High Performance Computing 2015

Kento Teranishi
Tokyo Institute of Technology

Dept. of mathematical and computing sciences

Reviewed Paper

* Asynchronous parallel stochastic gradient
descent: a numeric core for scalable distributed
machine learning algorithms

[MLHPC '15 Proceedings of the Workshop on
Machine Learning in High-Performance Computing
Environments Article No. 1]

Janis Keuper and Franz-Josef Pfreundt Fraunhofer
ITWM Competence Center High Performance
Computing Kaiserslautern, Germany

A S

Outline

Introduction

Gradient Descent Optimization
Asynchronous Communication
The ASGD Algolithm
Experiments

Conclusions

1.Introduction

 The enduring success of Big Data applications
is leading to a change in paradigm for machine
learning research objectives.

* This presentation propose a novel, lock-free
parallelization method for the computation of
SGD for large scale machine learning
algorithms on cluster environments.

2.Gradient Descent Optimization

Algorithm for supervised learning

dataset X = {xg, ..., X;,, }

semantic labels Y = {y,, ..., ¥}

model function w

loss function x;(w) evaluate the quality of w
step size €

Wri1 = W — anxj (We)

Batch Optimization

Algorithm 1 BATCH optimization with samples X =
{xo,...,Zm]}, itcrations T, steps size ¢ and states w

1: forallt=0...T do

2: Init w1 =0

3: update w1 = w; — € Z(.\’je.x') Owx;(we)

4: Wil = wi41/|X]|

* The numerically easiest way to solve most gradient
descent optimization problems

A MapReduce parallelization for many BATCH
optimized machine learning algorithms introduced by

[5]

Stochastic Gradient Descent(SGD)

Algorithm 2 SGD with samples X = {z¢,..., 2.}, itera-
tions T', steps size € and states w

Require: € > ()
l: forallt=0...T do
2 draw j € {1...m} uniformly at random

3 update w1 — wy — €0z (wy)

4: return wr

* Online learning

Parallel SGD

Algorithm 3 SimuParallelSGD with samples X =
{ro,. .., &w}, iterations T, steps size ¢, number of threads n
and states w
Require: ¢ > 0.n > |
I: define H = [=]
2: randomly partition X, giving H samples to each node
3: for all t £ {1,....n) parallel do
randomly shuffle samples on node 2
init v, =0
forallt=0...7T do
get the tth sample on the ith node and compute
update wy,, « w; — A (uy)
9: aggregate v= - Y " w]
10: return v

BN

Aj(we) = Owzj(we).

Mini-Batch SGD

Algorithm 4 Mini-Batch SGD with samples X =
{zo,...,xm}, iterations T, steps size €, number of threads n
and mini-batch size b
Require: € > ()

l1: forallt=0...T do

2: draw mini-batch M + b samples from X

3: InitAw, =0

4: for all z € M do

' aggregate update Aw O, x;(w;)

5
6: update w41 — wy — e Awy
7: return wr

3.Asynchronous Communication

_p p2 p1 p2

\I e
=

time

e Typical synchronous model (left)

* Single-sided asynchronous communication
model (right)

Overview of the asynchronous update
communication used in ASGD

node 1 node 2 node R

internal Buffer

°.

* |:Threads finished the computation of its local
mini-batch update.

* |I:Threads receives an update. When its local
mini-batch update.

* |ll: Potential data race

Global Address Space
Programming Interface (GASPI)

* GASPI uses one-sided RDMA driven
communication with remote completion to
provide a scalable, flexible and failure tolerant
parallelization framework.

* GASPI favors an asynchronous communication
model

4.The ASGD Algorithm

Parameters

T defines the size of the data partition for
each threads.

e sets the gradient step size.
b sets the size of the mini-batch aggregation.

| gives the number of SGD iterations for each
thread.

Initialization

 The data is split into working packages of size
T and distributed to the worker threads.

* A control thread generates initial, problem
dependent values for wy and communicates
wy to all workers.

Updating
(1 external buffer per thread)

1

Ac(wi,,) = wi — = (w; + u.,g‘,) + Ag(wliyy)

—

* The local state w} of thread i at iteration t is

updated by an externally modified step At(wtiﬂ)

. Wt], :unknown iteration t’ at some random thread j

Updating
(N external buffers per thread)

Ar(wiyy) =wi — ey (S0, (i) + wi) + Au(wis),

1 if |wl|l2 > 0

Y - N R R (T
N 2= Zn:o/\(u‘t')e)‘(u't’)_{ 0 otherwise

where

Parzen-Window Optimization

57 = 1 if ||(w; — eAw}) — 'u_rf,||2 < ||lwi — <wf,||(‘2
*J7"= 1 0 otherwise

* Parzen-window like function 6(i, j) to avoid
“bad” update conditions.

1

At('u»‘:+1) = [u_': 5 (u: T -u..'tj,):l a(i,7) + At('u“’:+1)

(1 external buffer per thread)

A(wi,,)= wi—1/ (Zn L (8(, n))+1)

: (Z: , (0(2, n)wyr) + w;)
+A¢(w t.+1)

(N external buffers per thread)

* 5(i,j) reduce bad effect caused by data race

ASGD updating

Legend

Qv @uwi-uv
: i ; .

Qv @;(ui+u)

| : Initial setting

Il : Parzen-window masking of w/

lll : Computing AM(Wti+1)
IV : Updating w§+1 — w — GAM(wf.H)

Mini-Batch Extension

1

Biwt) = |ui = 5 (wi+ 0f) | 86,) + Bu(uisn)

The final ASGD Update Algorithm

Algorithm 5 ASGD (X = {zo,...,Zm}, T, €, wo.b)

Require: ¢ > 0,n > 1
1: define H = | & |

2: randomly partition X, giving H samples to each node

3: for alli e {1,..., n} parallel do

4: randomh shuffle samples on node 1

o: init wg =0

6: for allt=0...7T do

7 draw mini-batch M < b samples from X
&: update wiy, « wi — eAn(wi,,)

9. send w; +1 to random node # @

10: return w;

 mini-batch size b, number of iterations T,
learning rate €, global result W,l

Data races and sparsity

* Potential data races during the asynchronous
external update come in two forms:

— (First case) update state w/ is completely
overwritten by a second state w"

— (Second case) w' reads an update from w/ while
this is overwritten by the update from w"

data race effect

e (First case) a lost message might slow down
the convergence by a margin, but is
completely harmless otherwise.

* Related work showed that for sparse problems,
data race errors are negligible.

* The asynchronous communication model
causes further sparsity, and decreases the
probability of data races.

Communication load balancing

L. 1 N
 Communication frequency - has a significant
impact on the convergence speed.

* The choice of an optimal b strongly depends
on the data and the computing environment.

* b needs to be determined experimentally.

5.Experiment

K-Means Clustering
Cluster Setup

Data

Evaluation
Experimental Results

K-Means Clustering

* unsupervised learning algorithm which tries to
find the underlying cluster structure

* n-dimentional points X = {x;},i =1,..,m
* kclusters, w ={w,},k=1,...,k

Cluster Setup

Linux cluster with a BeeGFS* parallel file
system

CPU : Intel Xeon E5-2670
16 CPUs per node

32 GB RAM and interconnected with FDR
Infiniband

64 nodes (1024 CPUs)

Data

* Synthetic Data Sets
— ground-truth

* |Image Classification (real data)

— Bag of Features

Evaluation

* compare 3 algorithms
— SimuParallelSGD by SGD
— MapReduce baseline method by BATCH
— ASGD

* |terlation I : global sum over all samples
—Igarch =T = |X]
_ISGD =T - |CPUS|
_IASGD =T = b . |CPUS|

Experimental Results

10° |

10° }

Meaan execution time

10° }

10°

Strong Scaling

[
o
-

9P SGD J-10 @9 ASGD r«10" Pk BATOM J w10 == linsar scaling |
ek SGOD [e 10" Yook ASGD 110 ¥ BATCH [10" '

W SGD J=10" VW ASGD [=10" PP BATCH [=10

s 128 256 512 1024
2 CPUs

Results of a strong
scaling experiment
on the synthetic
dataset

k=10, d =10,
~1TB data samples

Speedup on real dats scabng #CPUS and &

Ld
oa

Meon ereculon Live

Strong scaling
of real data

10...1000

"9 G0 k=10 e SO0 k=50 Y-y SO0 k=100 &9 500 k=S 8 SO0 e=1000
9 ASGD k)0 e ASGD xu50 ¥y ASGD L0 99 ASGD k500 e ASG0 ke lom
0 BATCH K10 & BATCH LSO B9 BUCH K100 @ BATCH KLSD) B8 BATCH ke 100D

e 12 pyerd)
e O

Mean execution time

10’

[
°0

Real Data: Scaling # of clusters k

®® SGD &9 ASGD &9 BATCH

- = log scaling

b

10 S0 100 500 1000

| Scaling the

number of
clusters k
on real data.

Convergence speed

1.8 —————rrey S—— —
- ASGD b=500
1.6 ASGD b=10000 |-
- SGD
e | — BATCH -
312 ‘
Z
B
-J 10' -
» D.BF -
2
w
5 06} i
g
0.4 |
0.2’ -
0.0 — sk RO S i mal i acancanng
10° 10 10° 10° 10'° 10"’ 10*°

Number of gradient updates

Mean Test Emor

Test Errors and Variance

4 SGD I=10" -4 ASGD /=10 -4 BATCH /=10" |
¥ SGD [=1tf 4 ASGD /=10° #-9 BATCH /=10"
&9 SGD I=10" 94 ASGD I=10" $=§ BATCH I/=10"
10° | = e — o — —4 .
1
!
4
107 4

64 128 256 512 1024

Error rates and their variance of the
strong scaling experiment on synthetic
data

W
U

= runtime ASGD updates

= e nN L] [PY)

o wn o un o

Y Y Y ¥ Y
A

change in runtime in % (compared to SGD)

un
)

0
Rt —— e b
10° 107 10 10

Communication cost of ASGD.

: L .1
The cost of higher communication frequencies -

10° Communication during strong scaling
<o -3 —0— - — —
2 100 - =
Y
9 Msgsent AA Msgreceived YW good Msg
l " " "
0232 64 128 256 512 1024 2048
CPUs

Asynchronous communication rates during
strong scaling experiment

Message Impact: error rate for # iterations

2.5
|

2.0

1.5}

Mean Error

0.5}

||m-@ ASGD sllent W=¥ ASGD

0.0L . : .

10° 10° y 10° 10’ 10° 10* 10%
Iterations

Convergence speed of ASGD optimization
(synthetic dataset, k = 10, d = 10) with and
without asynchronous communication (silent)

10

Message Impact: time needed to reach error rate

10*
0
10° ¢ 4
— e P g

10° ¢
QU
£

10*

a
10° ¢
@-Q ASGD silent =¥ ASGD @@ SGD
10"

0.0 0.5 1.0 1.5 2.0 2.5
Error

Early convergence properties of ASGD without
communication (silent) compared to ASGD and
SGD

Conclusions

* The asynchronous communication scheme can
be applied successfully to SGD optimizations
of machine learning algorithms.

* ASGD provide superior scalability and
convergence compared to previous methods.

e Especially the early convergence property is

high practical value in large scale machine
learning.

