deep neural network architectures.
• In particular, we have achieved 23x speedup in NiN training, and a 16x speedup on GoogLeNet training

on a 32 GPU cluster.

My Impression
Deficiencies

• We need more details of evaluation results such as overhead of communication and computation with
different cluster size and batch size.

• Did not try the model parallelism.

TO DO
• Firecaffe is implemented on a GPUs cluster, in which every node has only one GPU, Instead TSUBAME-

KFC has 42 nodes, and each node has K80 GPU x 2. I would like to test it on TSUBAME-KFC by using 2
GPUs within a single node firstly like Krizhevsky did At Google. Then, reduction tree parallelization
within a GPU cluster with adjusting hyperparameters such as Epochs, batch size, learning rate and so on.

	High Performance�Computing 2015
	Reviewed Paper
	Abstract
	Outline
	Introduction and Motivation
	Why we need to accelerate DNN Research and Development
	Contributions of this Paper
	Preliminaries and terminology
	Preliminaries and terminology
	Parallelism strategies
	Parallelism strategies
	Parallelism strategies
	Choosing DNN architectures to accelerate
	Methodology of data parallel training
	Methodology 1: Parameter server
	Methodology 1: Parameter server
	Methodology 2: Reduction tree
	Difference between Parameter server and Reduction tree
	Difference between Parameter server and Reduction tree
	Evaluation: Hardware and Data set
	Evaluation : Hyperparameter settings
	Evaluation : A single-server baseline
	Result1: Midsized deep models
	Result2: Ultra deep models
	Conclusions
	My Impression

