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Abstract
• Designed and built a composable, reconfigurable fabric to accelerate 

portions of large-scale software services
• 6x8 2-D torus of Stratix V FPGAs embedded into a half-rack of 48 

machines
◦ One FPGA per server
◦ Inter-FPGA network using 10 Gb SAS

• Deployed on 1632 servers for accelerating the Bing search engine
• The paper reports:
◦ Requirements and architecture of the system
◦ Engineering challenges and solutions for robustness
◦ Performance, power, and resilience for ranking candidate documents

• Performance results:
◦ 95% higher throughput for a fixed latency
◦ 29% lower latency for a fixed throughput
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Introduction
• Improvement in server performance has slowed down largely due to 

power issues
• Specialization in datacenters is problematic since:
◦ Homogeneity is desirable to reduce management issues
◦ Non-programmable hardware features make evolution of datacenter services 

impractical
• FPGAs offer the potential for flexible acceleration of many workloads
• Fitting the accelerated function into the available reconfigurable area is 

challenging
◦ Run-time reconfiguration is too slow
◦ Multiple FPGAs offer scalable area but might not be cost/power efficient
◦ Single FPGA per server restricts workload and might not be cost-effective
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Introduction (Cont.)
• Catapult: a reconfigurable fabric designed to balance these competing 

concerns
• A significant amount of Bing’s page ranking is offloaded to groups of 8 

FPGAs
• Ranking process:
◦ Software-based processing
◦ Converting to FPGA-suitable format
◦ Routing to head FPGA
◦ Going through 8-FPGA pipeline
◦ Routing score back to requesting server

• Performance target: 2x throughput in the number of documents ranked 
per second per server, including software portions
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Introduction (Cont.)

• One big maintenance challenge is resilience
◦ The fabric must stay available in presence of errors, failing hardware, reboots, 

and updates to the ranking algorithm
◦ FPGAs can potentially corrupt their neighbors or crash the hosting servers 

during bitstream reconfiguration
• Solution: failure handling protocol
◦ Reconfigure groups of FPGAs or remap services robustly
◦ Recover from failures by remapping FPGAs
◦ Report a vector of errors to the management software
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Hardware
• Design requirements
◦ Large amount of reconfigurable logic, due to datacenter workload complexity
◦ Fitting within the datacenter architecture and cost constraints

• Option one: multiple FPGAs on one daughter-card for a subset of 
servers
◦ Prototype of six Xilinx Virtex 6 SX315T FPGAs with mesh network through 

the FPGA’s general-purpose I/Os
◦ Straightforward but four problems:

• Inelasticity: if a service needs more than 6 FPGAs, it cannot be mapped
• If less FPGAs are needed, there will be unused capacity
• Would not fit in ultra-dense servers unless with either heterogeneous servers in each rack or 

complete redesign of the whole datacenter
• Single point of failure for the subset of servers
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Hardware (Cont.)
• Option two: small daughter-card in each server and direct connection 

between boards through a separate network
◦ With a high-throughput and low-latency network, services can be mapped on 

multiple FPGAs across the network
◦ This option allows efficient utilization of logic and does not exceed power, 

thermal, and space limits
◦ This plan doesn’t surpasses the 30% limit on cost of ownership (TCO) 

including a limit of 10% for total server power
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Board Design
• PCI-E attachment
◦ Minimize disruption to the 

motherboard
• FPGA: industrial-grade Stratix 

V D5
◦ At the exhaust of the chassis

• Memory: 8 GB DDR3-1333 or 
4 GB DDR3-1600 + ECC

• EMI shielding to the board to 
protect other server components

• PCI-E + Network through 
Mezzanine connector

• Power through PCI-E
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Network Design
• Requirements:
◦ Low latency
◦ High bandwidth
◦ Low component costs
◦ Marginal servicing expenses

• 48 half-width 1U servers per rack
• 2 servers per 1U tray
• 2D 6x8 Torus network
◦ Balanced routability and cabling complexity

• Mezzanine traces go through the motherboard to the back of the chassis
◦ Exposed as two SFF-8088 SAS ports on passive backplane
◦ 10 Gb/s signaling rates, 20 Gb/s bidirectional bandwidth, sub-µs latency
◦ No additional NICs or switches
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Datacenter Deployment
• 17 racks for a total of 1632 servers
• Each server has:
◦ Dual-socket motherboard
◦ 2x 12-core Sandy Bridge CPUs
◦ 64 GB RAM
◦ 2x SSD & 4x HDD
◦ 10 Gbps network card

• 7 defective card (0.4%) and one instance of defective cabling (0.03%) 
at deployment
◦ No more defects after several months of operation
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Software Interface
• Design requirements for CPU/FPGA communication interface:
◦ Low latency, less than 10µs for transfers of 16 KB or less
◦ Safe for multi-threading

• Low latency is achieved by avoiding system calls
• Thread-safety is achieved by:
◦ One input and one output buffer in non-paged host memory
◦ Supply FPGA with base pointer
◦ Split buffers into 64 slots, 64 KB each
◦ Allocate one or multiple slots to each thread
◦ Status bits used to mark full slots
◦ FPGA fairly selects and DMAs full slots and clears their full bit
◦ FPGA writes back output to output buffer and awakens consumer thread 

through an interrupt

12



Shell Architecture
• To avoid burdening the programmer with controlling data 

transfers, host-to-FPGA and inter-FPGA communication, 
logic is partitioned into:
◦ Shell

• Interface for accessing PCI-E, DRAM, Routing, etc.
• 23% of FPGA space

◦ Role
• User logic
• Rest of the FPGA
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Shell Architecture (Cont.)
• Two DRAM controllers
• Four high-speed serial links running 

SerialLite III
◦ Inter-FPGA communication
◦ Supports FIFO semantics, Xon/Xoff

flow control, and ECC
• Router logic
• Reconfiguration logic
◦ Read/write the configuration Flash

• PCI-E core + DMA
• SEU logic
◦ Periodic scrubbing

14



Shell Architecture (Cont.)
• Router is a crossbar between four network ports, PCI-E and Role
◦ Static software-configured routing table
◦ Virtual cut-through with no retransmission or source buffering

• Double error detection and single error correction on SL3 and DRAM
◦ Flit-based
◦ 20% lower SL3 bandwidth
◦ Undetected 3-bit or longer errors will be detected by CRC at the end of 

transmission
◦ Uncorrectable errors will result in packet drop and host timeout

• Handled by higher-level protocol
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Software Infrastructure
• Three categories of changes to system software to:
◦ Ensuring correct operation
◦ Failure detection and recovery
◦ Debugging

• Two new services
◦ Mapping Manager: configuration of FPGAs with correct application image
◦ Health Monitor: handling suspected failure
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Correct Operation
• Three sources of potential instability due to FPGA reconfiguration
◦ Non-maskable interrupt due to the FPGA under reconfiguration appearing as a 

failed PCI-E device
◦ Failing or reconfiguring FPGAs sending random traffic through SL3 that might 

appear valid to its neighbors
◦ Asynchronous reconfiguration resulting in FPGAs receiving old data from 

their neighbors after reconfiguration
• Solutions
◦ Drivers disables non-maskable interrupts before reconfiguration
◦ FPGA to be reconfigured sends TX halt to its neighbors before reconfiguration
◦ FPGA comes up with RX halt enabled after reconfiguration until Mapping 

Manager tells it to release it after all the group has been reconfigured
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Failure Detection and Recovery
• Whenever a system hangs and it is noticed:
◦ Health Monitor is invoked
◦ Hung machine is queried

• If unresponsive: soft reboot or hard reboot or flagged for manual service
• If responsive: machine reports a vector of error flags for Network, DRAM, PLL, PCI-E, etc.

◦ Failed machine list is updated
◦ Mapping Monitor is invoked
◦ Based on failure type:

• Service is relocated or
• FPGA is reconfigured and corrupted states are cleared

◦ Reported observation
• Failures have been exceedingly rare
• No hangs due to data corruption
• Failures due to transient phenomena, primarily machine reboots due to maintenance or hangs
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Debugging Support
• The use of traditional FPGA debugging tools is limited by:
◦ Finite buffering capacity
◦ Impracticality of automatic recovery
◦ Impracticality of putting USB JTAG units into each machine

• Solution: lightweight always-on Flight Data Recorder
◦ Interesting information stored on FPGA on-chip memory

• Power-on sequence
• Intermittent errors
• Circular buffer recording the most recent head and tail flits of all packets

◦ Document trace ID
◦ Transaction size
◦ Travel direction
◦ Other miscellaneous states

◦ Streamed via PCI-E when needed
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Application Case Study
• A significant portion of Bing’s ranking engine implemented on Catapult 

fabric
• FPGA part handwritten in Verilog
◦ Partitioned across 7 FPGAs + 1 for redundancy

• Results identical to software-only, even bugs, except:
◦ Uncontrollable incompatibilities, such as floating-point rounding artifacts 

caused by out-of-order operations
• Search query handling stages:
◦ Front-end cache; if missed, sent to a top-level aggregator or TLA
◦ TLA sends query to a large number of machines performing selection

• Finding documents that match the query
◦ Selected documents are sent to machine running the ranking service

• Scores documents based on the query, FPGA-accelerated
◦ Documents and ranks are sent back to TLA for sorting and display
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Application Case Study (Cont.)
• Ranking stages
◦ Ranking server retrieves document and its metadata from local SSD
◦ Document is split into several sections
◦ A “hit vector" describing the locations of query words in each section is computed
◦ A tuple is created for each word that matches a query term
◦ Each tuple describes:

• The relative offset from the previous tuple
• The matching query term
• A number of other properties

◦ Feature computation; e.g. number of times a query word occurs in the document
◦ Free-form expressions are computed by arithmetically combining the features
◦ Features are sent to a machine-learned model to generate a score

• Score determines document’s position in the returned result
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Application Case Study (Cont.)
• FPGA-accelerated parts:
◦ Most of the feature computations
◦ All of the free-form expressions
◦ All of the machine-learned model

• Software parts:
◦ SSD lookup
◦ Hit vector computation
◦ A small number of software-computed features
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Software Interface
• Document is sent to fabric in compressed form, includes:
◦ A header with basic request parameters
◦ Software-computed features
◦ Hit vector

• Due to slot-based DMA and latency of Feature Extraction being 
proportional to tuple count, compressed documents are truncated to 64 KB
◦ Only unusual deviation from software-only ranker
◦ In a real-word 210,000-document sample, only 300 documents were truncated

• Average size is 6.5 KB, 99th percentile is at 53 KB

• The FPGA pipeline outputs a 4-byte float score which travels back through 
the inter-FPGA network to the head of the group

• A PCI-E DMA transfer moves the score, query ID, and performance 
counters back to the host
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Macropipeline
• Processing split into multiple 

macropipeline stages
• One macropipeline stage per 

FPGA
• Maximum 8µs per stage
• 200 MHz frequency
◦ Maximum 1600 clocks per stage

• Stages shown in image
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Queue Manager and Model 
Reload
• Features, free forms, and scorers are not fixed
• Each set of these is called a model
• Models are selected based on language, query type, etc.
• Ranking request specifies model
• Multiple queues, one per model, in head-FPGA DRAM
• Queue Manager chooses which queue to process
• When queue empties or times out, another queue will be chosen
• Queue Manager sends Queue Reload command down the pipeline
• New instructions and data is loaded on FPGAs
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Queue Manager and Model 
Reload (Cont.)

• Model Reload is an expensive operation (compared to document 
scoring)

• All of the embedded M20K Block RAMs on the FPGAs are reloaded 
with new data from DRAM

• Can take up to 250μs
• Queue Manager should minimize Model Reload
• Actual reload time depends on stage and model
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Feature Extraction
• First stage of the scoring acceleration pipeline
• Calculates numeric scores for a variety of features based on the query 

and document
• FPGA’s advantage over software: feature extraction engines can run in 

parallel
◦ A form of Multiple Instruction Single Data (MISD)

• 43 unique feature extraction state machines
• Up to 4,484 calculated features
• Some features that have similar computations
◦ A single state machine for multiple features

27



Feature Extraction (Cont.)
• Input is streamed into Stream Processing FSM
• Split into data and control tokens
• Processed in parallel by 43 unique state machines
• Generated features collected by Feature Gathering Network
• Forwarded to FFE stage
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Free Form Expressions
• Mathematical combinations of the extracted features
• Thousands of FFEs, ranging from very simple addition to large and 

complex floating point operations
◦ Customized datapath for each is impractical

• Solution one: multiple instances of off-the-shelf soft-core processors
◦ Too slow for large number of threads and complex floating-point operations

• Solution two: custom multicore processor
◦ 60 cores on a single FPGA
◦ Three important characteristics
◦ Capable of executing all expressions before the deadline
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Free Form Expressions (Cont.)
• Characteristic one:
◦ 4 simultaneous threads per core that arbitrate for functional units clock by 

clock
◦ When one thread is stalled, other threads can progress
◦ Functional units are fully-pipelined

• Characteristic two:
◦ Statistical thread prioritization instead of fair scheduling
◦ Expressions with longest expected latency mapped to Thread 0 slot on all 

cores
◦ Then Thread 1 slot and others are filled
◦ When all slots are full, new threads are mapped to the end of Thread 0 to 3
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Free Form Expressions (Cont.)
• Characteristic three:
◦ Longest-latency expressions are split across multiple FPGAs

• Multiple cores share the same complex arithmetic block to save FPGA 
area
◦ Fair arbitration for the block using round-robin
◦ Block consists of units for ln, fpdiv, exp, and float-to-int
◦ Pow, integer divide, and mod are implemented using other instructions, rather 

than dedicated units
◦ Complex block also contains the feature storage tile (FST) which is double-

buffered
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Evaluation
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• Single-stage test
• Per-stage injection throughput
• Real-world traces
• Results show significant variation
• FE is critical path



Evaluation (Cont.)
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• Full pipeline test
• Single injector (FE)
• Varying number of threads
• Throughput saturates at 12 threads
• More than 12 threads, throughput 

is limited by FE performance

• Latency is from software’s point 
of view

• From request until reply
• Increases with number of threads



Evaluation (Cont.)
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• Document size vs. latency
• A minimum latency proportional to document size
◦ Buffering and streaming

• A variable component that depends on input



Evaluation (Cont.)
• Full pipeline test
• Multiple injectors
• Maximum when all nodes are 

injecting
◦ Same throughput as FE
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• Latency from head (FE) and tail’s 
(Spare) point of view

• Tail has slightly higher latency 
due to shared channel with 
responses



Evaluation (Cont.)
• Software-only vs. FPGA-accelerated 

comparison
• 1,632 servers
◦ 672 run the ranking service

• FPGA reduces latency by 29% at 95th 
percentile distribution

• Significantly reduces worst-case latency
• More improvement at higher injection rates
• Software latency highly variable at high load
◦ Due to memory contention

• FPGA latency highly stable
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Evaluation (Cont.)

• 1 is maximum latency tolerated by Bing at 95th percentile
• FPGA improves throughput by 95% at this latency
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Evaluation (Cont.)
• FPGA statistics
• Power usage is 22.7 W using a “power virus” bitstream
◦ Maximum area and activity

• Pipeline seems to be highly unbalanced
• FE is critical path by wasn’t split into multiple FPGAs
◦ Yet scoring was split even though it has highest throughput

• Operating frequencies are lower than goal (200 MHz)
• DSPs are hardly used even though arithmetic operations were a bottleneck
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Conclusion
• Project goal was to determine:
◦ Problems that should be solved for large-scale deployment of FPGAs
◦ Whether significant performance improvements are achievable for large-scale 

production workloads
• GPUs were not deployed since:
◦ High power consumption for conventional datacenter workloads
◦ Not necessarily suitable for latency-sensitive application

• Showed that:
◦ A significant portion of a complex datacenter service can be efficiently 

mapped to FPGAs, with the help of an inter-FPGA network
◦ Resilience can be ensured when reconfiguring FPGAs, using a high-level 

safety protocol
◦ FPGA can increase throughput by 95% at comparable latency to software
◦ Less than 10% increase in power consumption and less than 30% in cost
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Conclusion (Cont.)
• Reconfigurable fabrics are a viable path forward with the imminent 

death of Moore’s Law
• Reconfigurability is a critical means to keep pace with the rapidly-

changing datacenter services
• A major challenge in the long term is FPGA programmability
◦ Requires extensive hand-coding in RTL and manual tuning
◦ For now, domain-specific languages (like OpenCL), HLS and libraries of 

reusable components might be sufficient
◦ Longer term, more integrated development tools will be necessary

• With death of Moor’s Law, compilation to a combination of hardware 
and software will be commonplace
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