High Performance Computing

Yoshifumi Motoyama
Tokyo Institute of Technology
Dept. of mathematical and computing sciences
Matsuoka Lab.

Review Paper

* Optimized Deep Learning Architectures with Fast Matrix
Operation Kernels on Parallel Platform

—-Ying Zhang
“ University of Science and Technology of
China

—Saizheng Zhang
*Stony Brook University

Tools with Artificial Intelligence (ICTAI), 2013 IEEE 25th
International Conference on

<http://ieeexplore.ieee.org/xpl/mostRecentlssue.jsp?
punumber=6734837>

outline

Introduction

Model description of deep architectures
Optimized parallel deep architectures
Fast matrix operation kernels
Experimental results

o Uk W E

. Conclusion
e Comment

1. Introduction

* Recently, notable research has been devoted
in fields of deep learning.

* Deep architecture allows hierarchical
unsupervised feature learning from higher
level statistics formed by the composition of
lower level patterns, and it can be fine-turned
to memory specific object classes in a more
abstractive way.

1. Introduction

 The author’s primary concern is to construct
an efficient and flexible general deep learning
architecture on parallel devices.

2. Model description of deep
architectures

* Deep architecture comes from neural network
(or multi-layer perceptron).

BP-NN

* Traditional backpropagation neural
network (BP-NN) only has one hidden layer.

W

», The shallow BP-NN serves as the basic building
o\ M block of the denoising autoencoder(DAE),
v S .__/_.;'.13‘ enoiiC) conventional neural network(CNN) and
A the restricted boltzman machine(RNM)

(a) aneuron model

MLP

A multi-layer perceptron (MLP) M, consists
of

input layer L, (L,)
several hidden layers
Output layer L, (L. qg)

SDAE

SDAE is a hierarchical structure made up of
several DAEs in a stacking manner.

(d) stacked (deep) denoising autoencoder

RBM

The restricted boltzman machine (RBM) is a
kind of bidirectionally connected network
considering of stochastic units.

- Input layer x
- Hidden layer h

between which the symmetric connections are
described by weights W and bias u, z.

RBM

A marginal probability of x in RBM is defined
using an energy model,

exp(hTWx + ulx +z"h)
p(x) =) 7

Z is the partition function and the conditional
probabilities of p(h|x) and p(x|h) are given as

fOHOWS: p(h; = 1|x) = sigm(W;x + z;)
p(x; = 1|h) = sigm(W h + u;)

RBM

To train a RBM, they use contrastive divergence
to estimate the gradient step of W:

Awﬁ = € (<thi.>data - <th'z'.>recon)

CN

The Convolutional Network (CN) can be
considered as 2D version of MLP.

* |n each processing level, it has filtering layer
with several convolutional kernels

- A kernel K is described with its weights W, bias
b, and activation function f,

3. Optimized parallel deep
architectures

 The matrix operations in propagation process
of training and testing are available for
employing parallel strategy.

- The matrix operation can be divide into
smaller computing units.

* Layer-wise flexibility requirements are very
important for an uniform layer structure to
describe different kind of deep learning

architecture.

A. Parallel device(GPU) and its relation to deep architectures

Optimized parallel deep learning
structure
GPU is organized into series of streaming

processors (SP) that share instruction cache and
can run thousands of threads per app.

16

B. Overview of our parallel learning architecture

Parallel deep learning architectures

Parallel deep learning architecture contains
both the host stage B = {T...;i. TH} and the device
stage E = {R, K(¢), D, T3}

This framework includes
- Data holding D
- Layer operations K

Parallel deep learning architectures

A basic stage of propagation is modeled as follow:

[Vl, m] —
fkernel(vla---a <Tctl Tctl>prop tl ---:tn)

where (-,) prop gives the propagation descriptions of V based

on Tg;ll and TCEt)l (e.g. safety checks, processing orders in the
whole propagation). For parameter initialization of V;, we
have:

V. o grand(<Tctl Ta[)rand: VZ)

19

C. Flexible Layer Structures

Optimized matrix based architecture

In author’s optimized matrix based
architecture, they map M. to a matrix based
model Gy, = 1D, O} :

A'jdeep — Gdee.p : {k @deep} — D Fdeep — (bprop

deep

where D is the multi-dimensional vector set

storing layer-wise parameters in matrix version,
and ¢ is the set of operations over D.

¢ includes all possible operations launched in
hosts and devices.

D. Dataset Storing and Accessing

Data storing approach

 The dataset’s accessing speed can be the
bottleneck of the training and testing
performance.

- poor data storing strategy could diminish up
to 10% of the speed.

Data storing approach

 Two data storing approaches are available
- store the data in separated device memory

for flexible transformation and accessing, but the
time cost is high.

- store the whole dataset in a continuous memory
block in device for accessing speed, but the
flexibility cannot be guaranteed.

=> The author achieve a balance between the
speed and flexibility.

4. Fast matrix operation kernels

Optimized matrix operation kernels contribute
a lot to the deep architecture.

- design new matrix operation algorithms on
parallel devices and use GPU as the platform

A. CUBLAS Library

CUBLAS Library

 The NVIDIA CUDA Basic Linear Algebra
Subroutines (CUBLAS) library is a GPU-
accelerated version of the complete standard
BLAS library that delivers 6 to 17 times faster
performance than the latest MKL BLAS.

B. Fast optimized matrix kernels

Fast optimized matrix kernels

* The idea behind their kernels is that they want
to maximize the utilization of the cache
memory in each block.

* Each block is only used for one row calculation

gNewGemvf

gNewGermvf is for vector-matrix multiplication, which is for example responsible
for calculating every layers output and the partial derivative of objective function
with the respect of layer parameters.

Algorithm 1 Vector-Matrix Multiplication (in block 7)

Ensure: Cache memory of temporal array buff[N x M] is allocated.

L. buff[i] + 0, where i = 1,..., N x M

: 2. Parallelly do in each thread i:

: Load x[i] and A[j][i]

: buff[i] «+ buff[i] + x[i] - A[j][i]

. if i > blocksize(orN x M) then

repeat
buff[i mod N x M| + buff[i mod N x M)+ x[i] - A[j][i]
i i+NxM

9: until i > size(A[j])

10: end if

11: 3. Parallelly do in N threads in the first warp of the block:

12: if i > N then

13: repeat
14: buff[i mod N] < buff[i mod N]+ buff[i]
15: lll"lﬁl i< N

The key is that each block they only perform 15 &%~

. 18: repeat

one row calculating. 19: ifi € [271,2") then | |
20: buff[i mod 2"~ 1] < buff[i mod 2"~'] + buff[i]
21: end if

22: n<—n-—1
23: untiln <0
24: 4. y[j] + buff[0]

gNewGerf

gNewGerf is for vector-vector multiplication, which is for example responsible for
calculating the partial derivative of E with the respect of weights W in propagation
process.

Algorithm 2 Vector-Vector Multiplication (in block 7)

Parallelly do in each thread i:
Load x[i] and y[j] and the jth row of A
buff_y < y|j]
ALl = ALl + x[d] - buff v:
if i > N x M then
repeat
A[j][i mod N x M| = A[j][i mod N x M|+ z[i] - buff y
i—i+NxM
until i > size(Alj])
end if

Without add operation, like
step 3 in Algorithm 1.

PRI ARLNY T

—

31

5. Experimental results

They conducted three independent
experiments to show the structural and speed
improvements gained from their optimized layer
architectures and optimized matrix kernels.

A. Pure kernel speed comparison

Pure kernel speed comparison

In first experiment, they focus on the pure
performance of their kernels without
implementing them into deep architecture’s
propagation process.

New created kernels

The author create three kernels
- gNewGermvf for vector-matrix multiplication

- gNewGermvfT for vector-matrix multiplication
(transposed version)

- gNewGerf for vector-vector multiplication

They are compared with CUBLASs kernels
- Sgemv(CUDA)

- Sgemv'(CUDA)

- Sger(CUDA)

And the corresponding kernel in CPU

Tests are performed on square matrices scaled
from 256 to 4096, and on rectangular matrices
with the size of 128 x N and 256 x N, where N
ranges from 256 (or 512) to 16384.

The time saving is evaluate like follows:

TeuBras/cpus — Lours .
. - / . ° X 100(/0

Xsaqving —

TCUBLA S/CPUs

Test results

The average time saving is about +77.7% to
+96.2% respectively.

TABLE I

SPEED COMPARISON OF VECTOR-MATRIX MULTIPLICATION (NORMAL AND TRANSPOSED) (100000 ITERATIONS)

Matrix Size gNewGemvf Sgemv(CUDA) gemv(CPU) Time Saving | gNewGemvf T SgemvT (CUDA) gemvT (CPU) Time Saving
(sec) (sec) (sec) Qsaving %0 (sec) (sec) (sec) Qsaving %0
256 x 256 0.30 £0.01 1.88 £ 0.06 10.81 £0.37 +84.0,+97.2] 0.29£0.01 0.30£0.01 10.78 £0.35 +3.3,+97.3
512 x 512 1.22+£0.08 597+£0.15 42.83 £0.38 +79.6,+97.2| 1.10+0.03 1.044+0.05 40.544+0.44 —5.8,+97.4
1024 x 1024 | 4.36 £0.12 12.17+£0.11 176.54 £ 1.71 +64.2,+97.5| 4.36 £0.11 3.45+0.08 175.78 £1.65 —26.4,+97.5
2048 x 2048 | 13.274+0.11 25.554+0.17 405.01 £2.30 +48.1,+96.7| 14.81 £0.18 12.63+0.13 407.10£3.09 —17.3,+96.4
4096 x 4096 | 47.86 £ 0.23 5852+ 0.38 1778.524+4.32 +18.2,+97.3| 51.46 £0.30 48.36+0.29 1790.10£4.39 —6.4,+97.1
128 x 256 0.30+0.03 1.894+0.28 2.804+0.28 +84.1,+89.2| 0.26 £0.02 0.29-+0.02 3.08 £0.11 +10.3,+91.6
128 x 512 0.53+0.02 4.5440.08 6.76 +0.39 +88.3,+92.2| 0.54+0.03 0.64+0.05 6.70 £ 0.35 +15.6,+91.9
128 x 1024 0.67+0.04 9.814+0.14 13.08 £ 0.24 +93.2,+94.9| 0.67+0.09 1.06+0.18 13.38 £0.40 +36.8,+95.0
128 x 2048 1.224+£0.03 26.17+0.08 26.22+0.50 +95.3,4+95.3| 0.95+0.08 242+0.21 25.58 +£1.32 +60.7,4+96.3
128 x 4096 2.04+0.02 26.58+0.12 54.09+1.01 +92.3,+96.2| 1.544+0.09 4.60+0.33 56.80 £ 1.21 +66.5,497.3
128 x 8192 3.58£0.05 51.80+0.20 110.81+1.30 +93.1,+96.8| 2.66 +0.16 8.78 £0.37 111.04 £ 2.30 +69.7,4+97.6
128 x 16384 | 6.52+0.09 53.30+0.28 214.30 +2.19 +87.8,+97.0| 5.024+0.20 17.224+0.31 216.32+£2.70 +70.8,497.7
256 x 512 0.53+0.02 4.54+0.08 10.31 £0.28 +88.3,+94.9| 0.514+0.02 0.86+0.04 29.71£0.28 +40.7,494.7
256 x 1024 0.67+0.04 9.81+0.14 27.16 = 0.60 +93.2,497.6| 0.59+£0.02 0.594+0.01 28.654+0.33 0.0,+97.9
256 x 2048 1.22+£0.03 26.17+0.08 58.29 +0.83 +95.3,+97.9| 1.18+0.08 1.70+0.21 57.07 £0.75 +30.5,497.9
256 x 4096 2.04+£0.02 2658+£0.12 96.20+1.80 +92.3,+97.9| 2.244+0.07 5.33£0.29 94.19+1.37 +58.0,4+97.6
256 x 8192 3.58£0.05 51.80£0.20 200.01 £ 2.57 +93.1,+98.2| 3.39+0.10 8.98+0.41 205.88 4+ 3.10 +62.2,4+98.4
256 x 16384 | 6.52 £0.09 53.30+0.28 399.35 £ 3.89 +87.8,+98.4| 6.28+£0.22 18.304+0.41 409.55+5.61 +65.7,+98.5

37

B. Performance Comparison on MNIST Dataset

Performance comparison on MNIST
Dataset

The second experiment compares the
propagation speed differences between MLPs
using CUBLAS/CPU kernels.

MNIST Dataset

MNIST handwritten digit dataset, which consists of 60000 grey scale image of handwritten
numbers from 0 to 9 with the pixel size of 28 x 28 = 784.

A LW—~d X\
QAN RQXRYQ 4 Q
TP—ad e WL

2
7
2
5
7
4
ps
s
8
0

SUNONWe N oY

/4
6 |
/A
J 0
93
o
& Y
e 3
& 7
6 3

Evaluate way

* First, they evaluate the time cost of the entire
training epoch that includes both forward and

back propagation.

e Second, they consider only the forward
propagation process, which purely consists of
their kernels.

Test results

* First: +200% faster speed

e Second:

08

= = =
(= = o

processing iterations per sec

=

+300% faster speed

— our kernels
CUBLAS(GPU)
== kernels(CPU)

e .

z \\ - \
‘~‘1---.!P~. -.-s\~
Eeeemee- e T

See ~

40 80 160 320 640 1280 2560 5120 40 80 160 320 640 1280 2560 5120
whole epoch forward propagation

number of hidden layer units (V)

42

C. Comprehensive Evaluation on ORL/AR face database

Experiment performed on ORL and AR
face database

The third experiment considers a practical
problem of occluded face recognition using

deep learning.

- The recognition architecture consists of a SDAE
for occluded regions restoration and DNN for

recognition.

ORL Face Database

The ORL face database consists of 400 grayscale

face images of 40 people with size of 92x112
pixels.

-very limited facial expression changes.

Compared with AR face database, its image size
is smaller and the amount of images is also
relatively small.

AR Face Database

The AR face database contains
- more than 4000 face images (= 126
individuals with different facial expressions)
- illumination conditions
- occlusions (sunglasses and scarves)

 There are 26 pictures taken in two different
sessions for each individual, and 14 of them
are clean faces.

The result on ORL/AR database

DNN-
test

DNN-
train

T
i
i
|
i
i

SDAE-
test Hkernels(CPU) |
| ECUBLAS(GPU) Bkemels(CPU)
SDAE- i mour kermels HCUBLAS(GPU)
train H M our kemels
| | | T
0 05 1 15 2 25 3 3.5 4 45 5 0 o1 02 03 0.4 05 06 0.7
processing iterations per sec processing iterations per sec
Fig. 4. We test our optimized architecture equipped with our fast matrix Fig. 5. The result on AR database. As we can see, the iterations per sec
kernels on fc.al face recognition prol?lcms, this "_BS“h Is on 'ORL database. is less than ORL database, this is due to its larger amount of training data
The recognition process is divided into restoration part using SDAE and (4000+ images comparing with 400 images in ORL database).

recognition part using DDN. Three kinds of kernels are compared.

6. Conclusion

* The experimental results denote that their
kernels achieve significant speed
outperformance compared with CUBLAS/CPU
kernels.

* Parallel device’s better speed adaptability on
specific tasks could be achieved with carefully
designed kernel strategies.

