
Optimizing FPGA-based Accelerator Design for
Deep Convolutional Neural Networks

High Performance Computing 2015

Matsuoka Lab.
Tokyo Institute of Technology, Japan
King Mongkut’s Institute of Technology Ladkrabang, Thailand

Piyawath Boukom

Paper
Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural Networks

Chen Zhang, Guangyu Sun, Yijin Guan - Peking University, Beijing, China

Peng Li, Bingjun Xiao - University of California, Los Angeles, USA

Jason Cong - PKU/UCLA Joint Research Institute in Science and Engineering

FPGA’15 - 23rd 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (Pages 161 - 170)

Link: http://dl.acm.org/citation.cfm?id=2689060

http://dl.acm.org/citation.cfm?id=2689060

Outline
1. Introduction
2. Basics of CNN and Roofline model
3. Accelerator design exploration
4. Implementation details
5. Evaluation
6. Conclusion

Introduction
Convolutional neural network (CNN) is a deep learning architecture extended

from artificial neural network.

A CNN design processes data with multiple layers of neuron connections to
achieve high accuracy in image recognition.

Y. LeCun 1998, Gradient-based learning applied to document recognition

Introduction (cont.)

Why convolution for recognition ?

● Translation invariance
● Fewer parameters
● Stride can be > 1 (accuracy and computational demand tradeoff)
● Dependencies are local

Introduction (cont.)
Due to general processors are not efficient for CNN implementation and can

hardly to meet the performance requirement. Thus, FPGA and GPU have been
proposed to improve performance of CNN design.

FPGA based accelerators have advantages of good performance, high energy
efficiency, fast development round, and capability of reconfiguration.

Introduction (cont.)
If an accelerator structure is not carefully designed, computation throughput

cannot match the memory bandwidth, that means performance is degraded due to
under-utilization of either logic resource or memory bandwidth.

It is important to find the optimal solution, especially when limitations on
computation resource and memory bandwidth are considered.

Main Works

● Quantitatively analyze computing throughput and require memory bandwidth
of any potential solution of a CNN design on a FPGA platform.

● Identify all possible solutions in the design space using a roofline model and
find the optimal solution for each layer in design space.

● Propose CNN accelerator design with uniform loop unroll factors across
different convolutional layers.

*This work ONLY aims on speeding up the feedforward computation, an
integration with other optional layers, such as sub-sampling or max pooling layers,
will be studied in future work.

Outline
1. Introduction
2. Basics of CNN and Roofline model
3. Accelerator design exploration
4. Implementation details
5. Evaluation
6. Conclusion

Graph of Convolutional Layer

The convolutional layers receives N feature maps as input.

Each input feature map is convolved by a shifting window with a K x K kernel
to generate one pixel in one output feature map.

A total of M output feature maps will form set of input feature maps for the
next convolutional layer.

Real-life CNN

Roofline Model

- CTC ratio or Operations per DRAM traffic

- Computation roof is the peak performance
provided by all available computation
resources on the platform

Outline
1. Introduction
2. Basics of CNN and Roofline model
3. Accelerator design exploration
4. Implementation details
5. Evaluation
6. Conclusion

Overview of Accelerator Design

- PE is the basic computation unit for
convolution

- All data for processing are stored on
the external memory (DRAM)

- Data are cached in on-chip buffers
before being fed to PE

- Buffers are used to cover computation
time with data transfer time

- On-chip interconnect is dedicated for
data communication between PEs
and on-chip buffers

Design Overview
● Loop tiling is needed to fit a small portion of data on chip, an improper tilling

may degrade the efficiency of data reuse.
● Processing elements and buffer banks organizing should be carefully

considered to process on-chip data efficiently.
● Throughput of processing elements should match with the FPGA’s off-chip

interface bandwidth (the platform itself has PCI-Express 2.0 x8 ~4GB/s).

Computation Optimization
The objective of optimization is to fully utilize all of computation resources on

FPGA hardware platform by techniques as follows,

● Loop unrolling
● Loop pipelining
● Tile size selection

Loop Unrolling
Loop unrolling is a technique to exploit parallelism between loop iterations

and reduce iteration overhead by creating multiple copies of the loop body and
adjusting loop iteration counter.

A normal rolled loop:

Unrolled by Vivado HLS with unroll factor = 2:

Loop Pipelining
Loop pipelining is a technique in high-level synthesis to improve system

throughput by overlapping the execution of operations from different loop iteration.

Tile Size Selection

On-chip memory is limited. To help ensure data reuse, loop
tiling is needed to make a proper portion of data chunks, design
variants with different loop tile size will also have significantly
different performance.

The space of all legal tile sizes

Computational Performance

Computational performance (computational roof) can be calculated by
the below equation.

Proposed Accelerator Structure

 Original After unrolled, pipelined and tiled

 Note that loop iterators i and j are not tiled because of the relatively small size of convolution
window size K in CNN.

*without the optional factor = N , loop will be fully unrolled and pipelined.

Limitations of Loop Unrolling and Pipelining
Both loop pipelining and loop unrolling exploit the parallelism between loop

iterations, but parallelism between loop iterations is limited by two main factors:

● Data dependencies between loop iterations
● Number of available hardware resources

Memory Access Optimization
Design variants with higher computation roof doesn’t necessarily achieve the

higher performance under memory bandwidth constraints.

So, it is a must to reduce communication volume with higher data reuse and
data locality by loop transformation techniques, this work uses polyhedral-based
optimization to identify all of legal loop transformations.

*The polyhedral model is a geometry as well as a linear algebra, its detail is
deep in linear algebra & geometry that the paper doesn’t say about it much.

Memory Transfer and Local Promotion of CNN Layer
1. Input/output feature maps and

weights are loaded
2. Computation engines start to

compute
3. Output feature maps are stored

back to main memory

If innermost loop is irrelevant to
any array, local memory promotion can
be used to reduce the redundant
operation between loop iterations.

 Before After

Design Space Exploration

P denotes the minimal bandwidth requirement

CTC Ratio

Layer Optimal Solution and Cross-Layer Optimization

Designing an accelerator with different unroll factor across different convolutional layers
requires re-configure FPGA for interconnects and computation engines.

An alternative approach is to find the cross-layer optimal unroll factor, the unified unroll factor
<64, 7> has only 5% degradation compared to total execution cycles of each optimized layers.

Outline
1. Introduction
2. Basics of CNN and Roofline model
3. Accelerator design exploration
4. Implementation details
5. Evaluation
6. Conclusion

Implementation Overview
- The whole system fits in single FPGA chip

and uses data from DDR3 for external
storage

- MicroBlaze is used to assist CNN startup
communication and time measurement

- AXI4Lite bus is for command transfer

- AXI4 bus is for data transfers

- Accelerator receives commands from
MicroBlaze through AXI4Lite bus

- Data transfer engine transfers data between
accelerator and AXI4 bus through FIFO
interfaces, it uses 2 IP for each engine

Block Diagram of Proposed Accelerator

 - Two-level unrolled loops are
implemented as concurrently executing
computation engines

- 64 poly structures are duplicated for
unrolling loop Tm

Memory Sub-System

Double buffer set are used to realize ping-pong operations, it has 2 independent data channels.

1) First phase, computation engine is processing with input buffer set 0 while copying the next phase
data to input buffer set 1.

2) The next phase will do the opposite operation.
3) When [N/Tn] phase is done, the result of output feature maps are stored to DRAM.

This is the ping-pong operation, it holds results in output buffer set 0/1 until the end of each [N/Tn]
phase before buffer sets generate new results, to increase bandwidth utilization and data reuse.

IP-DRAM Bandwidth (Vivado 2013.4)

 Single IP’s bandwidth-bitwidth relation Bandwidth-IP numbers relation

Increase of IP’s bitwidth has no effect on bandwidth (400 MB/s under 100 MHz).

Bandwidth almost linearly increases by adding IP interfaces. In the design, a minimal
bandwidth of 1.55 GB/s is required. Therefore, 4 IP interfaces are sufficient for this design.

Outline
1. Introduction
2. Basics of CNN and Roofline model
3. Accelerator design exploration
4. Implementation details
5. Evaluation
6. Conclusion

Experiment Setup

1. Implemented with Vivado HLS (v2013.4). It enables implementing the
accelerator with C and exporting the RTL as a Vivado’s IP core.

2. C code of CNN is parallelized by adding HLS-defined pragma.
3. Validated by timing analysis tool.
4. Pre-synthesis simulation with C simulation and C/RTL co-simulation.
5. Exported RTL is synthesized and implemented in Vivado (v2013.4).

● CPU E5-2430 (@2.20GHz) with 15MB cache
● Xilinx VC707 board with FPGA chip Virtex7 485t (@100MHz)

Comparison to Previous Implementation

* GMACS (giga multiplication and accumulation per second)

** GOPS (giga operations per second)

Resource Utilization

Placement and routing is completed by Vivado tool set

Performance Comparison to CPU

Power Consumption and Energy

Measure CPU and FPGA runtime power performance

Power Measurement

Resource Occupation

Outline
1. Introduction
2. Basics of CNN and Roofline model
3. Accelerator design exploration
4. Implementation details
5. Evaluation
6. Conclusion

Related Works
There are two different methods work on FPGA-based CNN accelerator.

First, CNN applications are focused on optimizing computation engines,

● Building CNN application mainly by software implementation while using
hardware systolic architecture to do the filtering convolution job

● Implementing CNN application mainly uses the parallelism within feature
maps and convolution kernel

Second, considering CNN’s communication issue, and chooses to maximize data
reuse and reduce memory bandwidth requirement to the minimum.

Conclusion
This work proposes Roofline-model-based method for CNN’s FPGA acceleration.

● Optimize both CNN’s computation and memory access
● Model all possible designs in roofline model to find the best design for

each layer
● Find the best cross-layer design by enumeration
● Realize an implementation on Xilinx VC707 board

Opinion
● This work is such a platform-specific; it needs to re-design for every

single change of the platform.

- Enumeration of an optimal solutions in a new design space

- Tile size selection (depends on on-chip memory capacity)

- Memory subsystem (timing of data transfer and compute phase)

- Off-chip data communication (# of IP interfaces, PCI-Express lanes)

● Better to have a comparison to GPU
● Need to pay for some of development tools (synthesizer, etc.)

Inspiration
This work inspired me to look deeper into applications of deep CNN for:

● Facial/object recognition

● Image classification

These are not a new sort of field, but I think they are still interesting in several
ways. Many institutions have been working to increase accuracy of classifier and
other improvements.

Also, optimizing accelerator design is remarkable.

Additional References
Xilinx Vivado high-level synthesis tool: http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

Loop unrolling & pipelining: http://www.xilinx.
com/support/documentation/sw_manuals/xilinx2015_2/sdsoc_doc/topics/calling-coding-
guidelines/concept_pipelining_loop_unrolling.html

Loop parallelism & tranformation: http://parlab.eecs.berkeley.edu/wiki/_media/patterns/loop_parallelism.pdf

FPGA platform: http://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html#overview

http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/sdsoc_doc/topics/calling-coding-guidelines/concept_pipelining_loop_unrolling.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/sdsoc_doc/topics/calling-coding-guidelines/concept_pipelining_loop_unrolling.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/sdsoc_doc/topics/calling-coding-guidelines/concept_pipelining_loop_unrolling.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/sdsoc_doc/topics/calling-coding-guidelines/concept_pipelining_loop_unrolling.html
http://parlab.eecs.berkeley.edu/wiki/_media/patterns/loop_parallelism.pdf

