High Performance Computing

Yoshifumi Motoyama
Tokyo Institute of Technology
Dept. of mathematical and computing sciences
Matsuoka Lab.

Review Paper

* Optimized Deep Learning Architectures with Fast Matrix
Operation Kernels on Parallel Platform

—-Ying Zhang
“ University of Science and Technology of
China

—Saizheng Zhang
*Stony Brook University

Tools with Artificial Intelligence (ICTAI), 2013 IEEE 25th
International Conference on

<http://ieeexplore.ieee.org/xpl/mostRecentlssue.jsp?
punumber=6734837>

outline

Introduction

Model description of deep architectures
Optimized parallel deep architectures
Fast matrix operation kernels
Experimental results

o Uk W E

. Conclusion
e Comments

1. Introduction

* Recently, notable research has been devoted
in fields of deep learning.

* Deep architecture allows hierarchical
unsupervised feature learning from higher
level statistics formed by the composition of
lower level patterns, and it can be fine-turned
to memory specific object classes in a more
abstractive way.

1. Introduction

The author’s primary concern is to construct an
efficient and flexible general deep learning
architecture on parallel devices.

2. Model description of deep
architectures

Deep architecture comes from neural network
(or multi-layer perceptron).

NN(Neural Network)

NN(Neural Network) is a biologically-inspired
programming paradigm which enables a
computer to learn observational data.

BP-NN

BP-NN(BackPropagation Neural Network) only
has one hidden layer.

The shallow BP-NN serves as the basic building P
block of the denoising autoencoder(DAE), —
conventional neural network(CNN) and *2()
the restricted boltzman machine(RNM) g L

e sigmoid (-)

MLP

MLP(Multi-Layer Perceptron) consists of
- input layer L, (L,)

- several hidden layers L, s(L:s)

- Output layer L_,(L.,4)

Lout S ‘ Output Layer

Lhid) | Hidden Layer

Lin |)) | = = o) Input Layer

MLP

Given a M, with the depth of k, any f;in F_, is the same
sigmoid function sigm(+), and the parameter set ©,, has {W, b, i
=1, ===, kb

Suppose that x; and y; are input and output of layer i, the
architecture between L, and L_, can be modeled as:

yi = fi(xi, W;,b;) = sigm(W;x; + b;)

To train M, estimate O, by minimizing a cost function E
measuring the discrepancy between M ’s outputs fr o ..o fig,,,, ()
and corresponding labels Z,

L — Z | fr oo fi(um) —zmll2
m ®7nlp

DAE

DAE(Denoising AutoEncoder) is an one-hidden-layer
MLP added with noises in its input layer.

DAE reconstructs the original clean input from its noisy
version.

Let x be the original input and x be the noisy
. version of x wherex=¢, ...(x), a DAE M, includes
i h I the denoising encoder f,, and decoder f,,

Y = fen(X) = sigm(WepnX + bep)
X = fae(y) = sigm(W ey + bae)

G XN) xis the denoising version

SDAE

SDAE(Stacked Denoising AutoEncoder) is a
hierarchical structure made of several DAEs in
stacking manner.

'/" ’ 3 ING _/ 75N |

\ — - \ ,

| 70|)| @ i A Vh=d

(/ "\ |(/en |_/|/en |_/ _/ / de |/~

\ L > __\\‘ } T/_\.*-. - .. —+/\ » \
= |)

/,/ / v _ y, // —_

(e e = (s p(1) (n) (n) (1)
| \ ; » ;}\‘ \v,' TN \ X e fde O ..-fde O fe/’l e O fe’fl (X)
N ./‘ \, / / -~ J

x 3) J \) g nY i

RBM

RBM(Restricted Boltzmann Machine) is a kind
of bidirectionally connected network consisting
of stochastic processing units.

s = The RBM has an input layer x and a hidden layer
L)smind.) h, between which the symmetric connections are
— = described by weights W and biases u, z.

{W,u,z}

RBM

A marginal probability of x in RBM is defined using an

energy model : exp(hTWx + uTx + 27h)
p(x) = Z 7
h

Z is the partition function and the conditional
probabilities of p(h|x) and p(x|h) are given as follows:

p(h; = 1|x) = sigm(W;x + 2;)
p(x; = 1|h) = sigm(W;h + u;)

To train a RBM, they use contrastive divergence to
estimate the gradient step of W:

AWﬁ = € (<xjhi>data - <xjh'i>7‘econ.)

3. Optimized parallel deep
architectures
The matrix operations in propagation process of

training and testing are available for employing
parallel strategy.

- The matrix operation can be divide into
smaller computing units.

Overview of parallel learning
architecture

In this paper, Parallel deep learning architecture
contains both the host stage H = {T...tiy, TH

and the device stage E ={R., K(¢), D, T%,}.

* The matrix operations in different deep architectures
can be modeled in an uniform framework. This
framework includes

- data holding D
- layer operations K

- the random value generator R for stochastic
operations in RBM/CRBM

Tctl training control

Tconfig : basic configuration of layer architecture

Suppose that :
fkernel EK grand ER' given Vz ED’ [=]: e n

The whole structure is as follows :

N G

. . . Training Protocols = -
A basic stage of propagation is modeled as follow : Host '—i Training |
VAN A= Configurations
fke’r‘nel(vl7 <Tctl> Tctl>propa t17) tn) % _\
where <=, *> gives the propagation descriptions of V T
‘Weights, bias Controls
H E an empora
based on 7%, and T, . A
Device “ ‘
Matrix
For parameter initialization of V., : Random Value]~ Operation

Generators

ey
[@ :Commands =) :Data [): Initialization]

V — gra,nd(<Tctla Tctl)’l"(l’fld) Vz)

Flexible Layer Structures

In their optimized matrix based architecture, they map
M,,., to a matrix based model G, = {D, D}:
]\[deep — Gdeep : {k~ (-)deep} — D; Fdeep — pr'rop

where D is the multi-dimensional vector set storing
layer-wise parameters in matrix version, and @ is the
set of operations over D.

@ includes all possible operations launched in hosts
and devices.

Data storing approach

The dataset’s accessing speed can be the
bottleneck of the training and testing
performance.

Two data storing approaches

I. store the data in separated device memory
pieces for flexible transformation and
accessing. But time cost could be high.

ii. store the whole dataset in a continuous
memory block in device for fast accessing
speed. But flexibility cannot be guaranteed.

-> balance between the speed and flexibility.

4. Fast matrix operation kernels

CUBLAS Library

The NVIDIA CUDA Basic Linear Algebra Subroutines
(CUBLAS) library is a GPU-accelerated version of the
complete standard BLAS library that delivers 6 to 17
times faster performance than the latest MKL BLAS.

gNewGemvf

gNewGemvf is for vector-matrix multiplication.

- calculating every layers output

- the partial derivative of objective function with the respect of

layer parameters

The key is that each block they only perform
one row calculating.

Algorithm 1 Vector-Matrix Multiplication (in block 7)

Ensure: Cache memory of temporal array buff[N x M] is allocated.

1

Jonbswy

: 1. buffi] «+ 0, where : = 1,..., N x M
: 2. Parallelly do in each thread i:
Load x[¢] and A[j][¢]
buff[i] - buff[i] + x[¢] - A[j][]
if ¢ > blocksize(or N x M) then

repeat

buff[i mod N x M] < buff[i mod N x M]+ x[i] - A[7][7]
i< 1+ N XM

until i > size(A[j])
: end if
: 3. Parallelly do in N threads in the first warp of the block:
: if ¢ > N then
repeat

buff[i mod N] < buff[i mod N] + buff|[i]
until ¢ < N
: end if
: n 4 logaN
: repeat
if i € [27~1,2"] then

buff[i mod 2" ~1] < buff[i mod 2"~1] + buff[i]
end if
n+<n-—1
suntil n <0
: 4. y[j] < buff[0]

gNewGerf

gNewGerf is for vector-vector multiplication.

- calculating the partial derivative of E with the
respect of weights W in propagation process

without add operation

Algorithm 2 Vector-Vector Multiplication (in block 7)

[S—

: Parallelly do in each thread ::
Load x[¢] and y[j] and the jth row of A
buff_y < ylj]
Ajl[i] = A + x[i] - buff_y;
if 2 > N x M then
repeat
Alj]li mod N x M] = A[j][i mod N x M] + z[i] - buff_y
141+ N XM
until 7 > size(A[j])
end if

O.\?’??ﬁ@.“{‘:'?l*?!\?.—‘

5. Experimental results

Compares the pure speed performance of

their matrix kerne
CPU based matrix

Performed on MN

s with CUBLAS library and
cernels.

ST dataset to evaluate the

comprehensive performance of their new

GPU based matrix

kernels.

Consider a real problem of face occlusion
recognition on ORL/AR databases using SDAE

and DNN.

A. Pure Kernel Speed Comparison

First, they focus on the pure performance of their
kernels without implementing them into deep
architecture’s propagation process.

Tests are performed on square matrices from 256 to
4096, and on rectangular matrices with the size of 128
x N and 256 x N, where N ranges from 256 (or 512) to

16384,
The time saving evaluate like follows:

TcuBras/cpus — Tours
Asaqving — x 100%

TcuBLAs/cPUSs

Result

- Vector-Matrix multiplication - Vector-vector multiplication

Matrix Size | gNewGemyf Sgemv(CUDA) gemv(CPU) Time Saving | gNewGemvfT SgemvT (CUDA) gemvT (CPU) Time Saving Vector Size | gNewGerf (sec) Sger(CUDA) (sec) ger(CPU) (sec) Time Saving Qsqving 7%
256 x 250 :]Wsc())ium (15?8)1006 (15&3)1 037 issiuioni?m :)Se;s))fom :)seacl;iom (15567)&03' Ta“&’"ig?“a 226,250 U.4320.03 0.46=0.04 061011 +6.5,1402.3
512x512 | 1224008 597+015 4283+038 4796,497.2 1104003 1.04+0.05 4054+044 —58,4074 512,512 1.75+0.05 1.8140.08 21.88 +0.37 +3.3,+02.0
1024% 1024 | 4362012 1207+0.01 17654+ 171 +642,+07.5| 436+0.11 345008 175.78+165 —26.4,+975 1024,1024 | 5.70+0.29 5.91+0.23 87.71+£2.21 +3.6,+93.5
2048 x 2048 | 1827011 25554+0.17 405.01+£230 +48.1,496.7| 14.814+0.18 12.63+0.13 407.10+£3.00 —17.3,496.4 2048,2048 | 21.48+0.33 22.05 +£0.34 159.03 £+ 2.80 +2.6,+86.5
4006 x 4006 | 47.86+0.23 58524038 1778524+4.32 +18.2,497.3) 51464030 48.36+029 1700.10+4.30 —6.4,+97.1 4096,4096 | 47.81+0.97 49.30 + 1.14 627.16 £ 6.11 +3.0,+92.4
128 x 256 | 0.30+0.03 1.80+0.28 280+0.28 +84.1,489.2| 0.26+£0.02 0.20+0.02 3.08+0.11 +10.3,+91.6 1928.256 0.19+0.01 0.23+0.01 3.04 +0.08 +17.4,+493.8
128x512 | 053+£002 454+008 676+0.30 +88.3,4022| 0.54+0.03 064+005 670+0.35 +156,+91.9 ’ ’

18x 1024 | 0.67+0.04 081+014 1308+024 +03.2,4949| 0.67+0.09 106+0.18 1338+040 +36.8,495.0 128,512 0.41+0.03 0.47+0.02 5.67 +0.23 +12.8,492.8
128x 2048 | 1224003 26174008 26224050 +95.3,4953] 0.95£0.08 242£021 2558+£132 +60.7,4963 128,1024 | 0.58+0.02 0.78 £0.04 10.92 £0.43 +25.6,+94.7
128 x 4006 | 2.04+0.02 2658+0.12 5400+101 +023,496.2(1.54+0.090 460+033 5680+121 +66.5,497.3 128,2048 1.62+0.09 1.85+£0.12 21.73+£0.49 +12.4,492.5
128 x 8192 | 358+0.05 51804020 11081+1.30 +03.1,4968 2.66+0.16 878+037 111.04+230 +60.7,497.6 128, 4096 3.04+0.18 3.30+£0.21 44.38 £0.91 +7.9,+93.1
128 x 16384 | 6.52+0.09 53.30+0.28 21430+2.19 487.8,+97.0[5.02+0.20 17.22+0.31 216.32+270 +70.8,497.7 128.8102 6.17+0.15 6.82 +0.20 84.51 +1.28 +9.5,+92.7
256 x 512 | 0.53+£0.02 454+008 1031+£028 +88.3,4949 0.51£0.02 086+004 20.71+£028 4+40.7,4947 : :) | ' : : . X
256 x 1024 | 0.67+£0.04 081+0.14 27.16£060 +932,497.6| 0.59+£0.02 0.59+0.01 28654033 0.0,+97.9 256,512 0.54+0.02 0.54+0.04 11.09£0.21 0.0, +95.1
256% 2048 | 1224003 26174008 5820+083 40534070 1184008 170£021 57072075 +305,497.0 256,1024 1.13+0.03 1.28 +£0.06 21.57+0.76 +11.7,+94.8
256 x 4006 | 2.04£0.02 2658+£012 9620180 +023,4079] 2.24+007 533£020 0410+137 +580,497.6 256,2048 2.67£0.05 2.98 £0.11 43.71 £ 1.04 +10.4,493.9
256 x 8102 | 3.58£0.05 51.80+020 200.01+£257 493.1,4982(3.39+£0.10 898+041 20588310 +62.2,498.4 256, 4096 5.78 £ 0.20 6.16 £ 0.31 85.65 £ 1.82 +6.17,493.3
256 x 16384 | 6.52+0.09 53.30+0.28 390.35+3.89 +87.8,+98.4| 6.28+0.22 1830+041 409.55+561 +65.7,+98.5 256, 81902 10.49 + 0.28 11.83+0.34 157.26 + 2.68 +11.3,493.3

gNewGemvf achieves the average time The average time saving is about +9.0%
saving about +77.7% and +96.2% and 92.9% respectively.

respectively.

gNewGemvfT achieves the average time
saving about +29.7% and +96.7%
respectively.

B. Performance Comparison on MNIST
Dataset

The second experiment compares the
propagation speed differences between MLPs using
CUBLAS/CPU kernels.

i. evaluate the time cost of the entire training
epoch that includes both forward and back
propagation.

ii. consider only the forward propagation process,
which purely consists of their kernels.

MNIST Dataset

MNIST handwritten digit dataset, which consists of 60000
grey scale image of handwritten numbers from 0 to 9
with the pixel size of 28 x 28 = 784.

A W=~ X\
QAN RQXRYQ YO
TP—ad2 eax WL

[/ 4932\ 3\ #
e\ 738 6%
/A24Y327
705 60F¢
7398533
F7I3094/
OUs 6108
c3o2/)7
67 8DN90Y
630783/

Result

14
o0

our kernels
"""" CUBLAS(GPU)
== kernels(CPU)

g
=N

processing iterations per sec
=
|

f=1
[
b
!
]
W
1
.
H
C
#
e
A
b

-
~~

h-

= e e——

whole epoch

40 80 160 320 640 1280 2560 5120 40

= = |

160 320 640 1280 2560 5120
forward propagation

number of hidden layer units (V)

Achieve an average + 200% faster
speed than CUBLAS/CPU kernels

Their kernels gain at 300 + %
outperformance

C. Comprehensive Evaluation on ORL/
AR face databases

The third experiment considers a practical problem of
occluded face recognition using deep learning.

- The recognition architecture consists of a SDAE for
occluded regions restoration and DNN for
recognition.

- Real size images are first go through the SDAE
trained using clean face images to recover
themselves.

- Then recovered images are sent to the DNN for final
recognition.

C. Comprehensive Evaluation on ORL/
AR face databases

ORL Face Database:

consists of 400 grayscale
face image of 40 people
with the size of 92 x 112
pixels.

very limited facial
expression changes.

no occluded face in the
original dataset.

-> manually add mask
nhoise on it.

e AR Face Database:

- contains more than 4000
face images (= 126
individuals) with different
facial expressions,
illumination conditions and
occlusions (sunglasses and
scarves)

- 26 pictures taken in two
different sessions for each
individual, and 14 of them
are clean faces.

-> use the cropped version
which contains only face areas
with the size of 120 x 165.

Result on ORL/AR database

e ORL Database e AR Database

| |]
DNN- I I DNN- .
test ! ! test |
I | |
DNN- | | DNN- |
train : : train .
I | |
SDAE - . SDAE |
test Bkernels(CPU) test i
BCUBLAS(GPU) i |®kernels(cPU)
! . - [mcusLasGP
SDAE- Hour kernels SDAE- (GFD)
train : train - |™our kernels
l | T

0.6 0.7

The average speed up is around 100% on both ORL/AR database comparing with using
CUBLAS kernels.

6. Conclusion

* The experimental results denote that their
kernels achieve significant speed
outperformance compared with CUBLAS/CPU
kernels.

* Parallel device’s better speed adaptability on
specific tasks could be achieved with carefully
designed kernel strategies.

