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Introduction

Convolutional neural network (CNN) is a deep learning architecture extended
from artificial neural network.

A CNN design processes data with multiple layers of neuron connections to
achieve high accuracy in image recognition.
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Y. LeCun 1998, Gradient-based learning applied to document recognition



Introduction (cont.)

Why convolution for recognition ?

Translation invariance Inpt -
Fewer parameters

Stride can be > 1 (accuracy and computational demand tradeoff)
Dependencies are local

Feature Map



Due to general processors are not efficient for CNN implementation and can
hardly to meet the performance requirement. Thus, FPGA and GPU have been
proposed to improve performance of CNN design.

FPGA based accelerators have advantages of good performance, high energy
efficiency, fast development round, and capability of reconfiguration.



Introduction (cont.)

If an accelerator structure is not carefully designed, computation throughput
cannot match the memory bandwidth, that means performance is degraded due to
under-utilization of either logic resource or memory bandwidth.

It is important to find the optimal solution, especially when limitations on
computation resource and memory bandwidth are considered.



e Quantitatively analyze computing throughput and require memory bandwidth
of any potential solution of a CNN design on a FPGA platform.

e Identify all possible solutions in the design space using a roofline model and
find the optimal solution for each layer in design space.

e Propose CNN accelerator design with uniform loop unroll factors across
different convolutional layers.

*This work ONLY aims on speeding up the feedforward computation, an
integration with other optional layers, such as sub-sampling or max pooling layers,
will be studied in future work.
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Graph of Convolutional Layer
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Input feature maps

The convolutional layers receives N feature maps as input.
Each input feature map is convolved by a shifting window with a K x K kernel

to generate one pixel in one output feature map.
A total of M output feature maps will form set of input feature maps for the

next convolutional layer.




Real-life CNN

Layer6~8
204¢ Joag \dense
dense’| [densé
o] 1 1000
Y & 192 92 128 Max L L
i 204 2048
228\ Ji6rig Max 128 Max pooling *
Uof 4 pooling pooling
3 PE]
Layer 1 2 3 4 5

input_fm (N) 3 | 48 | 256 | 192 | 192
output_fm (M) | 48 | 128 | 192 | 192 | 128
fm row (R) 55 | 27 | 13 | 13 | 13
fm col. (C) 55 | 27 | 13 | 13 | 13

kernel (K) 11 | ¢
stride (S) 4
set # 2

[N ol W) |
— e
'—l
—




Roofline Model

Computational roof (GFLOPS)
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Computation Resource
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PE is the basic computation unit for
convolution

All data for processing are stored on
the external memory (DRAM)

Data are cached in on-chip buffers
before being fed to PE

Buffers are used to cover computation
time with data transfer time

On-chip interconnect is dedicated for
data communication between PEs
and on-chip buffers



Design Overview

e Loop tiling is needed to fit a small portion of data on chip, an improper tilling
may degrade the efficiency of data reuse.

e Processing elements and buffer banks organizing should be carefully
considered to process on-chip data efficiently.

e Throughput of processing elements should match with the FPGA'’s off-chip
interface bandwidth (the platform itself has PCI-Express 2.0 x8 ~4GB/s).



Computation Optimization

The objective of optimization is to fully utilize all of computation resources on
FPGA hardware platform by techniques as follows,

e Loop unrolling
e Loop pipelining
e Tile size selection



Loop Unrolling

Loop unrolling is a technique to exploit parallelism between loop iterations
and reduce iteration overhead by creating multiple copies of the loop body and
adjusting loop iteration counter.

A normal rolled loop:

int sum = @,

for(int i = 8; 1 < 18; i++) {
[1

sum += a[i]; Unrolled by Vivado HLS with unroll factor = 2:
3
! int sum = 8;
After the loop is unrolled by a factor of 2, the loop becomes: for(int 1 = 0; 1 < 10; i++) {
#pragma HLS unroll factor=2
int sum = 8; SHE =
2

for(int i = 8; i < 18; i+=2) { !

sum += a[i];

sum += al[i+l];



Loop Pipelining
Loop pipelining is a technique in high-level synthesis to improve system
throughput by overlapping the execution of operations from different loop iteration.

With Fipelining

Without Pipelining
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Tile Size Selection

On-chip memory is limited. To help ensure data reuse, loop
tiling is needed to make a proper portion of data chunks, design
variants with different loop tile size will also have significantly
different performance.

([ 0 <TmxTn < (# of PEs)
0« Tm < M

{ D< T N

D T B

0<Te< C

The space of all legal tile sizes



Computational Performance

Computational performance (computational roof) can be calculated by
the below equation.

computational roof
total number of operations

number of erecution cycles
2 B O x M x N XK x K

[T{‘i—lX[%—IX’I%X’I%X(TrXTCXI(XI{—FP)

2 BocO» MxN x K x K

H}i]x[%]xRxCxKxK
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where P = pipeline depth — 1.



Proposed Accelerator Structure

for (row=0; row<R; row—++) {
for(col=0; col<C; col++) {
for (to=0; to<M; to++) {
for(ti=0; ti<N; ti++) {
for(i=0; i<K; i+4) {
for (j=0; j<K; j++) {
L: output-fm[to][row][col] 4+=
weights[to ][ ti][i][]j]=*
input_fm [ti][S*row+i][S*col+]];

Frr o)

//on—chip data computation
for (i=0; i<K; i++) {
for (j=0; j<K; j++) {
for(trr=row; trr<min(row+Tr R); trr4++){
for (tcc=col; tcc<min(col+Tc,C); tcc++){
for (too=to; too<min(to+Tm,M); too+-+){
#pragma HLS UNROLL
for(tii=ti; tii<min(ti4+Tn,N); tii++){
#pragma HLS UNROLL

i = output_fm[too ][ trr][tcc] +=
weights [too [ tii J[i][j]=*
input_fm[tii][S*trrd+i][S*xtcctj];

E B I

Original

After unrolled, pipelined and tiled

Note that loop iterators i and j are not tiled because of the relatively small size of convolution

window size K in CNN.

*without the optional factor = N , loop will be fully unrolled and pipelined.




Limitations of Loop Unrolling and Pipelining

Both loop pipelining and loop unrolling exploit the parallelism between loop
iterations, but parallelism between loop iterations is limited by two main factors:

e Data dependencies between loop iterations
e Number of available hardware resources



Memory Access Optimization

Design variants with higher computation roof doesn’t necessarily achieve the
higher performance under memory bandwidth constraints.

So, it is a must to reduce communication volume with higher data reuse and
data locality by loop transformation techniques, this work uses polyhedral-based
optimization to identify all of legal loop transformations.

*The polyhedral model is a geometry as well as a linear algebra, its detail is
deep in linear algebra & geometry that the paper doesn’t say about it much.



Memory Transfer and Local Promotion of CNN Layer

for (row=0; row<R; row+=Tr) { 1. Input/output feature maps and
for{ col=0: col=C; cel+=Ic) { .
for (to=0; to<M; to+=Tm) { weights are loaded
For (T1=0; LN Ti4=Tn) { 2. Computation engines start to
//load weights compute
A ledd THREUE feRiURe Thaps 3. Output feature maps are stored

L: foo(output_fm(to,row,col), back to main memory
weights(to, ti),
input_fm(ti,row,col));

//store output feature maps If innermost loop is irrelevant to
}(_,) any array, local memory promotion can
b3 be used to reduce the redundant

operation between loop iterations.
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Design Space Exploration
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CTC Ratio

Computation to Communication Ratio
total number of operations

total amount of external data access
2x BxCx MxNxKx K
Qjp X Bt’n -+ Qyyght X nght + Qout X Bout

where
Bin =Th(STr + K — S)(ST. + K — 5)
Bught = T K
Bowe = 0 1.1,
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Layer Optimal Solution and Cross-Layer Optimization

Optimal Unroll Factor
(L' T

Execution Cycles

Layer 1 (48, 3) 366025
Layer 2 (20, 24) 237185
Layer 3 (96, 5) 160264
Layer 4 (95, 5) 120198
Layer 5 (32, 15) 80132
Total - 963804
Cross-Layer
Optimizagion 85 7) i

Designing an accelerator with different unroll factor across different convolutional layers
requires re-configure FPGA for interconnects and computation engines.

An alternative approach is to find the cross-layer optimal unroll factor, the unified unroll factor
<64, 7> has only 5% degradation compared to total execution cycles of each optimized layers.
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Implementation Overview

- The whole system fits in single FPGA chip
prm=— and uses data from DDR3 for external
controller | p=p  Accelerator storage

FIFO
FIFO
1

MicroBlaze is used to assist CNN startup
communication and time measurement

| - | | e | L MicroBlaze Trz::er Tr:ijfer
imer Engine0 Enginel . .
i v - AXIl4Lite bus is for command transfer
AXl4Lite i
Axia - AXl4 bus is for data transfers
Vemor nteriace S - Accelerator receives commands from
ontroller . .
t : MicroBlaze through AXI4Lite bus
DDR3 Off-chip
interface

- Data transfer engine transfers data between
accelerator and AXI4 bus through FIFO
interfaces, it uses 2 |IP for each engine

Main Memory




Block Diagram of Proposed Accelerator
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Memory Sub-System

I%l phases

|
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Double buffer set are used to realize ping-pong operations, it has 2 independent data channels.

1) First phase, computation engine is processing with input buffer set 0 while copying the next phase

data to input buffer set 1.
2) The next phase will do the opposite operation.
3) When [N/Tn] phase is done, the result of output feature maps are stored to DRAM.

This is the ping-pong operation, it holds results in output buffer set 0/1 until the end of each [N/Tn]
phase before buffer sets generate new results, to increase bandwidth utilization and data reuse.



|IP-DRAM Bandwidth (Vivado 2013.4)

MB/s
MB/s from 32bit to 1024bit 2333
3500 4000
3000 3500
_ 3000
2500
2000 2000
i 1500
1000
1000 500
500 0
==& 1 3 9 11 13 15 IP#
0
0 200 400 600 800 1000 1200 Dbitwidth —8—32 bit
Single IP’s bandwidth-bitwidth relation Bandwidth-IP numbers relation

Increase of IP’s bitwidth has no effect on bandwidth (400 MB/s under 100 MHz).

Bandwidth almost linearly increases by adding IP interfaces. In the design, a minimal
bandwidth of 1.55 GB/s is required. Therefore, 4 IP interfaces are sufficient for this design.
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e CPU E5-2430 (@2.20GHz) with 15MB cache
e Xilinx VC707 board with FPGA chip Virtex7 485t (@100MHz)

Implemented with Vivado HLS (v2013.4). It enables implementing the
accelerator with C and exporting the RTL as a Vivado’s IP core.

C code of CNN is parallelized by adding HLS-defined pragma.
Validated by timing analysis tool.

Pre-synthesis simulation with C simulation and C/RTL co-simulation.
Exported RTL is synthesized and implemented in Vivado (v2013.4).



Comparison to Previous Implementation

ICCD2013 ASAP2009 FPL2009 [6] FPL2009 [6] PACT2010 ISCA2010 [3] | Our Impl.

[12] [14] 2]
Precision fixed point 16bits fixed 48bits fixed 48bits fixed fixed point 48bits fixed 32bits float
Frequency 150 MHz 115 MHz 125 MHz 125 MH= 125 MHz 200 MHz 100 MHz
FPGA chip | Virtex6 Virtex5 Spartan-3A Virtex4 SX35 | Virtexh Virtex5 Virtex7

VLX240T LX330T DSP3400 SX240T SX240T VX485T
FPGA ca- | 37,680 slices | 51,840 slices | 23,872 slices | 15,360 slices | 37,440 slices | 37,440 slices | 75,900 slices
pacity 768 DSP 192 DSP 126 DSP 192 DSP 1056 DSP 1056 DSP 2800 DSP
LUT type 6-input LUT | 6-input LUT | 4-input LUT | 4-input LUT | 6-input LUT | 6-input LUT | 6-input LUT
CNN Size 2.74 GMAC 0.53 GMAC 0.26 GMAC 0.26 GMAC 0.53 GMAC 0.26 GMAC 1.33 GFLOP

8.5 GMACS 3.37 GMACS | 2.6 GMACS 2.6 GMACS 3.5 GMACS 8 GMACS 61.62
Performance GFLOPS

17 GOPS 6.74 GOPS 5.25 GOPS 5.25 GOPS 7.0 GOPS 16 GOPS 61.62 GOPS
Performance| 4.5E-04 1.3E-04 2.2E-04 3.42E-04 1.9E-04 4.3E-04 8.12E-04
Density GOPs/Slice GOPs/Slice GOPs/Slice GOPs/Slice GOPs/Slice GOPs/Slice GOPS/Slice

* GMACS (giga multiplication and accumulation per second)

** GOPS (giga operations per second)




Resource Utilization

Resource DSP | BRAM LUT FF

Used 2240 1024 186251 | 205704
Available 2800 2060 303600 | 607200
Utilization | 80% 50% 61.3% | 33.87%

Placement and routing is completed by Vivado tool set




Performance Comparison to CPU

float CPU 2.20GHz (ms) FPGA
32 bit Ithd -O3 | 16thd -O3 | (ms) | GFLOPS
layer 1 98.18 19.36 7.61 27.50
layer 2 094.66 27.00 h.ab 83.79
layer 3 77.38 24.30 3.79 78.81
layer 4 65.58 18.64 2.88 77.94
layer 5 40.70 14.18 1.93 77.61
Total 376.50 103.48 21.61 -
Overall
GFLOPS 3.54 12.87 61.62
Speedup 1.00x 3.64x 17.42x




Power Consumption and Energy

Intel Xeon 2.20GHz

T thread -O3 | 16 threads -03 | FPGA

Power (Watt) 95.00 95.00 18.61
Comparison 91X B.lx 1=
Energy (J) 35.77 9.83 0.40
Comparison 89.4x 24.6x 1%

Measure CPU and FPGA runtime power performance




Power Measurement




Resource Occupation

32-bit DSP | LUT | FF
Fixed point(adder) z 0 0
Fixed point(mul.) 2 0 0
Floating point(adder) 2 214 | 227
Floating point(mul.) 3 135 | 128
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There are two different methods work on FPGA-based CNN accelerator.
First, CNN applications are focused on optimizing computation engines,

e Building CNN application mainly by software implementation while using
hardware systolic architecture to do the filtering convolution job

e Implementing CNN application mainly uses the parallelism within feature
maps and convolution kernel

Second, considering CNN’s communication issue, and chooses to maximize data
reuse and reduce memory bandwidth requirement to the minimum.



This work proposes Roofline-model-based method for CNN’s FPGA acceleration.

e Optimize both CNN’s computation and memory access

e Model all possible designs in roofline model to find the best design for
each layer

e Find the best cross-layer design by enumeration

e Realize an implementation on Xilinx VC707 board



This work is such a platform-specific; it needs to re-design for every
single change of the platform.

- Enumeration of an optimal solutions in a new design space
- Tile size selection (depends on on-chip memory capacity)
- Memory subsystem (timing of data transfer and compute phase)

- Off-chip data communication (# of IP interfaces, PCI-Express lanes)

Better to have a comparison to GPU
Need to pay for some of development tools (synthesizer, etc.)



This work inspired me to look deeper into applications of deep CNN for:
e Facial/object recognition
e |mage classification

These are not a new sort of field, but | think they are still interesting in several
ways. Many institutions have been working to increase accuracy of classifier and
other improvements.

Also, optimizing accelerator design is remarkable.
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Xilinx Vivado high-level synthesis tool: http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

Loop unrolling & pipelining: http://www.xilinx.
com/support/documentation/sw _manuals/xilinx2015 2/sdsoc doc/topics/calling-coding-
quidelines/concept pipelining loop unrolling.html

Loop parallelism & tranformation: http://parlab.eecs.berkeley.edu/wiki/_media/patterns/loop_parallelism.pdf

FPGA platform: http://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html#overview
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