High Performance Computing

Shota Kuroda 15M37093
16/01/18

Outline

Paper

Abstract

Introduction

Related Work

System Architecture
nter-Controller Network
Prototype System

Result

Conclusion & Future Work

Outline

* Paper

Paper

e Scalable Multi-Access Flash Store for Big Data
Analytics

— Sang-Woo Jun, Ming Liu, Kermin Elliott Fleming,
Arvind

— FPGA’14, February 26-28, 2014, Monterey, CA, USA.

Outline

e Abstract

Abstract

we examine an architecture for a scalable distributed
flash store which aims to overcome the limitation,
transportation of large amount of data from hard disk
to DRAM in two ways.

1. the architecture provides a high-performance, high-
capacity, scalable random-access storage.

2. it permits some computation near the data via a FPGA-
based programmable flash controller.

The average latency for user software to access flash
store is less than 70us, including 3.5us of network
overhead.

Outline

* |Introduction

Introduction

Hard disks has been a limitation factor in big data
systems.

With the recent advancement of low latency and high
bandwidth flash devices as alternatives to disks, the
performance bottleneck has shifted from the storage
device to the network latency and software overhead.

Another facet of high performance storage systems
research is providing a computation fabric on the
storage itself.

we propose a novel high-performance storage
architecture, which we call BlueDBM.

Introduction(Cont.)

 BlueDBM'’s goal

Low Latency, High Bandwidth
Scalability

Low-Latency Hardware Acceleration
Application Compatibility

Al S

Multi-accessibility

Outline

* Related Work

Related Work

e Storage systems that require high capacity are
usually constructed in two ways

1. SAN
* has milliseconds of latency comes from protocols

2. distributed file system

 the software overhead of concurrency control and
the high-latency congestion-prone general purpose
network degrades performance.

* These latencies are insignificant compared to
the one of hard disks.

SAN & DFS

SAN

16/01/18

DFS

12

Related Work(Cont.)

* Flash, alternatives of hard disk
— has order of 10us latency
— hard disk’s latency is order of 10ms

* As aresult, the storage device is no longer a
bottleneck in high capacity storage systems.

* in a disk-based distributed storage system, non-
storage components are responsible for less than
5% of the total latency, while in a flash-based
system, this number rises to almost 60% .

Related Work(Cont.)

* Flash’s disadvantages
— limited program erase cycles
— coarse-grain block level erase
— low write throughput
* Our storage architecture is similarly motivated

by and designed for these flash
characteristics.

Related Work(Cont.)

 CORFU attempts to build distributed file
systems tailored for flash storage
characteristics

— but still suffers millisecond-level latency.
* QuickSAN have studied directly connecting

flash storage to the network in order to
bypass some of the soft-ware latency.

— This brings down the latency of the system to
hundreds of microseconds.

Outline

e System Architecture

SERDES

System Architecture

4 .
Application
Inter-controller Network ; issues R/W
= — commands to
High Speed Serial Link file system Y
g i g i P
1 1 1 1 1
i Flash Array i i Flash Array i i Flash Array /_/ _ \
: L] : : Data is globally
4 FPGA e 4 FPGA ! - FPGA . visible and
' i I ! i I .
! iPCIe i ! i i ! i i accessible from
! P | ! : all host PCs, and
i Host PC i ; Host PC the address
Node 1 Node n space is shared
and unified

among all nodesy
<

- ™

Figure 1: BlueDBM top level system diagram con- H?ns;ctl:uc C;n : Y
sisting of multiple storage nodes connected using

. hardware
high speed serial links forming an inter-controller ccelerator

network _ J

Introduction(Again)

 BlueDBM'’s goals are achieved by this architecture.
1. Low Latency, High Bandwidth

. by using parallel flash chips, PCle and high-speed transceivers coupled with
a thin networking protocol
2. Scalability
. scalability through homogeneous nodes and a network protocol that

maintains low latency over multiple hops and is topologically flexible

3. Low-Latency Hardware Acceleration

. by providing a hook to software to invoke accelerator operations on data
without passing through host.

4. Application Compatibility

. by providing a generic file system and exposing the abstraction of a single
unified address space to the applications

5. Multi-accessibility

. multi-accessibility by providing multiple entry points to storage via many
host PCs

System Architecture(Cont.)

Host PC

Applications <— /0 Request
I/0O Data

The router component)
implements a thin

protocol for
communication over the
high speed inter-FPGA
SERDES links. -/

File System

<«4=* Accelerator Req

Driver Accelerator Data

i ! PCle
FPGA

Client Interface

v
Accelerator
¥ v
Addr/Cmd Inter-FPGA SMA To remote
Mapper [€== Router FPGAs
o [\
B AN The address mapper
Accelerator_l . .
| S | maps areas in the logical
Flash Controller address space to each
@ node in the network.)
Flash Array The flash controller)

includes a simple flash
translation layer to

access the raw NAND

chips on the flash board. /

Figure 2: Hardware and software stack of a single
node

System Architecture(Cont.)

* We implemented a generic file system using FUSE

* For each |I/O request, the address mapper

module determines which storage node the data
resides in

* the current mapping scheme focuses on utilizing
as much device parallelism as possible, by
striping the address space such that adjacent
page addresses are mapped to different storage
nodes

System Architecture(Cont.)

Requests Data
(local and remote nodes) (local and remote nodes)
ﬁVe achieve this by\
simply permutating
Tag Relname — Data Switch .
Engine a portion of the

logical address bits
such that spatially

ﬁ\lot only can
buses be

accessed in
parallel, data

operations on 2 7 % controllers, buses
different flash - - - and chips thereby
chips on the improving overall
same bus may system throughput.
be overlapped Y

Qo hide latency /

P
<

local requests have
a high probability of
being mapped to
different bus

Scheduler
Chip
Controller
Scheduler
Chip
Controller
Scheduler
Chip
Controller

Figure 3: Flash controller featuring a scheduler and
chip controller per bus, virtualized using a tagging
mechanism

System Architecture(Cont.)

* there needs to be an efficient way to match
the commands against the data flowing in and
out of the flash chips.

* A possible solution is to implement a
distributed agreement protocol between each
node, but this is complex and requires
additional data transfer across the network.

* Instead, we use a two-layer tagging scheme to
keep track of this information.

System Architecture(Cont.)

In the first layer, each command that is issued from a client interface is given a 8-
bit tag value.

A list of unoccupied tags are kept in a free tag queue.

We dequeue when a new request is issued, and enqueue back when a request
retires.

On the command issuer side, this tag is correlated with information such as the
request page address in a tag mapping table structure.

When the request needs to be processed at a remote node, the tag is sent to the
target node with the rest of the request information.

However, because each node keeps a separate list of free tags, there can be tag
collisions at the remote node.

This is solved using a second layer of tagging scheme, which translates the original
tag to the target node’s unique local tag.

The first layer tag is stored in another tag map table with information such as the
request source and the original tag value.

After the request has been handled, the data is sent back to the request origin
node tagged with the original tag value it was requested with, so it can be reused
for future operations.

Outline

 |Inter-Controller Network

Inter-Controller Network

conventional method of networking storage devices
requires the storage traffic to share the host-side network
infrastructure.

reduced effective bandwidth, because the link between the
host and its storage has to be shared for local and remote
data.

BlueDBM solves these issues by having a dedicated storage
data network directly connecting the flash controllers to
each other.

the flash controller manages the storage device as well as
the network, all data transport of words within a page
could be pipelined, effectively hiding the network latency
of accessing a page.

Inter-Controller Network(Cont.)

The routing mechanism for our
storage network is a packet-switched Flash Controller Accelerator

protocol h 1_Ii_

Each node maintains a routing table
of all nodes in the network, where Scheduler
each row contains information

including which physical link a packet Al SMA__\ Toremote
should take to get to that node and SERDES PHY < Y FPGAS
how many network hops away it is

An accelerator can declare, at / \
. Scheduler
compile time, multiple virtual links

according to its requirements Noute 0
the choice of physical

communication fabric in our system
is flexible

Router

Client Interface

Figure 4: Inter-node network router.

Inter-Controller Network(Cont.)

* 2 model of usage of accelerator

Flash Storage

4\

Flash Storage

Accelerator

Accelerator

4]

2l

Host Server

=

5]

Host Server

\—/

Figure 5: Flow of data when using an accelerator as
a separate appliance (left) versus an accelerator in
the data path of the storage device (right)

Inter-Controller Network(Cont.)

Host PC

e accelerators can be implemented Applications <— 10 Request
both be- fore and after the inter-FPGA File System e oo o
router _ Driver Accelerator Data

* The global accelerator located ﬁpae
between the router and the client FPGA
interface implements higher-level Client Interface
functionalities that require a global : T
VieW Of data ; Accelerator

— Examples includes table join y ¥
operali'ions ina databasejaccelerator, A&i}ﬁﬁ;ﬁ" | MerFPGA L o emote
or the word counting example that 3
will be described shortly _ (;

* The local accelerator, which is located /'
between the flash storage and the | Flash Controller
router, is used to implement functions _/ | @ |
that only require parts of the data Flash Array

— For example, compressing pages
before writi ng them to flash Figure 2: Hardware and software stack of a single

™ node

16/01/18 28

Outline

* Prototype System

Prototype System

* Figure 6(a), is based around the Xilinx ML605 board and our custom built flash board

* The ML605 board and the flash board is coupled using the FPGA Mezzanine Card (FMC) connector,
as seen in Figure 6(b), and plugged into a PCle slot on the host server.

* implemented a routing protocol in favor of dynamic reconfiguration of the network.

T

(a) Four-node prototype system (b) ML605 and attached flash card

Figure 6: Prototype system
16/01/18 30

Prototype System(Cont.)

Each flash board hosts 16GB of flash storage arranged in four parallel
buses comprised of 8 512MB Micron SLC flash chips.

We network the processing nodes of our system by way of the Virtex-6
GTX high speed transceivers.

Each transceiver is capable of transporting up to 5Gbps

each node can only connect to one other node via the only remaining SMA
port on the ml605 board. Therefore, the prototype uses a tree topology
shown in Figure 7

Inter-controller Network

SMA
XM104 Hub |« > XM104 Hub

1 1 1 1

i | 16GBFlash |i| |i| 16GBFiash | 11| 16GB Flash 16GB Flash

i i ¥

i xiinxMLe05 @ LB Xilinx ML60S | | i Xilinx ML605 Xilinx ML605

i 7 3 i i B] 4+ H

i A\ 4 PCle i i N A 4

: HostPC |+ 1| HostPC |14 HostPc | | HostPC

L= | L - { N vy punpspuspS S Sy gyl |
Node 0 Node 1 Node 2 Node 3

Figure 7: Prototype physical implementation with
4 storage nodes and 2 hubs

Outline

e Result

Result

The approximate area breakdown of each node in our flash system is shown in
Table 1

This area corresponds to approximately 35% of the resources of the medium sized
Virtex-6 chip.

The rest of the area is free to be used for accelerator implementation

even with a thousand- node system, we can easily fit the routing table within a few
BRAMs on the FPGA given that each entry is merely 128 bits

Packet headers will require 10 bits to identify the source/destination node in a
thousand-node system, which means a corresponding increase in FIFO sizes

However, this area increase remains insignificant compared to the rest of the
design on the FPGA

Thus we are able to scale to thousands of nodes without significant impact on area

LUTS Registers BRAM
Client Interface 17387 17312 51
Flash Controller 10972 8542 151
Networking 24725 27530 16
Total 53084 (35%) | 53384 (17%) | 218 (52%)

Table 1: Synthesis metrics for controller compo-
nents at 100MHz.

Result(Cont.)

500 T T T T 6

* Considering that the typical
latency of a flash read is 400 |
several tens of
microseconds, requests in
our network can, in theory,
traverse dozens of nodes
before the network latency
becomes a significant
portion of the storage read 0o _
latency, potentially Bandwidth(MBs) ——
enabling the addressing of , , Latency(us)
multiple terabytes worth of 2 t raA Hj)ps 8 10
data across many nodes.

)

MB/s/Lane
w
S

vidth(
8
w
Average Latency (us)

Bandwidth

o
~s

Figure 8: Throughput and latency of our inter-
FPGA network using a 5Gbps SERDES connection
on the Virtex-6 ML605.

Latency (us)

Result(Cont.)

400

120 I Fjash Chip

Controller =—2 350
Software =y

Throughput ——

100 T 300

(2
foa)
e Ev
RASESIIEELIINL, DRI,
[‘(X\,y\ /2\};5\ RN NSNS 3'
IS NMORN M ORHK 200 =
bSO RO O o
o o 4 SOOI
» (X XX XA SO c
SIS ESK AN xS0
k \/>X<\/ y>\/\’ NOA AN AR NN A XN D
NSNS SR XK A >
AN XSO SN (@] 150 B
KON ONTN X \/\A»)I N O X MOKX —
40 '&xy><)<«xy>< ><\,Xy] R e c
» P X .
NONONESNSSY O K MR A -
OO SN
KX X KT EA K /\/{ 1 00 |
x/‘>/\ KNI\ AN xSRI

0 2 3 1 2 4
Inter-FPGA Hops Node Count
(a) Page access latency (b) Throughput

Figure 9: Raw latency and throughput measurements of our 4-node prototype

16/01/18 39

Result(Cont.)

400

120 .
Flash Chip ——
Controlleﬁ)' ioeie 350 - Throughput ——

100 L Software =y | »

\

(
The latency
80r _ / remains constant

(2]
-] . . .
N DT KR 275 A0 N5
> FT;:S#‘\?\A%_IS""{/(L;,‘\: v, $ N : N :>: . 4
OSSR Moo th f
= [SCR TR RASS538 wiIth InCrease O
o bSO OO ITK A AR
60 — XX YO X YO NANAKASANAA
() KX O O KX L
© S % A T SO SO OpS_)
v, NN, 7V X AN A4
(X R N MR XX (A N i AN
- PO BSOS U T
[R N AN/ A NN NN MY
KX A X X A X X>/\<X>/\<x>l
4 — Y AV AV YO XYY c
CR XX XN NN AN
UNOREN X OX N SSRGS 08 -
OO RPN ViR <Y
(X XK XK NSNS 100 |
SENNET b OSD

0 2 3 1 2
Inter-FPGA Hops Node Count
(a) Page access latency (b) Throughput

Figure 9: Raw latency and throughput measurements of our 4-node prototype

16/01/18

Latency (us)

Result(Cont.)

- Throughput ——

\

J

400
120 Ejash Chip =
Controller Ceie 350
100 | SOftware [SPSONAY -
/(The latency
80 I remains constant
with increase of
60 |
LR RS hops.
—
40 | [S5ReS ses] ="
Sodotetetorete I ooscorneies f
&/\/\/\,\&/\/\//\/\\«/\ kx»y\/\ X s A end_to_end page
20 1 read latency
increase is a
0 0) marginal 2us per
Inter-FPGA Hops additional

(a) Page access latency

network hop

J

2 4

Node Count
(b) Throughput

Figure 9: Raw latency and throughput measurements of our 4-node prototype

16/01/18

37

Latency (us)

Result(Cont.)

400

120 I Fjash Chip

Controller =—2 350
Software =y

Throughput ——

100 T 300

(2
foa)
e Ev
RASESIIEELIINL, DRI,
[‘(X\,y\ /2\};5\ RN NSNS 3'
IS NMORN M ORHK 200 =
bSO RO O o
o o 4 SOOI
» (X XX XA SO c
SIS ESK AN xS0
k \/>X<\/ y>\/\’ NOA AN AR NN A XN D
NSNS SR XK A >
AN XSO SN (@] 150 B
KON ONTN X \/\A»)I N O X MOKX —
40 '&xy><)<«xy>< ><\,Xy] R e c
» P X .
NONONESNSSY O K MR A -
OO SN
KX X KT EA K /\/{ 1 00 |
x/‘>/\ KNI\ AN xSRI

0 2 3 1 2 4
Inter-FPGA Hops Node Count
(a) Page access latency (b) Throughput

Figure 9: Raw latency and throughput measurements of our 4-node prototype

16/01/18 38

Result(Cont.)

Multi-Access Performance Scaling

45 I I I I
Total Throughput —x%—
4 | Throughput Per Node -@--- |
- 35 B -
-
Q
S 3°f 1
-
(@)
E 2.5 .
e
g2y -
©
€ 157F} i
(@)
Z 1L i
0.5 r i
0 1 1 | |

Consumer Nodes

Figure 10: Performance scaling in multi-access sce-

nario
16/01/18

140

120

(MB/s)
S

Throughput
5 8 8

N
o

Result(Cont.)

run on 2 nodes
i maximum bandwidth is 140MB/s

In-Datapath

Off-Datapath SwW
Computation Type

Figure 11: Word counting accelerator performance

scaling

Outline

e Conclusion & Future Work

Conclusion & Future Work

 demonstrated
— by having the inter-FPGA network connecting the controllers directly, each
node is able to access re- mote storage with negligible performance
degradation
— offloading computation into the storage controller as an accelerator provides
performance benefits against implementing acceleration as a separate
appliance

* Next BlueDBM planned improvements
— Improved FTL

* to optimize writes, design wear leveling, garbage collection, write amplification
reduction algorithms

— DRAM Caching

* We can cache reads and writes to the SSD in DRAM on the FPGA board.
because of our low latency inter-FPGA network, we could create a shared global DRAM
cache from DRAM of all the nodes and dynamically partition them ac- cording to the
workload characteristics.

— Database Acceleration

* we aim to further accelerate database management systems such as Postgres or SciDB
by offloading database operations to the FPGA.

