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1.Introduction

 The enduring success of Big Data applications
is leading to a change in paradigm for machine
learning research objectives.

* This presentation propose a novel, lock-free
parallelization method for the computation of
SGD for large scale machine learning
algorithms on cluster environments.



2.Gradient Descent Optimization

Algorithm for supervised learning

dataset X = {xg, ..., X;,, }

semantic labels Y = {y,, ..., ¥}

model function w

loss function x;(w) evaluate the quality of w
step size €

Wri1 = W — anxj (We)



Batch Optimization

Algorithm 1 BATCH optimization with samples X =
{xo,...,Zm]}, itcrations T, steps size ¢ and states w

1: forallt=0...T do

2: Init w1 =0

3: update w1 = w; — € Z(.\’je.x') Owx;(we)

4: Wil = wi41/|X]|

* The numerically easiest way to solve most gradient
descent optimization problems

A MapReduce parallelization for many BATCH
optimized machine learning algorithms introduced by

[5]



Stochastic Gradient Descent(SGD)

Algorithm 2 SGD with samples X = {z¢,..., 2.}, itera-
tions T', steps size € and states w

Require: € > ()
l: forallt=0...T do
2 draw j € {1...m} uniformly at random

3 update w1 — wy — €0z (wy)

4: return wr

* Online learning



Parallel SGD

Algorithm 3 SimuParallelSGD with samples X =
{ro,. .., &w}, iterations T, steps size ¢, number of threads n
and states w
Require: ¢ > 0.n > |
I: define H = [ =]
2: randomly partition X, giving H samples to each node
3: for all t £ {1,....n) parallel do
randomly shuffle samples on node 2
init v, =0
forallt=0...7T do
get the tth sample on the ith node and compute
update wy,, « w; — A (uy)
9: aggregate v= - Y " w]
10: return v

BN

Aj(we) = Owzj(we).



Mini-Batch SGD

Algorithm 4 Mini-Batch SGD with samples X =
{zo,...,xm}, iterations T, steps size €, number of threads n
and mini-batch size b
Require: € > ()

l1: forallt=0...T do

2: draw mini-batch M + b samples from X

3: InitAw, =0

4: for all z € M do

' aggregate update Aw O, x;(w;)

5
6: update w41 — wy — e Awy
7: return wr




3.Asynchronous Communication
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e Typical synchronous model (left)

* Single-sided asynchronous communication
model (right)



Overview of the asynchronous update
communication used in ASGD

node 1 node 2 node R

internal Buffer

°.

* |:Threads finished the computation of its local
mini-batch update.

* |I:Threads receives an update. When its local
mini-batch update.

* |ll: Potential data race



Global Address Space
Programming Interface (GASPI)

* GASPI uses one-sided RDMA driven
communication with remote completion to
provide a scalable, flexible and failure tolerant
parallelization framework.

* GASPI favors an asynchronous communication
model



4.The ASGD Algorithm



Parameters

T defines the size of the data partition for
each threads.

e sets the gradient step size.
b sets the size of the mini-batch aggregation.

| gives the number of SGD iterations for each
thread.



Initialization

 The data is split into working packages of size
T and distributed to the worker threads.

* A control thread generates initial, problem
dependent values for wy and communicates
wy to all workers.



Updating
(1 external buffer per thread)

1

Ac(wi,,) = wi — = (w; + u.,g‘,) + Ag(wliyy)

—

* The local state w} of thread i at iteration t is

updated by an externally modified step At(wtiﬂ)

. Wt], :unknown iteration t’ at some random thread j




Updating
(N external buffers per thread)

Ar(wiyy) =wi — ey (S0, (i) + wi) + Au(wis),

1 if |wl|l2 > 0

Y - N R R (T
N 2= Zn:o/\(u‘t')e )‘(u't’)_{ 0 otherwise

where



Parzen-Window Optimization

57 = 1 if ||(w; — eAw}) — 'u_rf,||2 < ||lwi — <wf,||(‘2
*J7"= 1 0 otherwise

* Parzen-window like function 6(i, j) to avoid
“bad” update conditions.

1

At('u»‘:+1) = [u_': 5 (u: T -u..'tj,):l a(i,7) + At('u“’:+1)

(1 external buffer per thread)



A(wi,,)= wi—1/ (Zn L (8(, n))+1)

: (Z: , (0(2, n)wyr) + w; )
+A¢(w t.+1)

(N external buffers per thread)

* 5(i,j) reduce bad effect caused by data race



ASGD updating

Legend

Qv @uwi-uv
: i ; .

Qv @;(ui+u)

| : Initial setting

Il : Parzen-window masking of w/

lll : Computing AM(Wti+1)
IV : Updating w§+1 — w — GAM(wf.H)




Mini-Batch Extension

1

Biwt) = |ui = 5 (wi+ 0f) | 86,) + Bu(uisn)




The final ASGD Update Algorithm

Algorithm 5 ASGD (X = {zo,...,Zm}, T, €, wo.b)

Require: ¢ > 0,n > 1
1: define H = | & |

2: randomly partition X, giving H samples to each node

3: for alli e {1,..., n} parallel do

4: randomh shuffle samples on node 1

o: init wg =0

6: for allt=0...7T do

7 draw mini-batch M < b samples from X
&: update wiy, « wi — eAn(wi,,)

9. send w; +1 to random node # @

10: return w;

 mini-batch size b, number of iterations T,
learning rate €, global result W,l



Data races and sparsity

* Potential data races during the asynchronous
external update come in two forms:

— (First case) update state w/ is completely
overwritten by a second state w"

— (Second case) w' reads an update from w/ while
this is overwritten by the update from w"



data race effect

e (First case) a lost message might slow down
the convergence by a margin, but is
completely harmless otherwise.

* Related work showed that for sparse problems,
data race errors are negligible.

* The asynchronous communication model
causes further sparsity, and decreases the
probability of data races.



Communication load balancing

L. 1 N
 Communication frequency - has a significant
impact on the convergence speed.

* The choice of an optimal b strongly depends
on the data and the computing environment.

* b needs to be determined experimentally.



5.Experiment

K-Means Clustering
Cluster Setup

Data

Evaluation
Experimental Results



K-Means Clustering

* unsupervised learning algorithm which tries to
find the underlying cluster structure

* n-dimentional points X = {x;},i =1,..,m
* kclusters, w ={w,},k=1,...,k



Cluster Setup

Linux cluster with a BeeGFS* parallel file
system

CPU : Intel Xeon E5-2670
16 CPUs per node

32 GB RAM and interconnected with FDR
Infiniband

64 nodes (1024 CPUs)



Data

* Synthetic Data Sets
— ground-truth

* |Image Classification (real data)

— Bag of Features



Evaluation

* compare 3 algorithms
— SimuParallelSGD by SGD
— MapReduce baseline method by BATCH
— ASGD

* |terlation I : global sum over all samples
—Igarch =T = |X]
_ISGD =T - |CPUS|
_IASGD =T = b . |CPUS|



Experimental Results
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Convergence speed
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Message Impact: error rate for # iterations
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Message Impact: time needed to reach error rate
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Conclusions

* The asynchronous communication scheme can
be applied successfully to SGD optimizations
of machine learning algorithms.

* ASGD provide superior scalability and
convergence compared to previous methods.

e Especially the early convergence property is

high practical value in large scale machine
learning.



