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Abstract—One of the main problems in the analysis of remotely
sensed hyperspectral data cubes is the presence of mixed pixels,
which arise when the spatial resolution of the sensor is not able
to separate spectrally distinct materials. Due to this reason, spec-
tral unmixing has become one of the most important tasks for
hyperspectral data exploitation. However, unmixing algorithms
can be computationally very expensive, a fact that compromises
their use in applications under real-time constraints. For this
purpose, in this paper we develop two efficient implementations
of a full hyperspectral unmixing chain on two different kinds of
high performance computing architectures: graphics processing
units (GPUs) and multi-core processors. The proposed full un-
mixing chain is composed for three stages: (i) estimation of the
number of pure spectral signatures or endmembers, (ii) automatic
identification of the estimated endmembers, and (iii) estimation
of the fractional abundance of each endmember in each pixel of
the scene. The two computing platforms used in this work are
inter-compared in the context of hyperspectral unmixing applica-
tions. The GPU implementation of the proposed methodology has
been implemented using the compute devide unified architecture
(CUDA) and the cuBLAS library, and tested on two different
GPU architectures: NVidia™ GeForce GTX 580 and NVidia™
Tesla C1060. It provides real-time unmixing performance in two
different analysis scenarios using hyperspectral data collected
by NASA’s Airborne Visible Infra-Red Imaging Spectrometer
(AVIRIS) over the Cuprite mining district in Nevada and the
World Trade Center complex in New York City. The multi-core
implementation, developed using the applications program inter-
face (API) OpenMP and the Intel Math Kernel Library (MKL)
used for matrix multiplications, achieved near real-time perfor-
mance in the same scenarios. A comparison of both architectures
in terms of performance, cost and mission payload considerations
is given based on the results obtained in the two considered data
analysis scenarios.

Index Terms—Hyperspectral imaging, spectral unmixing, high
performance computing, GPUs, multi-core platforms.
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I. INTRODUCTION

YPERSPECTRAL imaging instruments are capable of

collecting hundreds of images, corresponding to different
wavelength channels, for the same area on the surface of the
Earth [1]. For instance, NASA is continuously gathering im-
agery data with instruments such as the Jet Propulsion Labora-
tory’s AVIRIS, which is able to record the visible and near-in-
frared spectrum (wavelength region from 0.4 to 2.5 microme-
ters) of reflected light in an area 2 to 12 kilometers wide and
several kilometers long, using 224 spectral bands [2]. One of
the main problems in the analysis of hyperspectral data cubes
is the presence of mixed pixels [3], [4], which arise when the
spatial resolution of the sensor is not fine enough to separate
spectrally distinct materials. In this case, several spectrally pure
signatures (endmembers) are combined into the same (mixed)
pixel. Spectral unmixing [5], [6] involves the separation of a
pixel spectrum into its endmember spectra, and the estimation
of the abundance value for each endmember [7], [8]. A pop-
ular approach for this purpose in the literature has been linear
spectral unmixing, which assumes that the endmembers sub-
stances are sitting side-by-side within the field of view of the
imaging instrument [see Fig. 1(a)]. On the other hand, the non-
linear mixture model [9]-[11] assumes nonlinear interactions
between endmember sustances [see Fig. 1(b)]. In practice, the
linear model is more flexible and can be easily adapted to dif-
ferent analysis scenarios. Let y be a pixel vector given by a
collection of values at different wavelengths. In the context of
linear spectral unmixing, such vector can be modeled as:

»
sza+n:Zeiai+n, (1)
i=1
where M = {e;}Y_; is a matrix containing p endmember sig-
natures, & = [o, g, ..., @,] is a p-dimensional vector con-
taining the abundance fractions for each of the p endmembers
in M, and n is a noise term. The spectral unmixing chain con-
sidered in this work comprises three steps (see Fig. 2): 1) es-
timation of the number of pure spectral signatures (endmem-
bers), p, in the hyperspectral scene; 2) identifying a collection
of M = {e;}’_, endmembers, and 3) estimating the abun-
dances, in which the fractional coverage of each endmember
is estimated for each pixel. The estimation error can be com-
puted by reconstructing the original image (using the extracted
endmembers and the derived abundances) and comparing the
reconstructed image with the original one.

1939-1404/$31.00 © 2013 IEEE
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Fig. 1. Linear (a) versus nonlinear (b) mixture models in remotely sensed hyperspectral imaging. (a) Single scattering, (b) Multiple scattering.
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Fig. 2. Block diagram illustrating the full hyperspectral unmixing chain considered in this work.

In recent years, several techniques have been proposed to
solve the aforementioned problem under the linear mixture
model assumption (see [12]-[17], among several others), but all
of them are quite expensive in computational terms. Although
these techniques map nicely to high performance computing
systems such as commodity clusters [18], these systems are
difficult to apdapt to on-board processing requirements in-
troduced by applications with real-time constraints such as
wild land fire tracking, biological threat detection, monitoring
of oil spills and other types of chemical contamination [19],
[20]. In those cases, low-weight integrated components such
as field programmable gate arrays (FPGAs) [21], [22], which
offer a good compromise in terms of mission payload, have
revealed as a feasible option, but one that generally requires a
significant effort from the design and programmability point of
view. Possible alternatives are multi-core processors [23] and
commodity graphics processing units (GPUs) [24], which offer
highly relevant computational power at low cost, this offering
the opportunity to bridge the gap towards real-time analysis of
remotely sensed hyperspectral data [25]-[27].

In this paper, we develop two computationally efficient
implementations of a full hyperspectral unmixing chain on
GPUs and multi-core processors. Although previous work
has discussed the implementation of unmixing algorithms on
GPUs [28], the implementation of a full hyperspectral un-
mixing chain on multi-core processors has not been discussed
in previous contributions, to the best of our knowledge. The
two considered platforms are inter-compared in the context of
hyperspectral unmixing applications. In our comparisons, we
have selected both domestic (e.g., multi-core processor i7 and
NVidia GeForce GTX 580 GPU) and professional platforms
(e.g., multi-core Xeon processor and NVidia Tesla C1060
GPU). Our study reveals that GPUs and multi-core processors
can provide real-time unmixing performance. The implemen-
tations on GPUs have been carried out using NVidia CUDA
and the cuBLAS library!, an implementation of BLAS (basic
linear algebra subprograms) on top of NVidia™ CUDA, while
the multi-core implementations have been developed using

Thttp://developer.nvidia.com/cuBLAS
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the API OpenMP? and Intel’s Math Kernel Library (MKL)3.
The remainder of the paper is organized as follows. Section II
describes the different modules that conform to the proposed
unmixing chain. Sections III and IV describe the GPU and
multi-core implementations of these modules, respectively.
Section V presents an experimental evaluation of the pro-
posed implementations in terms of both unmixing accuracy
and parallel performance, using two different hyperspectral
scenes with reference data and collected by AVIRIS. Finally,
Section VI concludes the paper with some remarks and hints at
plausible future research lines.

II. UNMIXING CHAIN ALGORITHMS

A. Virtual Dimensionality (VD) Algorithm for Estimation of
the Number of Endmembers

Let us denote by Y = [y1.y2,....yn] a hyperspectral
image with NV pixel vectors, each with L spectral bands. The
VD first calculates the eigenvalues of the covariance matrix
Krxr = 1/N(Y — Y)'(Y = Y) and the correlation ma-
trix Rz = Kr.r + WT, respectively referred to as
covariance-eigenvalues and correlation-eigenvalues, for each
of the spectral bands in the original hyperspectral image Y.
If a distinct spectral signature makes a contribution to the
eigenvalue-represented signal energy in one spectral band, then
its associated correlation eigenvalue will be greater than its
corresponding covariance-eigenvalue in this particular band.
Otherwise, the correlation eigenvalue would be very close to
the covariance-eigenvalue, in which case only noise would
be present in this particular band. By applying this concept, a
Neyman-Pearson detector [29] is introduced to formulate the
issue of whether a distinct signature is present or not in each of
the spectral bands of Y as a binary hypothesis testing problem,
where a so-called Neyman-Pearson detector is generated to
serve as a decision maker based on a prescribed Pr (i.c., false
alarm probability). In light of this interpretation, the issue of
determining an appropriate estimation p for the number of
endmembers is further simplified and reduced to a specific
value of Pr that is preset by the Neyman-Pearson detector.

Zhttp://openmp.org
3http://software.intel.com/en-us/intel-mkl
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B. Orthogonal Subspace Projection With Gram-Schmidt
Orthogonalization (OSP-GS) for Endmember Extraction

The orthogonal subspace projection (OSP) algorithm [12]
was originally developed to find spectrally distinct signatures
using orthogonal projections. For this work, we have used an
optimization of this algorithm (see [30], [31]) which allows
calculating the OSP without requiring the computation of the
inverse of the matrix that contains the endmembers already
identified in the image. This operation, which is difficult to
implement in parallel, is accomplished using the Gram-Schmidt
method for orthogonalization. This process selects a finite set
of linearly independent vectors A = {aj,...,a,} in the
inner product space RZ in which the original hyperspectral
image is defined, and generates an orthogonal set of vectors
B = {by,...,b,} which spans the same p-dimensional
subspace of RY(p < L) as A. In particular, B is obtained
as follows: where the projection operator is defined in (3), in
which (a, b) denotes the inner product of vectors a and b.

(a.b)
(b.b)

proj,(a) = 3)
The sequence by, ..., b, in (2) represents the set of orthogonal
vectors generated by the Gram-Schmidt method, and thus, the
normalized vectors eq, ..., e, in (2) form an orthonormal set.
As far as B spans the same p-dimensional subspace of R* as
A, an additional vector b, 1 computed by following the proce-
dure stated at (2) is also orthogonal to all the vectors included
in A and B. This algebraic assertion constitutes the cornerstone
of the OSP method with Gram-Schmidt orthogonalization, re-
ferred to hereinafter as OSP-GS algorithm.

C. Unconstrained Least-Squares (UCLS) Algorithm for
Abundance Estimation

Once the set of endmembers M = {e;}_; has
been identified, their correspondent abundance fractions

y of the scene can be simply estimated (in least squares sense)
by the following unconstrained expression:

o= (MTM) MTy. 4)
Two additional constraints can be imposed into the model de-
scribed in (4), these are the abundance non-negativity constraint
(ANC), i.e., «; > 0, and the abundance sum-to-one constraint
(ASC), ie., > _; &y = 1. However, in this work we focus
on the unconstrained estimation only as it is much faster and

b; = ay,

by = a; — projy, (az),

by = a3 — projy,, (a3) — projy, (a3),

by = a4 — projy, (a4) - Projp,, (a4) — Projp, (aa),
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Fig. 3. Schematic overview of a GPU architecture, which can been seen as a
set of multiprocessors (MPs).

it has been shown in practice to provide satisfactory results if
the model endmembers are properly selected.

III. GPU IMPLEMENTATION

GPUs can be abstracted in terms of a stream model, under
which all data sets are represented as streams (i.e., ordered data
sets). Fig. 3 shows the architecture of a GPU, which can be seen
as a set of multiprocessors (MPs). Each multiprocessor is char-
acterized by a single instruction multiple data (SIMD) architec-
ture, i.e., in each clock cycle each processor executes the same
instruction but operating on multiple data streams. Each pro-
cessor has access to a local shared memory and also to local
cache memories in the multiprocessor, while the multiproces-
sors have access to the global GPU (device) memory. Algo-
rithms are constructed by chaining so-called kernels which op-
erate on entire streams and which are executed by a multipro-
cessor, taking one or more streams as inputs and producing one
or more streams as outputs. Thereby, data-level parallelism is
exposed to hardware, and kernels can be concurrently applied
without any sort of synchronization. The kernels can perform a
kind of batch processing arranged in the form of a grid of blocks
(see Fig. 4), where each block is composed by a group of threads
which share data efficiently through the shared local memory
and synchronize their execution for coordinating accesses to
memory. As a result, there are different levels of memory in the
GPU for the thread, block and grid concepts (see Fig. 5). There
is also a maximum number of threads that a block can contain
but the number of threads that can be concurrently executed is
much larger (several blocks executed by the same kernel can
be managed concurrently, at the expense of reducing the coop-
eration between threads since the threads in different blocks of
the same grid cannot synchronize with the other threads). With
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concepts.

the above ideas in mind, our GPU implementation of the hyper-
spectral unmixing chain comprises three stages: 1) GPU imple-
mentation of VD; 2) GPU implementation of OSP-GS; and 3)
GPU implementation of UCLS.

A. GPU Implementation of VD

Once we load the full hyperspectral image Y pixel by pixel
from disk to the main memory of the GPU, the first step is to cal-
culate the covariance matrix K 7. For this purpose, we need
to calculate the mean value Y of each band of the image and
substract this mean value to all the pixels in the same band.
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To perform this calculation in the GPU, we use a kernel called
mean_pixel configured with as many blocks as the number of
bands L in the hyperspectral image. In each block, all avail-
able threads perform a reduction process using shared memory
and coalesced memory accesses to add the values of all the
pixels in the same band. Once this process is completed, another
thread divides the computed value by the number of pixels in
the original image, IV, and the mean value is obtained. The re-
sulting mean values of each band Y™ are stored in a structure as
they will be needed for the calculation of the covariance matrix
K « 1 in the GPU by means of a matrix multiplication opera-
tion (Y — Y)T(Y — Y). This operation is performed using the
cuBLAS library. Specifically, we use the cublasSgemm func-
tion of cuBLAS. The next step is to calculate the correlation
matrix Ry, « z in the GPU. To achieve this, we use a kernel cor-
relation which launches as many threads as elements in Rz 1,
where each thread computes an element of the resulting ma-
trix as follows: R;; = K,;; + Y; Y;. Finally, we have ob-
served that the remaining steps in the VD calculation (i.e., ex-
traction of correlation-eigenvalues, covariance-eigenvalues and
Neyman-Pearson test for estimation of the number of endmem-
bers) can be computed very fast in the CPU.

B. GPU Implementation of OSP-GS

On the other hand, our implementation of OSP-GS for GPUs

can be summarized by the following steps:

1) The first step is related with the proper arrangement of
the hyperspectral data in the local GPU memory. In order
to optimize accesses, we store the pixel vectors of the
hyperspectral image Y by columns. Our arrangement
is intended to access consecutive wavelength values in
parallel by the processing kernels (coalesced accesses
to memory). This technique is used to maximize global
memory bandwith and minimize the number of bus trans-
actions. Then, a structure is created in which the number
of blocks equals the number of pixel vectors in the hy-
perspectral image divided by the number of threads per
block, where the maximum number of supported threads
depends on the considered GPU architecture. A kernel
called get_pixel max_bright is now used to calcu-
late the brightest pixel e; in Y. This kernel computes (in
parallel) the dot product between each pixel vector and its
own transposed version, retaining the pixel that results in
the maximum projection value.

2) Once the brightest pixel in Y has been identified, the pixel
is allocated as the first column in matrix M. The algo-
rithm now calculates the orthogonal vectors through the
Gram-Schmidt method as detailed in (2). This operation
is performed in the CPU beacause this method operates
on a small data structure and the results can be obtained
very quickly. A new kernel is created, in which the number
of blocks equals the number of pixel vectors in the hyper-
spectral image divided by the number of supported threads
depends on the considered GPU architecture. This kernel,
called pixelProjection, is now applied to project the
orthogonal vector onto each pixel in the image. An impor-
tant optimization applied at this point involves the effec-
tive use of the shared memories. We use these memories to
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store the most orthogonal vectors obtained at each iteration
of OSP-GS (this is because these vectors will be accessed
every time that the projection onto each pixel of the image
is performed). The maximum of all projected pixels, is cal-
culated using a separate reduction kernel reduction-
Projection which also uses the shared memory to store
each of the projections and obtains the new endmember €.

3) The algorithm now extends the endmember matrix as M =
[e1. e2] and repeats from step 2) until the desired number of
endmembers (specified by the input parameter p) has been
extracted. The output of the algorithm is a set of endmem-
bers M = [e1,e2,....€p].

C. GPU Implementation of UCLS

Finally, our GPU implementation of UCLS can be summa-

rized by the following steps:

1) The first step is to calculate the operation (MZ M), where
M = {e;}/_; is formed by the p endmembers extracted
by the OSP-GS. This is performed by a kernel called
MtxM. The inverse of this operation is calculated in the
CPU mainly due to two reasons: i) its computation is
relatively fast, and ii) the inverse operation remains the
same throughout the whole execution of the code. A new
kernel called Mxinv is now used to multiply M by its
inverse.

2) The result calculated in the previous step is now multiplied
by each pixel y in the hyperspectral image, thus obtaining
a set of abundance vectors o = [a1, &g, . . ., @), each con-
taining the fractional abundances of the p endmembers in
M. This is accomplished in the GPU by means of a spe-
cific kernel, called get _abundances, which produces p
abundance maps.

IV. MULTI-CORE IMPLEMENTATION

A multi-core processor is a single CPU with two or more
independent processors (called cores), which are the units that
read and execute program instructions. The multiple cores
can run multiple instructions at the same time, increasing the
overall speed for programs amenable to parallel computing.
In our implementation of the considered unmixing chain, we
used OpenMP which is an API used to explicity address mul-
tithreaded, shared-memory parallelism. In OpenMP the users
specify the regions in the code that are suitable for parallel
implementation. The user also specifies necessary synchro-
nization operations, such as locks or barriers, to ensure correct
execution of the parallel region. At runtime the threads are
executed in different processors but sharing the same memory
and address space. In the following, we briefly summarize the
main techniques used in the multi-core implementation of the
considered unmixing chain:

* In our unmixing chain, we have several matrix multipli-
cations. Mainly in the VD algorithm, we have a multi-
plication of high dimensionality in the covariance opera-
tion (the most expensive one of the algorithm). Our idea is
based in [32], where we include the matrix multiplication
routine using two levels of parallelim (OpenMP+BLAS).
The first level of parallelism is set using the API OpenMP
and the second level is achieved by invoking the dgemm
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Fig. 6. False color composition of an AVIRIS hyperspectral image collected
by NASAs Jet Propulsion Laboratory over lower Manhattan on Sept. 16, 2001
(left). Location of thermal hot spots in the fires observed in World Trade Center
area, available online: http://pubs.usgs.gov/0f/2001/0fr-01-0429/hotspot.key.
tgif.gif (right).

routine of a multithreading implementation of BLAS (the
MKUL library of optimized math routines has been used in
the experiments).

* One of the main techniques adopted in the OpenMP im-
plementation of the considered unmixing chain is the use
of locking routines. For instance, these routines are used in
the OSP-GS algorithm to calculate the brighest pixel in the
scene and the maximum projection operation.

* Another strategy adopted in the OpenMP implementation
of the considered unmixing chain is the use of parallel
for directives, which indicate the compiler that the struc-
tured block of code should be executed in parallel on mul-
tiple threads. Each thread will execute the same instruction
stream, however not necessarily the same set of instruc-
tions. These directives are used with the locking routines
and to implement the different steps for the UCLS algo-
rithm in Section III.

V. EXPERIMENTAL RESULTS

A. Hyperspectral Image Data

The first data set used in our experiments was collected by the
AVIRIS sensor over the World Trade Center (WTC) area in New
York City on September 16, 2001, just five days after the ter-
rorist attacks that collapsed the two main towers and other build-
ings in the WTC complex. The data set consists of 614 x 512
pixels, 224 spectral bands and a total size of (approximately)
140 MB. The spatial resolution is 1.7 meters per pixel. The left-
most part of Fig. 6 shows a false color composite of the data
set selected for experiments using the 1682, 1107 and 655 nm
channels, displayed as red, green and blue, respectively. Veg-
etated areas appear green in the leftmost part of Fig. 6, while
burned areas appear dark gray. Smoke coming from the WTC
area (in the red rectangle) and going down to south Manhattan
appears bright blue due to high spectral reflectance in the 655
nm channel. Extensive reference information, collected by U.S.
Geological Survey (USGS), is available online for the WTC
scene*. The rightmost part of Fig. 6 shows a USGS thermal

“http://speclab.cr.usgs.gov/wtc
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map depicting the target locations of the thermal hot spots at the
WTC area. The map is centered at the region where the towers
collapsed, and the temperatures of the targets range from 700 F
to 1300 F. These targets will be used as reference information
for validation purposes in our comparison.

A second hyperspectral image scene has been considered for
experiments. It is the well-known AVIRIS Cuprite scene [see
Fig. 7(a)], collected by the Airborne Visible Infra-Red Imaging
Spectrometer (AVIRIS) [2] in the summer of 1997 and available
online in reflectance units after atmospheric corrections. The
portion used in experiments corresponds to a 350 x 350-pixels
subset of the sector labeled as f970619t01p02 _r02_sc03.a.rfl in
the online data, which comprises 188 spectral bands in the range
from 400 to 2500 nm and a total size of around 50 MB. Water
absorption bands as well as bands with low signal-to-noise ratio
(SNR) were removed prior to the analysis. The site is well un-
derstood mineralogically, and has several exposed minerals of
interest, including alunite, buddingtonite, calcite, kaolinite, and
muscovite. Reference ground signatures of the above minerals,
displayed in Fig. 7(b) and available in the USGS library,6 will
be used in this work for evaluation purposes.

B. Analysis of Algorithm Precision

The number of endmembers to be extracted from the AVIRIS
Cuprite image was estimated as p = 19 after calculating the
virtual dimensionality (VD) [33], which is the first stage in our
proposed unmixing chain. Table I shows the spectral angles (in
degrees) between the most similar endmembers extracted by
the OSP-GS and the reference USGS spectral signatures avail-
able for this scene. The range of values for the spectral angle
is [0°, 90°]. As shown by Table I, the endmembers extracted
by the OSP-GS algorithm are very similar, spectrally, to the
USGS reference signatures, despite the potential variations (due
to posible interferers still remaining after the atmospheric cor-
rection process) between the ground signatures and the airbone
data. For illustrative purposes, the fractional abundance maps
obtained for the same representative minerals in the Cuprite
mining district are displayed in Fig. 8(a)—(e). Since no refer-
ence information is available regarding the true abundance frac-
tions of minerals in the AVIRIS Cuprite data, no quantitative ex-
periments were conducted although the obtained mineral maps
exhibit similar correlation with regards to previously published
maps’.

In any case, the results of spectral unmixing can also be eval-
uated in terms of the quality of the reconstruction of the orig-
inal data set using the extracted endmembers, the estimated frac-
tional abundances, and the linear mixture model. These results
have been discussed in a previous work [34]. In this case, the
metric employed to evaluate the goodness of the reconstruction
is the root mean square error (RMSE) obtained after comparing
the original scene with the reconstructed one. This metric is
based on the assumption that a set of high-quality endmembers
(and their corresponding estimated abundance fractions) may
allow reconstruction of the original scene with higher precision

Shttp://aviris.jpl.nasa.gov
Shttp://speclab.cr.usgs.gov
Thttp://speclab.cr.usgs.gov/cuprite.html
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Fig. 7. (a) False color composition of the AVIRIS hyperspectral over the Cuprite mining district in Nevada and (b) U.S. Geological Survey mineral spectral

signatures used for validation purposes.
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Fig. 8. Abundance maps extracted from the Cuprite scene for different minerals: (a) Alunite. (b) Budinggtonite. (c) Calcite. (d) Kaolinite. (¢) Muscovite. (f)
Per-pixel RMSE obtained in the reconstruction process of the AVIRIS Cuprite scene using p = 19 endmembers (the overall RMSE in this case was 0.0361).

TABLE I
SPECTRAL ANGLE VALUES (IN DEGREES) BETWEEN THE TARGET PIXELS
EXTRACTED BY THE OSP-GS ALGORITHM AND THE REFERENCE USGS
MINERAL SIGNATURES FOR THE AVIRIS CUPRITE SCENE

Alunite | Buddingtonite | Calcite | Kaolinite | Muscovite | Average

5.48° 4.08° 5.87° 11.14° 5.68° 6.45°

compared to a set of low-quality endmembers. In this case, the
original scene is used as a reference to measure the fidelity of
the reconstructed version on a per-pixel basis. For illustrative
purposes, Fig. 8(f) graphically represents the per-pixel RMSE
obtained in the reconstruction process of the AVIRIS Cuprite

scene. The RMSE map in Fig. 8(f) generally reveals a good spa-
tial distribution of the error, although some anomalous endmem-
bers appear to be missing. In any event, the per-pixel RMSE
values are quite low, indicating a good overall compromise in
the reconstruction of the scene.

A similar experiment was also conducted for the AVIRIS
WTC scene. Table II shows the spectral angles (in degrees) be-
tween the most similar endmember pixels detected by OSP-GS
and the pixel vectors at the known target positions in the scene,
labeled from ‘A’ to ‘H’ in the rightmost part of Fig. 6. The
number of endmembers to be detected was p = 31 after cal-
culating the virtual dimensionality (VD) of the hyperspectral
data. As shown by Table II, the OSP-GS extracted endmem-
bers which were very similar, spectrally, to be known reference
pixels in Fig. 6 (this method was able to perfectly detect the
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(©) (d

Fig.9. Abundance maps extracted from the WTC scene for different targets: (a) Vegetation. (b) Smoke. (c) Fire. (d) Per-pixel RMSE obtained in the reconstruction
process of the AVIRIS WTC scene using p = 31 endmembers (the overall RMSE in this case was 0.0216).

TABLE 11
SPECTRAL ANGLE VALUES (IN DEGREES) BETWEEN THE TARGET PIXELS
EXTRACTED BY OSP-GS ALGORITHM AND THE KNOWN GROUND TARGETS IN
THE AVIRIS WORLD TRADE CENTER SCENE

0.00° 27.16° 0.00° 15.62° 27.81° 3.98° 2.72° 24.26°

pixels labeled as ‘A’ and ‘C’, and had more difficulties in de-
tecting very small targets). On the other hand, we could observe
that the fractional abundance maps of vegetation, smoke and
fire [see Fig. 9(a)—(c)] revealed features that cannot be easily
appreciated in the false color composition displayed in Fig. 6.
For illustrative purposes, the RMSE reconstruction map for this
scene is also displayed in Fig. 9(d).

C. Analysis of Parallel Performance

The proposed full hyperspectral unmixing chain has been
tested on four different platforms (two GPUs and two multi-core
processors):

e The first GPU (denoted hereinafter as GPU1) is the
NVidia™ Tesla C1060, which features 240 processor
cores operating at 1.296 GHz, with single precision
floating point performance of 933 Gflops, double pre-
cision floating point performance of 78 Gflops, total
dedicated memory of 4 GB, 800 MHz memory (with
512-bit GDDR3 interface) and memory bandwidth of 102
GB/s8.

* The second GPU (denoted hereinafter as GPU2) used
is the NVidia™ GeForce GTX 580, which features 512
processor cores operating at 1.544 GHz, with single pre-
cision floating point performance of 1,354 Gflops, double
precision floating point performance of 198 Gflops, total
dedicated memory of 1,536 MB, 2,004 MHz memory
(with 384-bit GDDRS interface) and memory bandwidth
of 192.4 GB/s°.

* The two aforementioned GPUs are connected to a multi-
core Intel i7 920 CPU (denoted hereinafter as MC1) at
2.67 GHz with 4 physical cores and 6 GB of DDR3 RAM

Shttp://www.nvidia.com/object/product_tesla_c1060_us.html
http://www.nvidia.com/object/product-geforce-gtx-580-us.html

memory, which uses a motherboard Asus P6T7 WS Super-
Computer.

* Finally, another multi-core system (denoted hereinafter as
MC2) is also used in our experiments. The system is made
up of two Quad Core Intel Xeon at 2.53 GHz with 12 phys-
ical cores and 24 GB of DDR3 RAM memory, which uses
a motherboard Supermicro X8DTT-H and it is mounted on
a bullx R424-E2.

For illustrative purposes, Table III provides an indication
of processor performance (including memory bandwidth and
floating point performance) for both multi-core systems (MC1
and MC2) used in our experiments. These measures have
been obtained using Geekbench!? (version 2.4.0), a widely
used benchmarking tool which provides a comprehensive set
of benchmarks engineered to quickly and accurately measure
processor and memory performance. Specifically, floating
point performance has been evaluated using two Geekbench
benchmarks based on the following calculations: vector dot
product (single-core scalar, multi-core scalar, single-core
vector and multi-core vector), and matrix LU decomposition
(single-core scalar and multi-core scalar). On the other hand,
memory bandwidth has been evaluated using two Geekbench
benchmarks based on the following calculations: stream copy
(single-core scalar and single-core vector) and stream add
(single-core scalar and single-core vector).

Before describing our parallel performance results, it is
important to emphasize that our GPU and multi-core versions
provide exactly the same results as the serial versions of the
implemented algorithms, using the gcc (gnu compiler default)
with optimation flags -03 (for the single-core version) and
-fopenmp (flag used for the multi-core version) to exploit
data locality and avoid redundant computations. Hence, the
only difference between the serial and parallel algorithms is
the time they need to complete their calculations. The serial
algorithms were executed in one of the available cores, while
the multi-core versions were executed in all the available cores.
For each experiment, ten runs were performed and the mean
values were reported (these times were always very similar,
with differences on the order of a few milliseconds only).

Tables IV and V summarize the timing results and speedups
measured after processing two hyperspectral images on the
considered GPU and multi-core platforms. It should be noted

10http://www.primatelabs.com/geekbench/
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TABLE I1I
PROCESSOR PERFORMANCE (INCLUDING MEMORY BANDWITH AND FLOATING POINT PERFORMANCE) FOR THE TWO MULTI-CORE SYSTEMS (MC1 AND MC2)
USED IN OUR EXPERIMENTS, MEASURED USING DIFFERENT GEEKBENCH BENCHMARKS

Benchmark Description MC1 MC2

single-core scalar 1.53 1.39
Vector dot product multi-core scalar 724 16.4
(measures floating point performance in Gflops) | single-core vector 4.83 4.34

multi-core vector 20.7 515
Matrix LU decomposition single-core scalar 2.04 1.82
(measures floating point performance in Gflops) multi-core scalar 441 113
Stream copy single-core scalar 5.96 542
(measures memory bandwidth in GB/sec) single-core vector 8.59 6.80
Stream add single-core scalar 7.85 6.49
(measures memory bandwidth in GB/sec) single-core vector 8.45 7.11

TABLE IV
PROCESSING TIMES (IN SECONDS) AND SPEEDUPS ACHIEVED FOR THE PARALLEL UNMIXING CHAIN IN TWO DIFFERENT PLATFORMS: MULTI-CORE AND GPU,
TESTED WITH THE AVIRIS CUPRITE SCENE

Initialization VD OSP-GS UCLS | Writing of final results | Total
Serial time 0.121 5.541 1.331 1.051 0.009 8.053
Parallel time GPU1 0.269 0.246 0.049 0.067 0.009 0.640
Parallel time GPU2 0.281 0.241 0.024 0.034 0.011 0.590
Parallel time MC1 0.126 0.924 0.516 0.277 0.010 1.853
Parallel time MC2 0.098 1.066 1.055 0.197 0.053 2.468
Speedup (GPU1) - 2248 27.26 15.74 - 12.58
Speedup (GPU2) - 23.00 55.28 30.62 - 13.64
Speedup (MC1) - 6.00 2.58 3.79 - 435
Speedup (MC2) - 5.20 1.26 535 - 3.26

TABLE V

PROCESSING TIMES (IN SECONDS) AND SPEEDUPS ACHIEVED FOR THE PARALLEL UNMIXING CHAIN IN TWO DIFFERENT PLATFORMS: MULTI-CORE AND
GPU, TESTED WITH THE AVIRIS WTC SCENE

Initialization VD OSP-GS UCLS | Writing of final results Total
Serial time 0.364 20.149 9.979 10.314 0.036 40.842
Parallel time GPU1 0.522 0.711 0.202 0.280 0.039 1.755
Parallel time GPU2 0.535 0.499 0.109 0.133 0.037 1.313
Parallel time MC1 0.370 3.258 3.549 2.759 0.037 9.973
Parallel time MC2 0.281 3.782 4.612 1.620 0.206 10.501
Speedup (GPU1) - 28.34 49.28 36.79 - 2328
Speedup (GPU2) - 40.37 91.49 77.66 - 31.12
Speedup (MC1) - 6.18 2.81 3.74 - 4.10
Speedup (MC2) - 533 2.16 6.37 - 3.89

that the cross-track line scan time in AVIRIS, a push-broom
instrument [2], is quite fast (8.3 milliseconds to collect 512
full pixel vectors). This introduces the need to process the
considered AVIRIS Cuprite scene (350 x 350 pixels and 188
spectral bands) in less than 1.985 seconds to fully achieve
real-time performance. Similarly, the AVIRIS WTC scene
needs to be processed in less than 5.096 seconds in order to
achieve real-time performance. As shown by Table IV, the
AVIRIS Cuprite scene could be processed in real-time using

GPU1, GPU2 and MC1. On the other hand, Table V reveals that
the AVIRIS WTC scene could only be processed in real-time
in the GPU platforms.

For illustrative purposes, Fig. 10 shows the percentage of the
total GPU execution time consumed by memory transfers and
by each CUDA kernel (obtained after profiling the full imple-
mentation of the spectral unmixing chain) during the processing
of the AVIRIS World Trade Center scene in the two considered
GPUs. As shown by Fig. 10, the implementation on the GeForce
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GPU Time ( Total )

0.00% 3.56% 7.12% 10.68% 14.23% 17.79% 21.35% 24.91% 28.47% 32.03%
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Fig. 10. Summary plot describing the percentage of the total GPU time consumed by memory transfer operations and by the different kernels used by the NVidia
GeForce GTX 580 GPU (top) and the Tesla C1060 GPU (bottom) in the unmixing of the AVIRIS WTC image.
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Fig. 11. Comparison of time processing between the two considered multi-core processors varying the number of cores using: (a) AVIRIS Cuprite scene. (b)
AVIRIS WTC scene.

GTX 580 GPU uses approximately 85% of the execution time no significant difference between using 4 or 12 cores in this plat-
for executing the kernels and 15% of the time for memory trans-  form. This suggests that our multi-core implementation can be
fers. On the other hand, the implementation on the Tesla C1060  optimized to increase its scalability to a high number of cores.
GPU uses about 90% of the total GPU time for executing the Although the speedups obtained in all cases for the multi-
kernels and only 10% of the time for memory transfers. This core platforms are not very high (particularly for MC2), we
indicates that memory transfers are not a bottleneck for the pro-  believe that this kind of systems may provide a good alterna-
posed GPU implementations. tive to GPUs for onboard processing of remote sensing data.
On the other hand, Fig. 11 compares the processing times This is particularly due to the fact that the power consump-
measured in the two considered multi-core processors when the  tion of GPUs is quite high, an observation that may compro-
number of physical cores available was varied. With the in- mise mission payload and energy requirements. In this regard,
crease of the number of cores, the processing time in MC1 sig- multi-core platforms are evolving very quickly and it is ex-
nificantly decreases and leads to real-time processing results, as  pected that systems with hundreds of cores will be soon avail-
illustrated in Fig. 11(a). However, real-time processing perfor- able, thus offering the possibility to replace many-core systems
mance could never be achieved in MC2. This is due to the scal- such as GPUs as the default platforms for high performance
ability problems observed when increasing the number of cores.  computing in many applications. At present, GPUs offer such
Specifically, it can be seen in Figs. 11(a) and (b) that there was  possibility of massively parallel processing and we have illus-
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trated in this work that their computational power can be readily
exploited for providing real-time performance in an important
exploitation-based application for hyperspectral data such as
spectral unmixing.

VI. CONCLUSIONS AND FUTURE RESEARCH LINES

In this work, we have developed computationally efficient
implementations of a full hyperspectral unmixing on multi-core
processors and GPU platforms. Both platforms can boost the
computational performance of the considered unmixing chain,
using relatively inexpensive hardware. The performance of the
proposed implementations has been evaluated (in terms of the
quality of the solutions provided and its parallel performance)
in the context of two analysis scenarios, using data sets col-
lected by the AVIRIS instrument. The experimental results re-
ported in this paper indicate that remotely sensed hyperspectral
imaging can greatly benefit from the development of efficient
implementations of unmixing algorithms in specialized hard-
ware devices for better exploitation of high-dimensional data
sets. In this case, real-time performance could be obtained using
any of the considered GPU devices and one of the considered
multi-core environments. GPUs compared with multi-core pro-
cessors present more advantages because these devices offer
few on-board restrictions in terms of cost and size, and these
are important parameters when defining mission payload in re-
mote sensing missions. In this regard, our contribution bridges
the gap towards real-time unmixing of remotely sensed hyper-
spectral images in GPUs and multi-core processors.

Although the results reported in this paper are very encour-
aging, GPUs and multi-core processors are still rarely exploited
in real missions due to power consumption and radiation
tolerance issues, despite improvements in these directions are
expected in upcoming years. Currently we are also experi-
menting with FPGAs and other spectral unmixing algorithms,
i.e., a fully constrained linear spectral unmixing algorithm, in
order to be able to adapt the proposed algorithms to hardware
devices that can be mounted onboard hyperspectral imaging
instruments after space qualification by international agencies.
We are also investigating the use of OpenCL!! as a computing
standard for multi-core architectures that allows writing code
for both GPUs and CPUs, and which has recently also seen a
growing interest for FPGAs.
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